1
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK, Pathak S. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis 2024; 40:1. [PMID: 39731596 DOI: 10.1007/s00384-024-04790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges. METHODS This review discussed the various immunotherapeutic strategies for CRC treatment, including immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, combination therapies involving ICIs with other modalities, chimeric antigen receptor T-cell (CAR-T) cell therapy, and cancer vaccines. The role of the tumor microenvironment and immune evasion mechanisms was also explored to understand their impact on the effectiveness of these therapies. RESULTS This review provides a comprehensive update of recent advancements in immunotherapy for CRC, highlighting the potential of various immunotherapeutic approaches, including immune checkpoint inhibitors, combination therapies, CAR-T therapy, and vaccination strategies. The results of checkpoint inhibitors, particularly in patients with MSI-H/dMMR tumors, which have significant improvements in survival rates have been observed. Furthermore, this review also addresses the challenges faced in treating pMMR/MSS CRC, which remains resistant to immunotherapy. CONCLUSION Immunotherapy plays a significant role in the treatment of CRC, particularly in patients with MSI-H/dMMR tumors. However, many challenges remain, especially in treating pMMR/MSS CRC. This review discussed the need for further research into combination therapies, biomarker development, CAR-T cell therapy, and a deeper understanding of immune evasion mechanisms for CRC treatment.
Collapse
Affiliation(s)
- Vaishak Kaviyarasan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Biki Saha
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
2
|
Takagi K, Sukhbaatar A, Inaba Y, Mori S, Kodama T. A combination of lymphatic drug delivery of anti-CTLA-4 antibody and local radiotherapy for solid-tumor treatment. Cancer Sci 2024; 115:4021-4033. [PMID: 39380185 PMCID: PMC11611777 DOI: 10.1111/cas.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The combination of radiotherapy and immunotherapy is a promising approach that has been shown in clinical trials to improve significantly survival and response rates compared with monotherapy against solid tumor. Since anti-CTLA-4 antibodies block immunosuppressive signals mainly in the lymph nodes (LNs), efficient drug delivery to the lymphatic system is desirable. However, the immune checkpoint inhibitors, especially anti-CTLA-4 are currently administered intravenously (i.v.), resulting in limited efficacy in controlling solid tumor and inhibiting metastases, and the method of administration has not been optimized. Here, we show that a combination of local radiotherapy and administration of anti-CTLA-4 antibodies using a lymphatic drug delivery system (LDDS) suppresses solid tumor and metastases. We compared the efficacy of LDDS-based immunotherapy or radioimmunotherapy with i.v. administration in a solid-tumor model created by subcutaneous inoculation into LN-swollen mice with osteosarcoma cells. Tumor-bearing mice were divided into various groups (no treatment, immunotherapy [i.v. or LDDS], radiotherapy, and radioimmunotherapy [i.v. or LDDS]) and were observed for 28 days. Immunotherapy was administered with a cumulative dose of 10 mg/kg of anti-CTLA-4 monoclonal antibody, and radiotherapy was administered with a cumulative 8 Gy of fractionated X-ray irradiation. For immunotherapy alone, LDDS provided slight tumor growth inhibition but did not inhibit distant metastasis. For radioimmunotherapy, however, tumor growth was delayed and distant metastasis was suppressed compared with radiotherapy alone. In particular, the LDDS group achieved a high tumor-suppressive effect with T cell-mediated immune activity, indicating the efficacy of LDDS in radioimmunotherapy.
Collapse
Affiliation(s)
- Koki Takagi
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of DentistryTohoku UniversitySendaiMiyagiJapan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
| | - Yohei Inaba
- Department of Radiological TechnologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Radiation Disaster MedicineInternational Research Institute of Disaster Science, Tohoku UniversitySendaiMiyagiJapan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of DentistryTohoku UniversitySendaiMiyagiJapan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical EngineeringTohoku UniversitySendaiMiyagiJapan
| |
Collapse
|
3
|
Liu Y, Deng Y, Yang C, Naranmandura H. Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives. Bioengineering (Basel) 2024; 11:1084. [PMID: 39593745 PMCID: PMC11591775 DOI: 10.3390/bioengineering11111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cyclin-dependent kinases (CDKs) are generally involved in the progression of cell cycle and cell division in normal cells, while abnormal activations of CDKs are deemed to be a driving force for accelerating cell proliferation and tumorigenesis. Therefore, CDKs have become ideal therapeutic targets for cancer treatment. The U.S FDA has approved three CDK4/6 inhibitors (CDK4/6is) for the treatment of patients with hormone receptor-positive (HR+) or human epidermal growth factor receptor 2-negative (HER2-) advanced or metastatic breast cancer, and these drugs showed impressive results in clinics. Besides cell-cycle arrest, there is growing evidence that CDK4/6is exert paradoxical roles on cancer treatment by altering the immune system. Indeed, clinical data showed that CDK4/6is could change the immune system to exert antitumor effects, while these changes also caused tumor resistance to CDK4/6i. However, the molecular mechanism for the regulation of the immune system by CDK4/6is is unclear. In this review, we comprehensively discuss the paradoxical immunological effects of CDK4/6is in cancer treatment, elucidating their anticancer mechanisms through immunomodulatory activity and induction of acquired drug resistance by dysregulating the immune microenvironment. More importantly, we suggest a few strategies including combining CDK4/6is with immunotherapy to overcome drug resistance.
