1
|
Luo X, Xie C, Zhao Z, Shi M, Zheng H. Optimization of Electrochemical Reduction of Biomass Derived 5-Hydroxymethylfurfural (HMF): A Volcano Plot and Bimetallic Catalysts. CHEMSUSCHEM 2024; 17:e202400723. [PMID: 38738965 DOI: 10.1002/cssc.202400723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
2,5-bis(hydroxymethyl)furan (BHMF) derived from 5-Hydroxymethylfurfural (HMF) through a hydrogenation process has extensive applications in the production of resins, polymers, and artificial fibers. However, screening out the candidate and then modulating the active site to optimize the catalyst for high yield of BHMF are currently insufficient. In this study, Gibbs free energy diagrams of the reduction of HMF on 13 metals were presented, along with the identification of the rate-determining step (RDS) with the highest reaction barrier for each metal. We attempted to construct a volcano plot for HMFRR reaction. Additionally, a strategy was proposed to adjust the reaction barriers of RDS by combining two appropriate metals. Further experiments confirmed that Pb with the lowest energy barrier exhibited the highest HMF conversion (BHMF selectivity) among single metals. The modified catalyst by doping Ag on Pb, further boosted the HMF conversion (BHMF selectivity) from 42.1 % (59.4 %) to 80.8 % (80.9 %), respectively. These results provide an approach to rationally design and construct the catalyst system for efficient conversion of HMF.
Collapse
Affiliation(s)
- Xingyu Luo
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Cheng Xie
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhefei Zhao
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Research Institute of Zhejiang University of Technology-Taizhou, Taizhou, 318000, P. R. China
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Meiqin Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Research Institute of Zhejiang University of Technology-Taizhou, Taizhou, 318000, P. R. China
- Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
2
|
Asfia MP, Cuomo A, Kloth R, Mayrhofer KJJ, Nikolaienko P. The Role of Alkali Cations on the Selectivity of 5-Hydroxymethylfurfural Electroreduction on Glassy Carbon. CHEMSUSCHEM 2024; 17:e202400535. [PMID: 38728590 DOI: 10.1002/cssc.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
In the past decade, organic electrosynthesis has emerged as an atom- and energy-efficient strategy for harvesting renewable electricity that provides exceptional control over the reaction parameters. A profound and fundamental understanding of electrochemical interfaces becomes imperative to advance the knowledge-based development of electrochemical processes. The major strategy toward an efficient electrochemical system is based on the advancement in material science for electrocatalysis. Studies on the complex interplay among electrode surface, electrolyte, and transformation intermediates have only recently started to emerge. It involves acquiring atomic-scale insights into the electrochemical double layer, for which the identity and concentration of composing ions play a crucial role. In this study, we present how the identity and concentration of alkali cations impact the selectivity of aldehyde functionality electroreduction. As a case-study transformation, we set the electrochemical conversion of 5-hydroxymethylfurfural (HMF), a promising biomass-derived feedstock for the sustainable production of polymer or fuel precursors. Our findings reveal a consistent trend of the selectivity shift towards 2,5-bis(hydroxymethyl)furan (BHMF) as a function of cation size and concentration, rationalized by specific cation adsorption at the glassy carbon (GC), followed by the increase in the electrode surface charge density.
Collapse
Affiliation(s)
- Mohammad Peirow Asfia
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Angelina Cuomo
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Ricarda Kloth
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Karl J J Mayrhofer
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstr. 1, 91058, Erlangen, Germany
| | - Pavlo Nikolaienko
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
| |
Collapse
|
3
|
Li S, Kan Z, Bai J, Ma A, Lu J, Liu S. Rational Design of Transition-Metal-Based Catalysts for the Electrochemical 5-Hydroxymethylfurfural Reduction Reaction. CHEMSUSCHEM 2024:e202400869. [PMID: 38924363 DOI: 10.1002/cssc.202400869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The electrochemical reduction reaction (HMFRR) of 5-hydroxymethylfurfural (HMF) has emerged as a promising avenue for the utilization and refinement of the biomass-derived platform molecule HMF into high-value chemicals, addressing energy sustainability challenges. Transition metal electrocatalysts (TMCs) have recently garnered attention as promising candidates for catalyzing HMFRR, capitalizing on the presence of vacant d orbitals and unpaired d electrons. TMCs play a pivotal role in facilitating the generation of intermediates through interactions with HMF, thereby lowering the activation energy of intricate reactions and significantly augmenting the catalytic reaction rate. In the absence of comprehensive and guiding reviews in this domain, this paper aims to comprehensively summarize the key advancements in the design of transition metal catalysts for HMFRR. It elucidates the mechanisms and pH dependency of various products generated during the electrochemical reduction of HMF, with a specific emphasis on the bond-cleavage angle. Additionally, it offers a detailed introduction to typical in-situ characterization techniques. Finally, the review explores engineering strategies and principles to enhance HMFRR activity using TMCs, particularly focusing on multiphase interface control, crystal face control, and defect engineering control. This review introduces novel concepts to guide the design of HMFRR electrocatalysts, especially TMCs, thus promoting advancements in biomass conversion.
