1
|
Wang H, Deng N, Li X, Chen Y, Tian Y, Cheng B, Kang W. Recent insights on the use of modified Zn-based catalysts in eCO 2RR. NANOSCALE 2024; 16:2121-2168. [PMID: 38206085 DOI: 10.1039/d3nr05344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Converting CO2 into valuable chemicals can provide a new path to mitigate the greenhouse effect, achieving the aim of "carbon neutrality" and "carbon peaking". Among numerous electrocatalysts, Zn-based materials are widely distributed and cheap, making them one of the most promising electrocatalyst materials to replace noble metal catalysts. Moreover, the Zn metal itself has a certain selectivity for CO. After appropriate modification, such as oxide derivatization, structural reorganization, reconstruction of the surfaces, heteroatom doping, and so on, the Zn-based electrocatalysts can expose more active sites and adjust the d-band center or electronic structure, and the FE and stability of them can be effectively improved, and they can even convert CO2 to multi-carbon products. This review aims to systematically describe the latest progresses of modified Zn-based electrocatalyst materials (including organic and inorganic materials) in the electrocatalytic carbon dioxide reduction reaction (eCO2RR). The applications of modified Zn-based catalysts in improving product selectivity, increasing current density and reducing the overpotential of the eCO2RR are reviewed. Moreover, this review describes the reasonable selection and good structural design of Zn-based catalysts, presents the characteristics of various modified zinc-based catalysts, and reveals the related catalytic mechanisms for the first time. Finally, the current status and development prospects of modified Zn-based catalysts in eCO2RR are summarized and discussed.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Xinyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yiyang Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Ying Tian
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
2
|
Wang S, Nie X, Lin J, Ding F, Song C, Guo X. Computational Design of Single-atom Modified Ti-MOFs for Photocatalytic CO 2 Reduction to C 1 Chemicals. CHEMSUSCHEM 2023:e202301619. [PMID: 38123530 DOI: 10.1002/cssc.202301619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
In this work, density functional theory (DFT) calculations were conducted to investigate a series of transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Hf, Ta, Os, Ir, and Pt) as single-atom components introduced into Ti-BPDC (BPDC=2,2'-bipyridine-5,5'-dicarboxylic acid) as catalysts (M/Ti-BPDC) for the photocatalytic reduction of CO2 . The results show that Fe/Ti-BPDC is the most active candidate for CO2 reduction to HCOOH due to its small limiting potential (-0.40 V). Ag, Cr, Mn, Ru, Zr, Nb, Rh, and Cu modified Ti-BPDC are also active to HCOOH since their limiting potentials are moderate although the reaction mechanisms are different across these materials. Most of the studied catalysts show poor activity and selectivity to CO product because the stability of *COOH/*OCOH intermediates is significantly weaker than *OCHO/*HCOO species. The moderate binding strength of *CO on Pd/Ti-BPDC is responsible for its superior catalytic activity toward CH3 OH generation. Electronic structural analysis was performed to uncover the origin of the activity trend for CO2 reduction to different products on M/Ti-BPDC. The calculation results indicate that the activity and selectivity of CO2 photoreduction can be effectively tuned by designing single-atom metal-based MOF catalysts.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianbin Lin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fanshu Ding
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Olivier A, Desgagnés A, Mercier E, Iliuta MC. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Antoine Olivier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Alex Desgagnés
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Etienne Mercier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Maria C. Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| |
Collapse
|
4
|
Ren T, Miao Z, Ren L, Xie H, Li Q, Xia C. Nanostructure Engineering of Sn-Based Catalysts for Efficient Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205168. [PMID: 36399644 DOI: 10.1002/smll.202205168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Excessive anthropogenic CO2 emission has caused a series of ecological and environmental issues, which threatens mankind's sustainable development. Mimicking the natural photosynthesis process (i.e., artificial photosynthesis) by electrochemically converting CO2 into value-added products is a promising way to alleviate CO2 emission and relieve the dependence on fossil fuels. Recently, Sn-based catalysts have attracted increasing research attentions due to the merits of low price, abundance, non-toxicity, and environmental benignancy. In this review, the paradigm of nanostructure engineering for efficient electrochemical CO2 reduction (ECO2 R) on Sn-based catalysts is systematically summarized. First, the nanostructure engineering of size, composition, atomic structure, morphology, defect, surficial modification, catalyst/substrate interface, and single-atom structure, are systematically discussed. The influence of nanostructure engineering on the electronic structure and adsorption property of intermediates, as well as the performance of Sn-based catalysts for ECO2 R are highlighted. Second, the potential chemical state changes and the role of surface hydroxides on Sn-based catalysts during ECO2 R are introduced. Third, the challenges and opportunities of Sn-based catalysts for ECO2 R are proposed. It is expected that this review inspires the further development of highly efficient Sn-based catalysts, meanwhile offer protocols for the investigation of Sn-based catalysts.