Collapse
Affiliation(s)
- Yongqin Liu
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiying Deng
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chang Yang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hua Naranmandura
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Hung SK, Lee MS, Chiou WY, Liu DW, Yu CC, Chen LC, Lin RI, Chew CH, Hsu FC, Yang HJ, Chan MWY, Lin HY. Epigenetic modification in radiotherapy and immunotherapy for cancers. Tzu Chi Med J 2024; 36:396-406. [PMID: 39421493 PMCID: PMC11483092 DOI: 10.4103/tcmj.tcmj_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 10/19/2024] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities in managing cancer patients. Recently, combined RT and immunotherapy (IT) (i.e., radio-IT [RIT]) have been aggressively investigated in managing cancer patients. However, several issues in conducting RIT are challenging, such as incorporating advanced irradiation techniques, predictive/prognostic biomarkers, and other treatment modalities. Several clinical efforts and novel biomarkers have been introduced and developed to solve these challenges. For example, stereotactic radiosurgery/stereotactic radiotherapy, stereotactic body radiotherapy/stereotactic ablative body radiotherapy, and FLASH-RT have been applied for delivering precise irradiation to lung and liver tumors in conjunction with IT. Besides, several novel IT agents and incorporations of other therapies, such as targeted and thermal therapies, have been further investigated. The present study reviewed the emerging challenges of RIT in modern oncology. We also evaluated clinical practice, bench research, and multimodality treatments. In addition to several clinically applicable biomarkers, we emphasize the roles of advanced irradiation techniques and epigenetic modification as predictive/prognostic biomarkers and potential therapeutic targets. For example, 6(m) A-based epigenetic agents demonstrate the potential to enhance the treatment effects of RIT. However, further prospective randomized trials should be conducted to confirm their roles.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
6
|
Gregucci F, Beal K, Knisely JPS, Pagnini P, Fiorentino A, Bonzano E, Vanpouille-Box CI, Cisse B, Pannullo SC, Stieg PE, Formenti SC. Biological Insights and Radiation-Immuno-Oncology Developments in Primary and Secondary Brain Tumors. Cancers (Basel) 2024; 16:2047. [PMID: 38893165 PMCID: PMC11171192 DOI: 10.3390/cancers16112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Malignant central nervous system (CNS) cancers include a group of heterogeneous dis-eases characterized by a relative resistance to treatments and distinguished as either primary tumors arising in the CNS or secondary tumors that spread from other organs into the brain. Despite therapeutic efforts, they often cause significant mortality and morbidity across all ages. Radiotherapy (RT) remains the main treatment for brain cancers, improving associated symptoms, improving tumor control, and inducing a cure in some. However, the ultimate goal of cancer treatment, to improve a patient's survival, remains elusive for many CNS cancers, especially primary tumors. Over the years, there have thus been many preclinical studies and clinical trials designed to identify and overcome mechanisms of resistance to improve outcomes after RT and other therapies. For example, immunotherapy delivered concurrent with RT, especially hypo-fractionated stereotactic RT, is synergistic and has revolutionized the clinical management and outcome of some brain tumors, in particular brain metastases (secondary brain tumors). However, its impact on gliomas, the most common primary malignant CNS tumors, remains limited. In this review, we provide an overview of radioresistance mechanisms, the emerging strategies to overcome radioresistance, the role of the tumor microenviroment (TME), and the selection of the most significant results of radiation-immuno-oncological investigations. We also identify novel therapeutic opportunities in primary and secondary brain tumors with the purpose of elucidating current knowledge and stimulating further research to improve tumor control and patients' survival.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
| | - Kathryn Beal
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Jonathan P. S. Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Paul Pagnini
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, IRCCS San Matteo Polyclinic Foundation, 27100 Pavia, Italy;
| | - Claire I. Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| | - Babacar Cisse
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
| | - Susan C. Pannullo
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Philip E. Stieg
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Zelin E, Mazzoletti V, Cavallo F, Nardello C, Corio A, Toffoli L, Tagliaferri L, Conforti C, Di Meo N, Zalaudek I. Treatment of locally advanced and metastatic basosquamous carcinoma, navigating among sonic hedgehog pathway inhibitors, immune checkpoint inhibitors, chemotherapy, and radiotherapy: A case series and literature review. Australas J Dermatol 2024; 65:103-113. [PMID: 37927116 DOI: 10.1111/ajd.14182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Locally advanced (laBSCs) and metastatic basosquamous carcinomas (mBSCs) represent a therapeutic challenge. By definition, these forms are not amenable to surgery or radiotherapy, but according to literature reports, sonic hedgehog pathway inhibitors (HHIs), anti-programmed death 1 receptor antibodies (anti-PD-1), and other treatment approaches involving chemotherapy, surgery, and radiotherapy have been used. This work features 5 real-life cases of advanced BSCs, treated at the Dermato-Oncology Unit of Trieste (Maggiore Hospital, University of Trieste). In addition, a review of the current treatment options reported in the literature for laBSC and mBSC is provided, collecting a total of 17 patients. According to these preliminary data, HHIs such as sonidegib and vismodegib could represent a safe and effective first line of treatment, while the anti-PD-1 cemiplimab may be useful as a second-line option. Chemotherapy and combined approaches involving surgery and radiotherapy have been also reported to be suitable in some patients.