Collapse
Affiliation(s)
- Siqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, University of Northeast Forestry University, Harbin, 150040, China
| | - Ziwang Kan
- College of Chemistry, Chemical Engineering and Resource Utilization, University of Northeast Forestry University, Harbin, 150040, China
| | - Jiaxiao Bai
- College of Chemistry, Chemical Engineering and Resource Utilization, University of Northeast Forestry University, Harbin, 150040, China
| | - Ang Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, University of Northeast Forestry University, Harbin, 150040, China
| | - Jing Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, University of Northeast Forestry University, Harbin, 150040, China
| | - Song Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, University of Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
4
|
Eisenberg JB, Lee K, Yuan X, Schmidt JR, Choi KS. The Impact of Electron Donating and Withdrawing Groups on Electrochemical Hydrogenolysis and Hydrogenation of Carbonyl Compounds. J Am Chem Soc 2024; 146:15309-15319. [PMID: 38771660 DOI: 10.1021/jacs.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The hydrogenolysis or hydrodeoxygenation of a carbonyl group, where the C═O group is converted to a CH2 group, is of significant interest in a variety of fields. A challenge in electrochemically achieving hydrogenolysis of a carbonyl group with high selectivity is that electrochemical hydrogenation of a carbonyl group, which converts the C═O group to an alcohol group (CH-OH), is demonstrated not to be the initial step of hydrogenolysis. Instead, hydrogenation and hydrogenolysis occur in parallel, and they are competing reactions. This means that although both hydrogenolysis and hydrogenation require adding H atoms to the carbonyl group, they involve different intermediates formed on the electrode surface. Thus, revealing the difference in intermediates, transition states, and kinetic barriers for hydrogenolysis and hydrogenation pathways is the key to understanding and controlling hydrogenolysis/hydrogenation selectivity of carbonyl compounds. In this study, we aimed to identify features of reactant molecules that can affect their hydrogenolysis/hydrogenation selectivity on a Zn electrode that was previously shown to promote hydrogenolysis over hydrogenation. In particular, we examined the electrochemical reduction of para-substituted benzaldehyde compounds with substituent groups having different electron donating/withdrawing abilities. Our results show a strikingly systematic impact of the substituent group where a stronger electron-donating group promotes hydrogenolysis and a stronger electron-withdrawing group promotes hydrogenation. These experimental results are presented with computational results explaining the substituent effects on the thermodynamics and kinetics of electrochemical hydrogenolysis and hydrogenation pathways, which also provide critically needed information and insights into the transition states involved with these pathways.
