1
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Lineberry E, Kim J, Kim J, Roh I, Lin JA, Yang P. High-Photovoltage Silicon Nanowire for Biological Cofactor Production. J Am Chem Soc 2023; 145:19508-19512. [PMID: 37651703 DOI: 10.1021/jacs.3c06243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Photocathodic conversion of NAD+ to NADH cofactor is a promising platform for activating redox biological catalysts and enzymatic synthesis using renewable solar energy. However, many photocathodes suffer from low photovoltage, consequently requiring a high cathodic bias for NADH production. Here, we report an n+p-type silicon nanowire (n+p-SiNW) photocathode having a photovoltage of 435 mV to drive energy-efficient NADH production. The enhanced band bending at the n+/p interface accounts for the high photovoltage, which conduces to a benchmark onset potential [0.393 V vs the reversible hydrogen electrode (VRHE)] for SiNW-based photocathodic NADH generation. In addition, the n+p-SiNW nanomaterial exhibits a Faradaic efficiency of 84.7% and a conversion rate of 1.63 μmol h-1 cm-1 at 0.2 VRHE, which is the lowest cathodic potential to achieve the maximum productivity among SiNW-sensitized cofactor production.
Collapse
Affiliation(s)
- Elizabeth Lineberry
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jinhyun Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jimin Kim
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jia-An Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Agustinus B, Gillam EMJ. Solar-powered P450 catalysis: Engineering electron transfer pathways from photosynthesis to P450s. J Inorg Biochem 2023; 245:112242. [PMID: 37187017 DOI: 10.1016/j.jinorgbio.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
With the increasing focus on green chemistry, biocatalysis is becoming more widely used in the pharmaceutical and other chemical industries for sustainable production of high value and structurally complex chemicals. Cytochrome P450 monooxygenases (P450s) are attractive biocatalysts for industrial application due to their ability to transform a huge range of substrates in a stereo- and regiospecific manner. However, despite their appeal, the industrial application of P450s is limited by their dependence on costly reduced nicotinamide adenine dinucleotide phosphate (NADPH) and one or more auxiliary redox partner proteins. Coupling P450s to the photosynthetic machinery of a plant allows photosynthetically-generated electrons to be used to drive catalysis, overcoming this cofactor dependency. Thus, photosynthetic organisms could serve as photobioreactors with the capability to produce value-added chemicals using only light, water, CO2 and an appropriate chemical as substrate for the reaction/s of choice, yielding new opportunities for producing commodity and high-value chemicals in a carbon-negative and sustainable manner. This review will discuss recent progress in using photosynthesis for light-driven P450 biocatalysis and explore the potential for further development of such systems.
Collapse
Affiliation(s)
- Bernadius Agustinus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
4
|
Engineering of an ene-reductase for producing the key intermediate of antiepileptic drug Brivaracetam. Appl Microbiol Biotechnol 2023; 107:1649-1661. [PMID: 36710288 DOI: 10.1007/s00253-023-12389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
(R)-4-Propyldihydrofuran-2(3H)-one (R-PDFO) is the key chiral intermediate for the antiepileptic drug Brivaracetam. Lacking a simple and economical method to approaching R-PDFO, the production of R-PDFO also remains environmentally unfriendly. Here, we developed a straightforward bioreduction way from easily synthesized 4-propylfuran-2(5H)-one (PFO) using ene-reductases. After screened with 27 ene-reductases, E116 stood out with 25.7% yield and 97% ee (R) as the starting enzyme. To improve the catalytic efficiency of E116, several rounds of directed evolution were first carried out. Through rational design, alanine scanning and random mutagenesis, engineered ene-reductase E116-M3 was obtained, with a 2.63-fold improvement in yields over WT, a 12.6-fold improvement in kcat/Km over WT, and stereoselectivity increased to 99% (R). To further improve the yield of R-PDFO, the reaction conditions were then optimized. The catalytic activity of the optimized reaction system was increased again by 2.3 times and the turnover number (TON) of E116-M3 reached 705. Subsequently, whole cells harboring E116-M3 were also shown to have similar capabilities of synthesizing R-PDFO. Finally, E116-M3 was employed in the 50-mL-scale synthesis of R-PDFO under 20 mM of PFO loading to achieve 81% isolated yield and 99% ee. In conclusion, this new approach of engineered ene-reductase catalyzing the asymmetric reduction of PFO could be a green alternative for the efficient synthesis of R-PDFO. KEY POINTS: • An ene-reductase library was first used to screen the bioreduction of PFO. • Rational design contributed to the enhanced R-stereoselectivity of PFO reduction. • E116-M3 was obtained with high activity and stereoselectivity for R-PDFO.