Collapse
Affiliation(s)
- Enrico Zelin
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Vanessa Mazzoletti
- Department of Health Science, University of Eastern Piedmont, Novara, Italy
| | - Francesco Cavallo
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Carlotta Nardello
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Andrea Corio
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Ludovica Toffoli
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Claudio Conforti
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
- Dermatological Research Hospital, IDI IRCCS, Rome, Italy
| | - Nicola Di Meo
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Wang S, Mu X, Wang X, Chen L, Lu C, Song L. Peripheral Blood CD8 + CD28 + T Cells as an Independent Predictor of Treatment Response and Survival After Concurrent Chemoradiotherapy in Pediatric High-Grade Glioma Patients. Clin Med Insights Oncol 2024; 18:11795549241227421. [PMID: 38322666 PMCID: PMC10845990 DOI: 10.1177/11795549241227421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
Backgroud The tumor immune microenvironment influences the efficiency of concurrent chemoradiotherapy (CCRT) in high-grade glioma (HGG). This study investigated peripheral blood T lymphocyte subsets as clinical indicators of therapeutic response and prognosis in pediatric high-grade glioma (pHGG). Methods This retrospective study included 77 patients with postoperative pHGG who were treated concurrently with temozolomide and external beam radiotherapy between January 1, 2012, and December 31, 2018. The median follow-up was 26 (range: 5-106) months. Peripheral venous blood samples were collected before and after CCRT. The proportions of peripheral blood T lymphocytes and their association with treatment outcome and survival were determined. Results Sixty-four (83.1%) patients achieved complete remission, partial remission, and stable disease, and 13 (16.9%) patients had progressive disease. Higher CD3+ T cell, CD4+ T cell, and CD8+ CD28+ T cell ratios were predictive of better response, while a higher CD8+ CD28- T cell ratio was predictive of poorer response. Binary logistic regression analysis showed that the CD8+ CD28+ T cell ratio was a significant independent predictor of CCRT response (odds ratio [OR] = 53.521, 95% confidence interval [CI] = 4.294-667.119, P = .002). Univariate and multivariate analysis of prognostic factors associated with survival showed that the CD8+ CD28+ T lymphocyte ratio was a significant independent predictor of progression-free survival (hazard ratio [HR] = 1.80, 95% CI = 1.06-3.08, P = .03), but none of the subsets were significantly associated with overall survival. Conclusion Peripheral blood T lymphocytes have potential as predictors of CCRT response and prognosis in pHGG.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Mu
- Department of Radiotherapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Li Chen
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Linan Song
- Department of Radiotherapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Rodriguez-Berriguete G, Puliyadi R, Machado N, Barberis A, Prevo R, McLaughlin M, Buffa FM, Harrington KJ, Higgins GS. Antitumour effect of the mitochondrial complex III inhibitor Atovaquone in combination with anti-PD-L1 therapy in mouse cancer models. Cell Death Dis 2024; 15:32. [PMID: 38212297 PMCID: PMC10784292 DOI: 10.1038/s41419-023-06405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Immune checkpoint blockade (ICB) provides effective and durable responses for several tumour types by unleashing an immune response directed against cancer cells. However, a substantial number of patients treated with ICB develop relapse or do not respond, which has been partly attributed to the immune-suppressive effect of tumour hypoxia. We have previously demonstrated that the mitochondrial complex III inhibitor atovaquone alleviates tumour hypoxia both in human xenografts and in cancer patients by decreasing oxygen consumption and consequently increasing oxygen availability in the tumour. Here, we show that atovaquone alleviates hypoxia and synergises with the ICB antibody anti-PD-L1, significantly improving the rates of tumour eradication in the syngeneic CT26 model of colorectal cancer. The synergistic effect between atovaquone and anti-PD-L1 relied on CD8+ T cells, resulted in the establishment of a tumour-specific memory immune response, and was not associated with any toxicity. We also tested atovaquone in combination with anti-PD-L1 in the LLC (lung) and MC38 (colorectal) cancer syngeneic models but, despite causing a considerable reduction in tumour hypoxia, atovaquone did not add any therapeutic benefit to ICB in these models. These results suggest that atovaquone has the potential to improve the outcomes of patients treated with ICB, but predictive biomarkers are required to identify individuals likely to benefit from this intervention.