Collapse
Affiliation(s)
- Jonah B Eisenberg
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kwanpyung Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xin Yuan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Yuan X, Lee K, Schmidt JR, Choi KS. Halide Adsorption Enhances Electrochemical Hydrogenolysis of 5-Hydroxymethylfurfural by Suppressing Hydrogenation. J Am Chem Soc 2023; 145:20473-20484. [PMID: 37682732 DOI: 10.1021/jacs.3c06289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Reductive upgrading of 5-hydroxymethylfurfural (HMF), a biomass-derived platform molecule, to 2,5-dimethylfuran (DMF), a biofuel with an energy density 40% greater than that of ethanol, involves hydrogenolysis of both the aldehyde (C═O) and the alcohol (C-OH) groups of HMF. It is known that when hydrogenation of the aldehyde occurs to form 2,5-bis(hydroxymethyl)furan (BHMF), BHMF cannot be further reduced to DMF. Thus, aldehyde hydrogenation must be suppressed to increase the selectivity for DMF production. Previously, it was shown that on a Cu electrode hydrogenolysis occurs mainly through proton-coupled electron transfer (PCET), where a proton from the solution and an electron from the electrode are transferred to the organic species. In contrast, hydrogenation occurs not only through PCET but also through hydrogen atom transfer (HAT), where a surface-adsorbed hydrogen atom (H*) is transferred to the organic species. This study shows that halide adsorption on Cu can effectively suppress HAT by decreasing the steady-state H* coverage on Cu during HMF reduction. As HAT enables only aldehyde hydrogenation, a striking suppression of BHMF is observed, thereby enhancing DMF production. We discuss how the identity and concentration of the halide, along with the reduction conditions (i.e., potential and pH), affect halide adsorption on Cu and identify when optimal halide coverages are achieved to maximize DMF selectivity. Our experimental results are presented alongside computational results that elucidate how halide adsorption affects the adsorption energy of hydrogen and the steady-state H* coverage on Cu, which provide an atomic-level understanding of all experimentally observed effects.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kwanpyung Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Hauke P, Merzdorf T, Klingenhof M, Strasser P. Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived Cu-bimetallics. Nat Commun 2023; 14:4708. [PMID: 37543599 PMCID: PMC10404266 DOI: 10.1038/s41467-023-40463-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
The electrochemical conversion of 5-Hydroxymethylfurfural, especially its reduction, is an attractive green production pathway for carbonaceous e-chemicals. We demonstrate the reduction of 5-Hydroxymethylfurfural to 5-Methylfurfurylalcohol under strongly alkaline reaction environments over oxide-derived Cu bimetallic electrocatalysts. We investigate whether and how the surface catalysis of the MOx phases tune the catalytic selectivity of oxide-derived Cu with respect to the 2-electron hydrogenation to 2.5-Bishydroxymethylfuran and the (2 + 2)-electron hydrogenation/hydrogenolysis to 5-Methylfurfurylalcohol. We provide evidence for a kinetic competition between the evolution of H2 and the 2-electron hydrogenolysis of 2.5-Bishydroxymethylfuran to 5-Methylfurfurylalcohol and discuss its mechanistic implications. Finally, we demonstrate that the ability to conduct 5-Hydroxymethylfurfural reduction to 5-Methylfurfurylalcohol in alkaline conditions over oxide-derived Cu/MOx Cu foam electrodes enable an efficiently operating alkaline exchange membranes electrolyzer, in which the cathodic 5-Hydroxymethylfurfural valorization is coupled to either alkaline oxygen evolution anode or to oxidative 5-Hydroxymethylfurfural valorization.
Collapse
Affiliation(s)
- Philipp Hauke
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin, Germany
| | - Thomas Merzdorf
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin, Germany
| | - Malte Klingenhof
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin, Germany
| | - Peter Strasser
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Bender MT, Yuan X, Goetz MK, Choi KS. Electrochemical Hydrogenation, Hydrogenolysis, and Dehydrogenation for Reductive and Oxidative Biomass Upgrading Using 5-Hydroxymethylfurfural as a Model System. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael T. Bender
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xin Yuan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - McKenna K. Goetz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Yuan X, Lee K, Bender MT, Schmidt JR, Choi K. Mechanistic Differences between Electrochemical Hydrogenation and Hydrogenolysis of 5-Hydroxymethylfurfural and Their pH Dependence. CHEMSUSCHEM 2022; 15:e202200952. [PMID: 35731931 PMCID: PMC9542785 DOI: 10.1002/cssc.202200952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Hydrogenation and hydrogenolysis are two important reactions for electrochemical reductive valorization of biomass-derived oxygenates such as 5-hydroxymethylfurfural (HMF). In general, hydrogenolysis (which combines hydrogenation and deoxygenation) is more challenging than hydrogenation (which does not involve the cleavage of carbon-oxygen bonds). Thus, identifying factors and conditions that can promote hydrogenolysis is of great interest for reductive valorization of biomass-derived oxygenates. For the electrochemical reduction of HMF and its derivatives, it is known that aldehyde hydrogenation is not a part of aldehyde hydrogenolysis but rather a competing reaction; however, no atomic-level understanding is currently available to explain their electrochemical mechanistic differences. In this study, combined experimental and computational investigations were performed using Cu electrodes to elucidate the key mechanistic differences between electrochemical hydrogenation and hydrogenolysis of HMF. The results revealed that hydrogenation and hydrogenolysis of HMF involve the formation of different surface-adsorbed intermediates via different reduction mechanisms and that lowering the pH promoted the formation of the intermediates required for aldehyde and alcohol hydrogenolysis. This study for the first time explains the origins of the experimentally observed pH-dependent selectivities for hydrogenation and hydrogenolysis and offers a new mechanistic foundation upon which rational strategies to control electrochemical hydrogenation and hydrogenolysis can be developed.
