1
|
Li H, Fu W, Yin J, Zhang J, Ran H, Zhang M, Jiang W, Zhu W, Li H, Dai S. Porous ionic liquids for oxidative desulfurization influenced by electrostatic solvent effect. J Colloid Interface Sci 2024; 662:160-170. [PMID: 38340515 DOI: 10.1016/j.jcis.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Developing a highly efficient strategy for the stabilization of the solid-liquid interface is a persistent pursuit for researchers. Herein, porous ionic liquids based on UiO-66 (Zr) porous materials were synthesized and applied to the selective desulfurization catalysis, which integrates the permanent pores of porous solids with the exceptional properties of ionic liquids. Results show that porous ionic liquids possess high activity and selectivity for dibenzothiophene. Experimental analysis and density functional theory calculations revealed that the ionic liquids moiety served as an extractant to enrich dibenzothiophene into the porous ionic liquids phase through the π···π and CH···π interactions. Additionally, the electrostatic solvent effect in the porous ionic liquids contributes to the stabilization solid-liquid interface, which was favorable for UiO-66 moiety to catalytically activate hydrogen peroxide (H2O2) to generate ·OH radicals, and subsequently oxidized dibenzothiophene to the corresponding sulfone. It is hoped that the development of porous ionic liquids could pave a new route to the stabilization of the solid-liquid interface for catalytic oxidation.
Collapse
Affiliation(s)
- Hongping Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wendi Fu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Yin
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinrui Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongshun Ran
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ming Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenshuai Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Sheng Dai
- Department of Chemistry, University of Tennessee Knoxville, TN 37996, United States; Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
2
|
Lv H, Wang Z, An J, Li Z, Shi L, Shan Y. Preparation and Emulsifying Properties of Carbon-Based Pickering Emulsifier. Processes (Basel) 2023. [DOI: 10.3390/pr11041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Water is increasingly being used as a solvent in place of organic solvent in order to meet the demand for green chemical synthesis. Nevertheless, many of the reaction substrates are organic matter, which have low water solubility, resulting in a low reaction interface and limiting the development of organic-water biphasic systems. A surfactant is typically added to the two-phase system to form an emulsion to increase the contact area between the organic phase and the water. Compared to ordinary emulsion stabilized with the surfactant, Pickering emulsion offers better adhesion resistance, biocompatibility, and environmental friendliness. It possesses unrivaled benefits as an emulsifier and catalyst in a two-phase interfacial catalysis system (PIC). In this study, the amine group (NNDB) was employed to alter the surface of graphene oxide (GO). A stable Pickering emulsion was created by adsorbing GO-NNDB on the toluene–water interface. It was determined that the emulsion system had good stability by analyzing digital photographs and microscope images of droplets at various temperatures, and fluorescence microscopy images of emulsion droplets created by both newly added and recovered emulsifiers. This work provided the groundwork for future applications of Pickering emulsion in interfacial catalysis.
Collapse
Affiliation(s)
- Huihui Lv
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zebo Wang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jialong An
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhanfeng Li
- College of Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Shan
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|