Collapse
Affiliation(s)
| | - Rathi Puliyadi
- Department of Oncology, University of Oxford, Oxford, UK
| | - Nicole Machado
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| | | | | |
Collapse
|
10
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
11
|
Liu H, Capuani S, Badachhape AA, Di Trani N, Davila Gonzalez D, Vander Pol RS, Viswanath DI, Saunders S, Hernandez N, Ghaghada KB, Chen S, Nance E, Annapragada AV, Chua CYX, Grattoni A. Intratumoral nanofluidic system enhanced tumor biodistribution of PD-L1 antibody in triple-negative breast cancer. Bioeng Transl Med 2023; 8:e10594. [PMID: 38023719 PMCID: PMC10658527 DOI: 10.1002/btm2.10594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/08/2023] [Accepted: 08/01/2023] [Indexed: 12/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICI), pembrolizumab and atezolizumab, were recently approved for treatment-refractory triple-negative breast cancer (TNBC), where those with Programmed death-ligand 1 (PD-L1) positive early-stage disease had improved responses. ICIs are administered systemically in the clinic, however, reaching effective therapeutic dosing is challenging due to severe off-tumor toxicities. As such, intratumoral (IT) injection is increasingly investigated as an alternative delivery approach. However, repeated administration, which sometimes is invasive, is required due to rapid drug clearance from the tumor caused by increased interstitial fluid pressure. To minimize off-target drug biodistribution, we developed the nanofluidic drug-eluting seed (NDES) platform for sustained intratumoral release of therapeutic via molecular diffusion. Here we compared drug biodistribution between the NDES, intraperitoneal (IP) and intratumoral (IT) injection using fluorescently labeled PD-L1 monoclonal antibody (αPD-L1). We used two syngeneic TNBC murine models, EMT6 and 4T1, that differ in PD-L1 expression, immunogenicity, and transport phenotype. We investigated on-target (tumor) and off-target distribution using different treatment approaches. As radiotherapy is increasingly used in combination with immunotherapy, we sought to investigate its effect on αPD-L1 tumor accumulation and systemic distribution. The NDES-treated cohort displayed sustained levels of αPD-L1 in the tumor over the study period of 14 days with significantly lower off-target organ distribution, compared to the IP or IT injection. However, we observed differences in the biodistribution of αPD-L1 across tumor models and with radiation pretreatment. Thus, we sought to extensively characterize the tumor properties via histological analysis, diffusion evaluation and nanoparticles contrast-enhanced CT. Overall, we demonstrate that ICI delivery via NDES is an effective method for sustained on-target tumor delivery across tumor models and combination treatments.
Collapse
Affiliation(s)
- Hsuan‐Chen Liu
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | | | - Nicola Di Trani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | | | - Robin S. Vander Pol
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Dixita I. Viswanath
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Texas A&M University College of MedicineBryanTexasUSA
- Texas A&M University College of MedicineHoustonTexasUSA
| | - Shani Saunders
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Nathanael Hernandez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Ketan B. Ghaghada
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of RadiologyTexas Children's HospitalHoustonTexasUSA
| | - Shu‐Hsia Chen
- Center for Immunotherapy ResearchHouston Methodist Research InstituteHoustonTexasUSA
- Neal Cancer CenterHouston Methodist Research InstituteHoustonTexasUSA
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
| | - Elizabeth Nance
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Ananth V. Annapragada
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of RadiologyTexas Children's HospitalHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
12
|
Robinson SD, Samuels M, Jones W, Gilbert D, Critchley G, Giamas G. Shooting the messenger: a systematic review investigating extracellular vesicle isolation and characterisation methods and their influence on understanding extracellular vesicles-radiotherapy interactions in glioblastoma. BMC Cancer 2023; 23:939. [PMID: 37798728 PMCID: PMC10552223 DOI: 10.1186/s12885-023-11437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) hold promise for improving our understanding of radiotherapy response in glioblastoma due to their role in intercellular communication within the tumour microenvironment (TME). However, methodologies to study EVs are evolving with significant variation within the EV research community. METHODS We conducted a systematic review to critically appraise EV isolation and characterisation methodologies and how this influences our understanding of the findings from studies investigating radiotherapy and EV interactions in glioblastoma. 246 articles published up to 24/07/2023 from PubMed and Web of Science were identified using search parameters related to radiotherapy, EVs, and glioblastoma. Two reviewers evaluated study eligibility and abstracted data. RESULTS In 26 articles eligible for inclusion (16 investigating the effects of radiotherapy on EVs, five investigating the effect of EVs on radiation response, and five clinical studies), significant heterogeneity and frequent omission of key characterisation steps was identified, reducing confidence that the results are related to EVs and their cargo as opposed to co-isolated bioactive molecules. However, the results are able to clearly identify interactions between EVs and radiotherapy bi-directionally within different cell types within the glioblastoma TME. These interactions facilitate transferable radioresistance and oncogenic signalling, highlighting that EVs are an important component in the variability of glioblastoma radiotherapy response. CONCLUSIONS Future multi-directional investigations interrogating the whole TME are required to improve subsequent clinical translation, and all studies should incorporate up to date controls and reporting requirements to increase the validity of their findings. This would be facilitated by increased collaboration between less experienced and more experienced EV research groups.
Collapse
Affiliation(s)
- Stephen David Robinson
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK, (SDR, MS, WJ, GG).