Collapse
Affiliation(s)
- Xin Yuan
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - Kwanpyung Lee
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - Michael T. Bender
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - J. R. Schmidt
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - Kyoung‐Shin Choi
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| |
Collapse
|
9
|
Zhong Y, Ren R, Peng Y, Wang J, Ren X, Li Q, Fan Y. In situ construction of hierarchical Ag-decorated Cu nanowire arrays as an efficient and durable electrocatalyst for hydrogenation of 5-hydroxymethylfurfural and furfural. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
He Y, Deng L, Lee Y, Li K, Lee JM. A Review on the Critical Role of H 2 Donor in the Selective Hydrogenation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200232. [PMID: 35244338 DOI: 10.1002/cssc.202200232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The selective hydrogenation of 5-hydroxymethylfurfural (HMF) has been of great interest to many scientists and researchers. However, conventional hydrogenation inevitably requires the use of gaseous hydrogen as a reducing agent, which is detrimental to its storage and transport. In this regard, other economical and environmentally friendly strategies, such as catalytic transfer hydrogenation/hydrogenolysis without external molecular H2 , become more and more attractive. This Review provides the status and insight into the current research of hydrogenating HMF to high-value chemicals, using formic acid, alcohols, polymethylhydrosiloxane, water, and sodium borohydride as hydrogen donors and explains the hydrogenation mechanisms and the related hydrogenation characteristics of different hydrogen donors in the catalytic systems.
Collapse
Affiliation(s)
- Yima He
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Limin Deng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yuyou Lee
- School of Environmental Engineering, Okayama University, Okayama, 700-8530, Japan
| | - Kaixin Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
11
|
de Luna GS, Sacco A, Hernandez S, Ospitali F, Albonetti S, Fornasari G, Benito P. Insights into the Electrochemical Reduction of 5-Hydroxymethylfurfural at High Current Densities. CHEMSUSCHEM 2022; 15:e202102504. [PMID: 35129857 PMCID: PMC9400883 DOI: 10.1002/cssc.202102504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The electrocatalytic reduction of 5-hydroxymethylfurfural (HMF) is highly selective to 2,5-bishydroxymethylfuran (BHMF) at pH=9.2, diluted HMF solutions, and low current densities. In this work, the electrochemical reduction of 0.05 m HMF solutions was investigated in the 5-50 mA cm-2 current density range over an AgCu foam electrocatalyst. The selectivity towards the formation of BHMF or the dimerization depended on the current density, likely due to differences in the electrode potential, and on the reaction time. Operating at current densities of 40-50 mA cm-2 allowed to find a trade-off between HMF and H2 O activation, achieving 85 % BHMF selectivity and fostering the productivity (0.567 mmol cm-2 h-1 ), though co-producing H2 . The electrochemical characterization by Tafel slopes and electrochemical impedance spectroscopy indicated that the HMF reduction was kinetically favored in comparison to the hydrogen evolution reaction and that the process was limited by charge transfer.
Collapse
Affiliation(s)
- Giancosimo Sanghez de Luna
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| | - Adriano Sacco
- Center for Sustainable Future Technologies @POLITOIstituto Italiano di TecnologiaVia Livorno 6010144TurinItaly
| | - Simelys Hernandez
- Center for Sustainable Future Technologies @POLITOIstituto Italiano di TecnologiaVia Livorno 6010144TurinItaly
- Department of Applied Science and Technology (DISAT)Politecnico di TorinoC.so Duca degli Abruzzi 2410129TurinItaly
| | - Francesca Ospitali
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| | - Stefania Albonetti
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| | - Giuseppe Fornasari
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| | - Patricia Benito
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| |
Collapse
|
12
|
Chuang PC, Lai YH. Selective production of formate over a CuO electrocatalyst by electrochemical and photoelectrochemical biomass valorisation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuO acts as a selective (a) electrocatalyst for electrochemical formate production from various biomass wastes and (b) a cocatalyst on a hematite photoanode for photoelectrochemical formate production from glucose.
Collapse
Affiliation(s)
- Ping-Chang Chuang
- Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Yi-Hsuan Lai
- Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|