Collapse
Affiliation(s)
- Tiyao Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Zhengpei Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| |
Collapse
|
5
|
Shi T, Liu D, Liu N, Zhang Y, Feng H, Li Q. Triple-Phase Interface Engineered Hierarchical Porous Electrode for CO 2 Electroreduction to Formate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204472. [PMID: 36047612 PMCID: PMC9596843 DOI: 10.1002/advs.202204472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 06/12/2023]
Abstract
The aqueous electrochemical CO2 reduction to valuable products is seen as one of the most promising candidates to achieve carbon neutrality yet still suffers from poor selectivity and lower current density. Highly efficient CO2 reduction significantly relies on well-constructed electrode to realize efficient and stable triple-phase contact of CO2 , electrolyte, and active sites. Herein, a triple-phase interface engineering approach featuring the combination of hierarchical porous morphology design and surface modification is presented. A hierarchical porous electrode is constructed by depositing bismuth nanosheet array on copper foam followed by trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane modification on the nanosheet surface. This electrode not only achieves highly selective and efficient CO2 reduction performance with formate selectivity above 90% over wide potentials and a partial current density over -90 mA cm-2 in H-cell but also maintains a superior stability during the long-term operation. It is demonstrated that this remarkable performance is attributed to the construction of efficient and stable triple-phase interface. Theoretical calculations also show that the modified surface optimizes the activation path by lowering thermodynamic barriers of the key intermediates *OCHO for the formation of formate during electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of Multiphase Flow in Power EngineeringSchool of Energy and Power EngineeringXi'an Jiaotong UniversityXi'an710049China
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Ning Liu
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Ying Zhang
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Hao Feng
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Qiang Li
- State Key Laboratory of Multiphase Flow in Power EngineeringSchool of Energy and Power EngineeringXi'an Jiaotong UniversityXi'an710049China
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| |
Collapse
|
6
|
Besharat F, Ahmadpoor F, Nezafat Z, Nasrollahzadeh M, Manwar NR, Fornasiero P, Gawande MB. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Farzaneh Besharat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | | | - Nilesh R. Manwar
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit, ICCOM-CNR Trieste Research Unit, University of Trieste, Via Licio Giorgieri 1, I-34127 Trieste, Italy
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
7
|
Li C, Zhou X, Zhang Q, Xue Y, Kuang Z, Zhao H, Mou CY, Chen H. Construction of Heterostructured Sn/TiO 2 /Si Photocathode for Efficient Photoelectrochemical CO 2 Reduction. CHEMSUSCHEM 2022; 15:e202200188. [PMID: 35243793 DOI: 10.1002/cssc.202200188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Using renewable energy to convert CO2 into liquid products, as a sustainable way to produce fuels and chemicals, has attracted intense attention. Herein, a novel heterostructured photocathode composed of Si wafer, TiO2 layer, and Sn metal particles has been successfully fabricated by combining of a facile hydrothermal and electrodeposition method. The obtained Sn/TiO2 /Si photocathode shows enhanced light absorption performance by the surface plasmon resonance effect of Sn metal. Especially, the Sn/TiO2 /Si photocathode together with rich oxygen vacancy defects jointly promote photoelectrochemical CO2 reduction, harvesting a high faradaic efficiency of HCOOH and a desirable average current density (-4.72 mA cm-2 ) at -1.0 V vs. reversible hydrogen electrode. Significantly, the photocathode Sn/TiO2 /Si also shows good stability due to the design of protecting layer TiO2 . This study provides a facile strategy of constructing an efficient photocathode to improve the light absorption performance and the electron transfer efficiency, exhibiting great potential in the CO2 reduction.