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, UK, (SDR, DG).
| | - Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK, (SDR, MS, WJ, GG)
| | - William Jones
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK, (SDR, MS, WJ, GG)
| | - Duncan Gilbert
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, UK, (SDR, DG)
- Medical Research Council Clinical Trials Unit, University College London, London, UK, (DG)
| | - Giles Critchley
- Department of Neurosurgery, University Hospitals Sussex NHS Foundation Trust, Brighton, UK, (GC)
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK, (SDR, MS, WJ, GG)
| |
Collapse
|
13
|
Holtkamp LHJ, Lo SN, Thompson JF, Spillane AJ, Stretch JR, Saw RPM, Shannon KF, Nieweg OE, Hong AM. Adjuvant radiotherapy after salvage surgery for melanoma recurrence in a node field following a previous lymph node dissection. J Surg Oncol 2023; 128:97-104. [PMID: 36971691 PMCID: PMC10952220 DOI: 10.1002/jso.27245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Adjuvant radiotherapy (RT) can be given to melanoma patients following salvage surgery for node field recurrence after a previous regional node dissection, but the value of this treatment strategy is poorly documented. This study evaluated long-term node field control and survival of patients treated in this way in an era before effective adjuvant systemic therapy became available. METHODS Data for 76 patients treated between 1990 and 2011 were extracted from an institutional database. Baseline patient characteristics, treatment details and oncological outcomes were analysed. RESULTS Adjuvant RT with conventional fractionation (median dose 48 Gy in 20 fractions) was given to 43 patients (57%) and hypofractionated RT (median dose 33 Gy in 6 fractions) to 33 patients (43%). The 5-year node field control rate was 70%, 5-year recurrence-free survival 17%, 5-year melanoma-specific survival 26% and 5-year overall survival 25%. CONCLUSIONS Salvage surgery with adjuvant RT achieved node field control in 70% of melanoma patients with node field recurrence following a prior node dissection. However, disease progression at distant sites was common and survival outcomes were poor. Prospective data will be required to assess outcomes for contemporary combinations of surgery, adjuvant RT and systemic therapy.
Collapse
Affiliation(s)
- Lodewijka H. J. Holtkamp
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Department of Surgical OncologyUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Serigne N. Lo
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - John F. Thompson
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Melanoma and Surgical OncologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Andrew J. Spillane
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of SurgeryRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Jonathan R. Stretch
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Melanoma and Surgical OncologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Robyn P. M. Saw
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Melanoma and Surgical OncologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Kerwin F. Shannon
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Melanoma and Surgical OncologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Omgo E. Nieweg
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Melanoma and Surgical OncologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Angela M. Hong
- Melanoma Institute AustraliaThe University of SydneyNorth SydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologyChris O'Brien LifehouseSydneyNew South WalesAustralia
- GenesisCare Radiation OncologyMater HospitalSydneyNew South WalesAustralia
| |
Collapse
|
14
|
Wang Y, Li W, Lin B, Yuan Y, Ning P, Tao X, Lv R. NIR-II imaging-guided photothermal cancer therapy combined with enhanced immunogenic death. Biomater Sci 2023. [PMID: 37334508 DOI: 10.1039/d3bm00700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Photothermal therapy has a remarkable effect on the destruction of tumors. It kills tumor cells by photothermal ablation and induces immunogenic cell death by activating the immune response in tumor tissues. However, inhibition of the tumor immune microenvironment suppresses PTT-induced body-specific anti-tumor immunity. In this study, we designed the GdOF@PDA-HA-R837-hydrogel complex to achieve NIR-II imaging-guided photothermal ablation and enhanced immune response. Due to the doping of Yb and Er elements and the presence of a polydopamine coating, the synthesized nanoparticles enable NIR-II and photoacoustic imaging of tumor tissues, which will help in the integration of multimodal tumor imaging for diagnosis and treatment. Polydopamine is used as a photothermal agent and drug carrier because of its excellent photothermal ability and high drug loading capacity under 808 nm near infrared light. Hyaluronic acid can bind to specific receptors on the surface of cancer cells, allowing nanoparticles to aggregate around the tumor, thus enhancing the targeting ability of nanoparticles. In addition, imiquimod (R837) has been used as an immune response modulator to enhance the immunotherapeutic effect. The presence of a hydrogel enhanced the retention effect of nanoparticles in the tumor. We demonstrate that the combination of photothermal therapy with immune adjuvants effectively induces ICD, which in turn stimulates the activation of specific anti-tumor immunity and enhances the effect of photothermal therapy in vivo.
Collapse
Affiliation(s)
- Yukun Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ying Yuan
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Pengbo Ning
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Xiaofeng Tao
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
- Interdisciplinary Research Center of Smart Sensor, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
15
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Kang K, Wu Y, Yao Z, Lu Y. Tackling the current dilemma of immunotherapy in extensive-stage small cell lung cancer: A promising strategy of combining with radiotherapy. Cancer Lett 2023; 565:216239. [PMID: 37211066 DOI: 10.1016/j.canlet.2023.216239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Progress in the treatment of small cell lung cancer (SCLC) has been modest over the past decades until the advent of immune checkpoint inhibitors, which have redefined the standard first-line treatment for extensive-stage SCLC (ES-SCLC). However, despite the positive results of several clinical trials, the limited survival benefit achieved suggests that the priming and sustaining of immunotherapeutic efficacy are poor and further investigation is urgently needed. In this review, we aim to summarize the potential mechanisms underlying the limited efficacy of immunotherapy and intrinsic resistance in ES-SCLC, including impaired antigen presentation and limited T cell infiltration. Moreover, to tackle the current dilemma, given the synergistic effects of radiotherapy on immunotherapy, especially the unique advantages of low-dose radiotherapy (LDRT), such as less immunosuppression and lower radiation toxicity, we propose radiotherapy as a booster to enhance the immunotherapeutic efficacy by overcoming the poor priming effect. Recent clinical trials, including ours, have also focused on adding radiotherapy, including LDRT, to first-line treatment of ES-SCLC. Additionally, we also suggest combination strategies to sustain the immunostimulatory effect of radiotherapy, as well as the cancer-immunity cycle, and further improve survival outcomes.
