1
|
Xiao Z, Chen P, Liu G, Lv W, Chen W, Zhang Q, Blaney L. UV-activated calcium peroxide system enables simultaneous organophosphorus degradation, phosphate recovery, and carbon fixation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135582. [PMID: 39173391 DOI: 10.1016/j.jhazmat.2024.135582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Advanced oxidation processes are a desirable technology for treatment of contaminants of emerging concern. Nevertheless, conventional advanced oxidation of organophosphorus compounds releases inorganic phosphate, posing downstream concerns related to eutrophication. For this reason, we evaluated the ultraviolet light-activated calcium peroxide (UV/CaO2) system for effective treatment of organophosphorus compounds and concurrent capture of the mineralization products, phosphate. The degradation mechanisms, reaction kinetics, and mineralizations were assessed to determine the overall efficiency and performance of the UV/CaO2 process. Knowledge gaps related to photocatalysis in the UV/CaO2 system were not only addressed, but also leveraged to identify unique advantages for removal of organophosphorus compounds and their degradation products. Experimental results confirmed that the UV/CaO2 system effectively mineralized organophosphorus compounds and recovered inorganic phosphate; additionally, collaborative carbon fixation performance of the system reveals the potential of carbon utilization. These outcomes were facilitated by the alkaline environment generated by CaO2. The recovered solids contained most of the phosphorus and carbon from the parent compounds. Ultimately, these findings provide transformative, new insights into the development and application of advanced oxidation processes that prevent downstream concerns related to mineralization products, especially inorganic phosphorus and carbon.
Collapse
Affiliation(s)
- Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weirui Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qianxin Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States.
| |
Collapse
|
2
|
Liu Q, Yan Z, Gao J, Fan H, Li M, Wang E. Ion sieving membrane for direct seawater anti-precipitation hydrogen evolution reaction electrode. Chem Sci 2023; 14:11830-11839. [PMID: 37920330 PMCID: PMC10619616 DOI: 10.1039/d3sc04532c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
In seawater, severe hydroxide-based precipitation on the hydrogen evolution reaction (HER) electrode surface is still a major stumbling block for direct seawater electrolysis. Here, we design a direct seawater HER electrode with excellent anti-precipitation performance based on an Ni(OH)2 nanofiltration membrane in situ grown on nickel foam (NF) at room temperature. The positively charged Ni(OH)2 membrane with nanometer-scale cracks realises an ion sieving function, which apparently hinders the transfer of Mg2+/Ca2+ ions to suppress precipitation, while rapidly transporting OH- and H2O to ensure HER mass transfer. Therefore, the Ni(OH)2-membrane-decorated seawater HER electrode reduces precipitation by about 98.3% and exhibits high activity and stability. Moreover, in the application of a direct seawater electrolyser and magnesium seawater battery, the Ni(OH)2 membrane-decorated electrode also shows low precipitation and high stability. This work highlights a potential strategy to solve HER electrode precipitation in seawater via an ingenious electrode structure design.
Collapse
Affiliation(s)
- Qianfeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhao Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jianxin Gao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hefei Fan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Min Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Erdong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
3
|
Abdallah YK, Estévez AT. Biowelding 3D-Printed Biodigital Brick of Seashell-Based Biocomposite by Pleurotus ostreatus Mycelium. Biomimetics (Basel) 2023; 8:504. [PMID: 37887635 PMCID: PMC10604342 DOI: 10.3390/biomimetics8060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Mycelium biocomposites are eco-friendly, cheap, easy to produce, and have competitive mechanical properties. However, their integration in the built environment as durable and long-lasting materials is not solved yet. Similarly, biocomposites from recycled food waste such as seashells have been gaining increasing interest recently, thanks to their sustainable impact and richness in calcium carbonate and chitin. The current study tests the mycelium binding effect to bioweld a seashell biocomposite 3D-printed brick. The novelty of this study is the combination of mycelium and a non-agro-based substrate, which is seashells. As well as testing the binding capacity of mycelium in welding the lattice curvilinear form of the V3 linear Brick model (V3-LBM). Thus, the V3-LBM is 3D printed in three separate profiles, each composed of five layers of 1 mm/layer thickness, using seashell biocomposite by paste extrusion and testing it for biowelding with Pleurotus ostreatus mycelium to offer a sustainable, ecofriendly, biomineralized brick. The biowelding process investigated the penetration and binding capacity of the mycelium between every two 3D-printed profiles. A cellulose-based culture medium was used to catalyse the mycelium growth. The mycelium biowelding capacity was investigated by SEM microscopy and EDX chemical analysis of three samples from the side corner (S), middle (M), and lateral (L) zones of the biowelded brick. The results revealed that the best biowelding effect was recorded at the corner and lateral zones of the brick. The SEM images exhibited the penetration and the bridging effect achieved by the dense mycelium. The EDX revealed the high concentrations of carbon, oxygen, and calcium at all the analyzed points on the SEM images from all three samples. An inverted relationship between carbon and oxygen as well as sodium and potassium concentrations were also detected, implying the active metabolic interaction between the fungal hyphae and the seashell-based biocomposite. Finally, the results of the SEM-EDX analysis were applied to design favorable tessellation and staking methods for the V3-LBM from the seashell-mycelium composite to deliver enhanced biowelding effect along the Z axis and the XY axis with <1 mm tessellation and staking tolerance.
Collapse
Affiliation(s)
- Yomna K. Abdallah
- iBAG-UIC Barcelona, Institute for Biodigital Architecture & Genetics, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Alberto T. Estévez
- iBAG-UIC Barcelona, Institute for Biodigital Architecture & Genetics, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| |
Collapse
|
4
|
Ji Y, Liu X, Li H, Jiao X, Yu X, Zhang Y. Hydrophobic ZIF-8 covered active carbon for CO2 capture from humid gas. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Rahimi M, Khurram A, Hatton TA, Gallant B. Electrochemical carbon capture processes for mitigation of CO 2 emissions. Chem Soc Rev 2022; 51:8676-8695. [DOI: 10.1039/d2cs00443g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the emerging science and research progress underlying electrochemical processes for carbon capture for mitigation of CO2 emissions, and assesses their current maturity and trajectory.
Collapse
Affiliation(s)
- Mohammad Rahimi
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Aliza Khurram
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - T. Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Betar Gallant
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
8
|
Power-to-decarbonization: Mesoporous carbon-MgO nanohybrid derived from plasma-activated seawater salt-loaded biomass for efficient CO2 capture. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|