Collapse
Affiliation(s)
- Chengjin Li
- School of Materials and chemical, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Xiaoxia Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Qingming Zhang
- School of Materials and chemical, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yi Xue
- School of Materials and chemical, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhaoyu Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Han Zhao
- National Taiwan University, Department of Chemistry, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chung-Yuan Mou
- National Taiwan University, Department of Chemistry, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
8
|
Xue Y, Li C, Zhou X, Kuang Z, Zhao W, Zhang Q, Chen H. MOF derived Cu/Bi bi‐metallic catalyst to enhanced selectivity toward formate for CO2 electroreduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202101648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Xue
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Chengjin Li
- Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Xiaoxia Zhou
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Zhaoyu Kuang
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Wanpeng Zhao
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Qingming Zhang
- Shanghai Institute of Ceramics Chinese Academy of Sciences State Key Laboratory of High Performance Ceramics and Superfine Microstructure CHINA
| | - Hangrong Chen
- Shanghai Institute of Ceramics State Key Laboratory of High Performance Ceramics and Superfine Microstructure No. 1295, Dingxi Road 200050 Shanghai CHINA
| |
Collapse
|
9
|
Takagaki A, Obata W, Ishihara T. Oxidative Conversion of Glucose to Formic Acid as a Renewable Hydrogen Source Using an Abundant Solid Base Catalyst. ChemistryOpen 2021; 10:954-959. [PMID: 34236148 PMCID: PMC8485787 DOI: 10.1002/open.202100074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Formic acid is one of the most desirable liquid hydrogen carriers. The selective production of formic acid from monosaccharides in water under mild reaction conditions using solid catalysts was investigated. Calcium oxide, an abundant solid base catalyst available from seashell or limestone by thermal decomposition, was found to be the most active of the simple oxides tested, with formic acid yields of 50 % and 66 % from glucose and xylose, respectively, in 1.4 % H2 O2 aqueous solution at 343 K for 30 min. The main reaction pathway is a sequential formation of formic acid from glucose by C-C bond cleavage involving aldehyde groups in the acyclic form. The reaction also involves base-catalyzed aldose-ketose isomerization and retroaldol reaction, resulting in the formation of fructose and trioses including glyceraldehyde and dihydroxyacetone. These intermediates were further decomposed into formic acid or glycolic acid. The catalytic activity remained unchanged for further reuse by a simple post-calcination.
Collapse
Affiliation(s)
- Atsushi Takagaki
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- International Institute for Carbon-Neutral Energy Research (WPI−ICNER)Kyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| | - Wataru Obata
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| | - Tatsumi Ishihara
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- International Institute for Carbon-Neutral Energy Research (WPI−ICNER)Kyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- Department of Automotive ScienceGraduate School of Integrated Frontier ScienceKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| |
Collapse
|
10
|
Zhang J, Guo Y, Shang B, Fan T, Lian X, Huang P, Dong Y, Chen Z, Yi X. Unveiling the Synergistic Effect between Graphitic Carbon Nitride and Cu 2 O toward CO 2 Electroreduction to C 2 H 4. CHEMSUSCHEM 2021; 14:929-937. [PMID: 33289966 DOI: 10.1002/cssc.202002427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Electrochemically reducing carbon dioxide (CO2 RR) to ethylene is one of the most promising strategies to reduce carbon dioxide emissions and simultaneously produce high value-added chemicals. However, the lack of catalysts with excellent activity and stability limits the large-scale application of this technology. In this work, a graphitic carbon nitride (g-C3 N4 )-supported Cu2 O composite was fabricated, which exhibited a 32.2 % faradaic efficiency of C2 H4 with a partial current density of -4.3 mA cm-2 at -1.1 V vs. reversible hydrogen electrode in 0.1 m KHCO3 electrolyte. The introduction of g-C3 N4 support not only enhanced the uniform dispersion of Cu2 O nanocubes, but also stabilized the important *CO intermediates. Moreover, the g-C3 N4 itself had a good activity of reducing CO2 to form *CO, which enriched the key intermediates of C-C coupling around cuprous oxide. The findings highlight the importance of the g-C3 N4 support, a unique two-dimensional material, including not only the strong CO2 adsorption and activation capacity but also its synergistic effect with the cuprous oxide in CO2 RR selectivity.
Collapse
Affiliation(s)
- Jiguang Zhang
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuting Guo
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Bin Shang
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Tingting Fan
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xinyi Lian
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Pingping Huang
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yunyun Dong
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Zhou Chen
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaodong Yi
- National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|