Collapse
Affiliation(s)
- Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Du Z, Zhang H, Feng Y, Zhan D, Li S, Tu C, Liu J, Wang J. Tumour-derived small extracellular vesicles contribute to the tumour progression through reshaping the systemic immune macroenvironment. Br J Cancer 2023; 128:1249-1266. [PMID: 36755063 PMCID: PMC10050072 DOI: 10.1038/s41416-023-02175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Tumour-derived small extracellular vesicles (sEVs) play a crucial role in cancer immunomodulation. In addition to tumour immune microenvironment, the peripheral immune system also contributes significantly to cancer progression and is essential for anticancer immunity. However, a comprehensive definition of which and how peripheral immune lineages are regulated by tumour-derived sEVs during cancer development remains incomplete. METHODS In this study, we used mass cytometry with extensive antibody panels to comprehensively construct the systemic immune landscape in response to tumour development and tumour-derived sEVs. RESULTS Systemic immunity was dramatically altered by tumour growth and tumour-derived sEVs. Tumour-derived sEVs significantly and extensively affected immune cell population composition as well as intracellular pathways, resulting in an immunosuppressive peripheral and tumour immune microenvironment, characterised by increased myeloid-derived suppressor cells and decreased Ly6C+CD8 T cells. These sEVs largely promoted hematopoietic recovery and accelerate the differentiation towards myeloid-derived suppressor cells. The knockdown of Rab27a reduced sEV secretion from tumour cells and delayed tumour growth and metastasis in vivo. CONCLUSIONS These results highlight that tumour-derived sEVs function as a bridge between peripheral immunity regulation and the tumour microenvironment, and contribute to cancer progression through altering the composition and function of the global immune macroenvironment.
Collapse
Affiliation(s)
- Zhimin Du
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- School of Nursing, Guangzhou Medical University, 510182, Guangzhou, China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Yueyuan Feng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Dewen Zhan
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Shuya Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.
| | - Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
18
|
Okereke LC, Bello AU, Onwukwe EA. Toward Precision Radiotherapy: A Nonlinear Optimization Framework and an Accelerated Machine Learning Algorithm for the Deconvolution of Tumor-Infiltrating Immune Cells. Cells 2022; 11:cells11223604. [PMID: 36429031 PMCID: PMC9688486 DOI: 10.3390/cells11223604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) form a critical part of the ecosystem surrounding a cancerous tumor. Recent advances in radiobiology have shown that, in addition to damaging cancerous cells, radiotherapy drives the upregulation of immunosuppressive and immunostimulatory TIICs, which in turn impacts treatment response. Quantifying TIICs in tumor samples could form an important predictive biomarker guiding patient stratification and the design of radiotherapy regimens and combined immune-radiation treatments. As a result of several limitations associated with experimental methods for quantifying TIICs and the availability of extensive gene sequencing data, deconvolution-based computational methods have appeared as a suitable alternative for quantifying TIICs. Accordingly, we introduce and discuss a nonlinear regression approach (remarkably different from the traditional linear modeling approach of current deconvolution-based methods) and a machine learning algorithm for approximating the solution of the resulting constrained optimization problem. This way, the deconvolution problem is treated naturally, given that the gene expression levels of pure and heterogenous samples do not have a strictly linear relationship. When applied across transcriptomics datasets, our approach, which also allows the coupling of different loss functions, yields results that closely match ground-truth values from experimental methods and exhibits superior performance over popular deconvolution-based methods.
Collapse
Affiliation(s)
- Lois Chinwendu Okereke
- Department of Pure and Applied Mathematics, Mathematics Institute (Emerging Regional Centre of Excellence (ERCE) of the European Mathematical Society (EMS)), African University of Science and Technology, Abuja 900107, Nigeria
- Correspondence:
| | - Abdulmalik Usman Bello
- Department of Pure and Applied Mathematics, Mathematics Institute (Emerging Regional Centre of Excellence (ERCE) of the European Mathematical Society (EMS)), African University of Science and Technology, Abuja 900107, Nigeria
- Department of Mathematics, Federal University Dutsin-Ma, Dutsin-Ma 821101, Nigeria
| | - Emmanuel Akwari Onwukwe
- Department of Theoretical and Applied Physics, African University of Science and Technology, Abuja 900107, Nigeria
- Inspired Innovative Sustainable (IIS) Projects & Solutions Limited, Abuja 900107, Nigeria
| |
Collapse
|
19
|
Preclinical Study of Plasmodium Immunotherapy Combined with Radiotherapy for Solid Tumors. Cells 2022; 11:cells11223600. [PMID: 36429033 PMCID: PMC9688403 DOI: 10.3390/cells11223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapy (ICB) is ineffective against cold tumors and, although it is effective against some hot tumors, drug resistance can occur. We have developed a Plasmodium immunotherapy (PI) that can overcome these shortcomings. However, the specific killing effect of PI on tumor cells is relatively weak. Radiotherapy (RT) is known to have strong specific lethality to tumor cells. Therefore, we hypothesized that PI combined with RT could produce synergistic antitumor effects. We tested our hypothesis using orthotopic and subcutaneous models of mouse glioma (GL261, a cold tumor) and a subcutaneous model of mouse non-small cell lung cancer (NSCLC, LLC, a hot tumor). Our results showed that, compared with each monotherapy, the combination therapy more significantly inhibited tumor growth and extended the life span of tumor-bearing mice. More importantly, the combination therapy could cure approximately 70 percent of glioma. By analyzing the immune profile of the tumor tissues, we found that the combination therapy was more effective in upregulating the perforin-expressing effector CD8+ T cells and downregulating the myeloid-derived suppressor cells (MDSCs), and was thus more effective in the treatment of cancer. The clinical transformation of PI combined with RT in the treatment of solid tumors, especially glioma, is worthy of expectation.