Collapse
|
5
|
Barone GD, Hubáček M, Malihan-Yap L, Grimm HC, Nikkanen L, Pacheco CC, Tamagnini P, Allahverdiyeva Y, Kourist R. Towards the rate limit of heterologous biotechnological reactions in recombinant cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:4. [PMID: 36609316 PMCID: PMC9825001 DOI: 10.1186/s13068-022-02237-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/04/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cyanobacteria have emerged as highly efficient organisms for the production of chemicals and biofuels. Yet, the productivity of the cell has been low for commercial application. Cyanobacterial photobiotransformations utilize photosynthetic electrons to form reducing equivalents, such as NADPH-to-fuel biocatalytic reactions. These photobiotransformations are a measure to which extent photosynthetic electrons can be deviated toward heterologous biotechnological processes, such as the production of biofuels. By expressing oxidoreductases, such as YqjM from Bacillus subtilis in Synechocystis sp. PCC 6803, a high specific activity was obtained in the reduction of maleimides. Here, we investigated the possibility to accelerate the NAD(P)H-consuming redox reactions by addition of carbohydrates as exogenous carbon sources such as D-Glucose under light and darkness. RESULTS A 1.7-fold increase of activity (150 µmol min-1 gDCW-1) was observed upon addition of D-Glucose at an OD750 = 2.5 (DCW = 0.6 g L-1) in the biotransformation of 2-methylmaleimide. The stimulating effect of D-Glucose was also observed at higher cell densities in light and dark conditions as well as in the reduction of other substrates. No increase in both effective photosynthetic yields of Photosystem II and Photosystem I was found upon D-Glucose addition. However, we observed higher NAD(P)H fluorescence when D-Glucose was supplemented, suggesting increased glycolytic activity. Moreover, the system was scaled-up (working volume of 200 mL) in an internally illuminated Bubble Column Reactor exhibiting a 2.4-fold increase of specific activity under light-limited conditions. CONCLUSIONS Results show that under photoautotrophic conditions at a specific activity of 90 µmol min-1 gDCW-1, the ene-reductase YqjM in Synechocystis sp. PCC 6803 is not NAD(P)H saturated, which is an indicator that an increase of the rates of heterologous electron consuming processes for catalysis and biofuel production will require funnelling further reducing power from the photosynthetic chain toward heterologous processes.
Collapse
Affiliation(s)
- Giovanni Davide Barone
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria ,grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Michal Hubáček
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lenny Malihan-Yap
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Hanna C. Grimm
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Lauri Nikkanen
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Catarina C. Pacheco
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Yagut Allahverdiyeva
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Robert Kourist
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
6
|
Collaborative catalysis for solar biosynthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
8
|
Kim J, Um Y, Han S, Hilberath T, Kim YH, Hollmann F, Park CB. Unbiased Photoelectrode Interfaces for Solar Coupling of Lignin Oxidation with Biocatalytic C═C Bond Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11465-11473. [PMID: 35196006 DOI: 10.1021/acsami.1c24342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pulp and paper manufacturers generate approximately 50 million metric tons of lignin per annum, most of which has been abandoned or incinerated because of lignin's recalcitrant nature. Here, we report bias-free photoelectrochemical (PEC) oxidation of lignin coupled with asymmetric hydrogenation of C═C bonds. The PEC platform consists of a hematite (α-Fe2O3) photoanode and a silicon photovoltaic-wired mesoporous indium tin oxide (Si/mesoITO) photocathode. We substantiate a new function of photoelectroactivated α-Fe2O3 to extract electrons from lignin. The extracted electrons are transferred to the Si/mesoITO photocathode for regenerating synthetic nicotinamide cofactor analogues (mNADHs). We demonstrate that the reduction kinetics of mNAD+s depend on their reduction peak potentials. The regenerated mNADHs activate ene-reductases from the old yellow enzyme (OYE) family, which catalyze enantioselective reduction of α,β-unsaturated hydrocarbons. This lignin-fueled biocatalytic PEC system exhibits an excellent OYE's turnover frequency and total turnover number for photobiocatalytic trans-hydrogenation through cofactor regeneration. This work presents the first example of PEC regeneration of mNADHs and opens up a sustainable route for bias-free chemical synthesis using renewable lignin waste as an electron feedstock.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Yunna Um
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Seunghyun Han
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Thomas Hilberath
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|