Collapse
|
20
|
Thoracic radiotherapy may improve the outcome of extensive stage small cell lung carcinoma patients treated with first-line immunotherapy plus chemotherapy. Anticancer Drugs 2022; 33:e842-e849. [DOI: 10.1097/cad.0000000000001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Chang F, Keam S, Hoang TS, Creaney J, Gill S, Nowak AK, Ebert M, Cook AM. Immune marker expression of irradiated mesothelioma cell lines. Front Oncol 2022; 12:1020493. [PMID: 36387076 PMCID: PMC9659742 DOI: 10.3389/fonc.2022.1020493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Though immune checkpoint inhibition has recently shown encouraging clinical efficacy in mesothelioma, most patients do not respond. Combining immune checkpoint inhibition with radiotherapy presents an attractive option for improving treatment responses owing to the various immunomodulatory effects of radiation on tumors. However, the ideal dosing and scheduling of combined treatment remains elusive, as it is poorly studied in mesothelioma. The present study characterizes the dose- and time-dependent changes to expression of various immune markers and cytokines important to antitumor responses following irradiation of mesothelioma cell lines. Methods Two murine (AB1, AE17) and two human (BYE, JU77) mesothelioma cell lines were treated with titrated gamma-radiation doses (1-8 Gy) and the expression of MHC class-I, MHC class-II and PD-L1 was measured over a series of post-irradiation timepoints (1-72 hours) by flow cytometry. Levels of cytokines IL-1α, IL-1β, IL-6, IL-10, IL-12p70, IL-17A, IL-23, IL-27, MCP-1, IFN-β, IFN-γ, TNF-α, and GM-CSF were measured by multiplex immunoassay in murine cell lines following 8 Gy radiation. Results Following irradiation, a dose-dependent upregulation of MHC-I and PD-L1 was observed on three of the four cell lines studied to varying extents. For all cell lines, the increase in marker expression was most pronounced 72 hours after radiation. At this timepoint, increases in levels of cytokines IFN-β, MCP-1 and IL-6 were observed following irradiation with 8 Gy in AB1 but not AE17, reflecting patterns in marker expression. Conclusions Overall, this study establishes the dose- and time-dependent changes in immune marker expression of commonly studied mesothelioma cell lines following radiation and will inform future study into optimal dosing and scheduling of combined radiotherapy and immune checkpoint inhibition for mesothelioma.
Collapse
Affiliation(s)
- Faith Chang
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Synat Keam
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Tracy Seymour Hoang
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Martin Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Alistair M. Cook
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
22
|
Bekeschus S, Saadati F, Emmert S. The potential of gas plasma technology for targeting breast cancer. Clin Transl Med 2022; 12:e1022. [PMID: 35994412 PMCID: PMC9394754 DOI: 10.1002/ctm2.1022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Despite therapeutic improvements in recent years, breast cancer remains an often fatal disease. In addition, breast cancer ulceration may occur during late stages, further complicating therapeutic or palliative interventions. In the past decade, a novel technology received significant attention in the medical field: gas plasma. This topical treatment relies on the partial ionization of gases that simultaneously produce a plethora of reactive oxygen and nitrogen species (ROS/RNS). Such local ROS/RNS overload inactivates tumour cells in a non-necrotic manner and was recently identified to induce immunogenic cancer cell death (ICD). ICD promotes dendritic cell maturation and amplifies antitumour immunity capable of targeting breast cancer metastases. Gas plasma technology was also shown to provide additive toxicity in combination with radio and chemotherapy and re-sensitized drug-resistant breast cancer cells. This work outlines the assets of gas plasma technology as a novel tool for targeting breast cancer by summarizing the action of plasma devices, the roles of ROS, signalling pathways, modes of cell death, combination therapies and immunological consequences of gas plasma exposure in breast cancer cells in vitro, in vivo, and in patient-derived microtissues ex vivo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Fariba Saadati
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| |
Collapse
|
23
|
Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
This review focuses on the opposing effects on the immune system of radiotherapy (RT) and the consequences for combined cancer treatment strategies of RT with immunotherapies, including hyperthermia (HT). How RT and HT might affect cancer stem cell populations is also briefly outlined in this context.
Recent Findings
RT is one of the crucial standard cancer therapies. Most patients with solid tumors receive RT for curative and palliative purposes in the course of their disease. RT achieves a local tumor control by inducing DNA damage which can lead to tumor cell death. In recent years, it has become evident that RT does not only have local effects, but also systemic effects which involves induction of anti-tumor immunity and possible alteration of the immunosuppressive properties of the tumor microenvironment. Though, often RT alone is not able to induce potent anti-tumor immune responses since the effects of RT on the immune system can be both immunostimulatory and immunosuppressive.
Summary
RT with additional therapies such as HT and immune checkpoint inhibitors (ICI) are promising approaches to induce anti-tumor immunity effectively. HT is not only a potent sensitizer for RT, but it might also improve the efficacy of RT and certain chemotherapeutic agents (CT) by additionally sensitizing resistant cancer stem cells (CSCs).
Graphical abstract
Collapse
|
24
|
Short-Interval, Low-Dose Peptide Receptor Radionuclide Therapy in Combination with PD-1 Checkpoint Immunotherapy Induces Remission in Immunocompromised Patients with Metastatic Merkel Cell Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14071466. [PMID: 35890361 PMCID: PMC9323617 DOI: 10.3390/pharmaceutics14071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer of the elderly, with high metastatic potential and poor prognosis. In particular, the primary resistance to immune checkpoint inhibitors (ICI) in metastatic (m)MCC patients represents a challenge not yet met by any efficient treatment modality. Herein, we describe a novel therapeutic concept with short-interval, low-dose 177Lutetium (Lu)-high affinity (HA)-DOTATATE [177Lu]Lu-HA-DOTATATE peptide receptor radionuclide therapy (SILD-PRRT) in combination with PD-1 ICI to induce remission in patients with ICI-resistant mMCC. We report on the initial refractory response of two immunocompromised mMCC patients to the PD-L1 inhibitor avelumab. After confirming the expression of somatostatin receptors (SSTR) on tumor cells by [68Ga]Ga-HA-DOTATATE-PET/CT (PET/CT), we employed low-dose PRRT (up to six treatments, mean activity 3.5 GBq per cycle) at 3–6 weeks intervals in combination with the PD-1 inhibitor pembrolizumab to restore responsiveness to ICI. This combination enabled the synergistic application of PD-1 checkpoint immunotherapy with low-dose PRRT at more frequent intervals, and was very well tolerated by both patients. PET/CTs demonstrated remarkable responses at all metastatic sites (lymph nodes, distant skin, and bones), which were maintained for 3.6 and 4.8 months, respectively. Both patients eventually succumbed with progressive disease after 7.7 and 8 months, respectively, from the start of treatment with SILD-PRRT and pembrolizumab. We demonstrate that SILD-PRRT in combination with pembrolizumab is safe and well-tolerated, even in elderly, immunocompromised mMCC patients. The restoration of clinical responses in ICI-refractory patients as proposed here could potentially be used not only for patients with mMCC, but many other cancer types currently treated with PD-1/PD-L1 inhibitors.
Collapse
|
25
|
Effects of photon radiation on DNA damage, cell proliferation, cell survival and apoptosis of murine and human mesothelioma cell lines. Adv Radiat Oncol 2022; 7:101013. [DOI: 10.1016/j.adro.2022.101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
|
26
|
Gill S, Nowak AK, Bowyer S, Endersby R, Ebert MA, Cook A. Clinical evidence for synergy between immunotherapy and radiotherapy (SITAR). J Med Imaging Radiat Oncol 2022; 66:881-895. [PMID: 35699321 PMCID: PMC9543060 DOI: 10.1111/1754-9485.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Previous preclinical and clinical trials have shown promising antitumour activity and toxicity profile when employing the 'Synergy between Immunotherapy and Radiotherapy' (SITAR) strategy. Approximately, one in seven radiation therapy studies currently recruiting is investigating SITAR. This article reviews the range of cancers known to respond to immunotherapy and publications analysing SITAR. It sets the background for work that needs to be done in future clinical trials. It also reviews the potential toxicities of immunotherapy and discusses areas where caution is required when combining treatments.
Collapse
Affiliation(s)
- Suki Gill
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Anna K Nowak
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia.,Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Samantha Bowyer
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Raelene Endersby
- University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Martin A Ebert
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Alistair Cook
- University of Western Australia, Crawley, Western Australia, Australia.,Institute for Respiratory Health, Nedlands, Western Australia, Australia
| |
Collapse
|
27
|
Lundy J, McKay O, Croagh D, Ganju V. Exceptional Response to Olaparib and Pembrolizumab for Pancreatic Adenocarcinoma With Germline BRCA1 Mutation and High Tumor Mutation Burden: Case Report and Literature Review. JCO Precis Oncol 2022; 6:e2100437. [PMID: 35085003 PMCID: PMC8830512 DOI: 10.1200/po.21.00437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Peninsula and Southeast Oncology, Frankston, Victoria, Australia
| | - Owen McKay
- Department of Gastroenterology and Hepatology, Monash Health, Clayton, Victoria, Australia
| | - Daniel Croagh
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vinod Ganju
- Peninsula and Southeast Oncology, Frankston, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Li Y, Ni K, Chan C, Guo N, Luo T, Han W, Culbert A, Weichselbaum RR, Lin W. Dimethylaminomicheliolide Sensitizes Cancer Cells to Radiotherapy for Synergistic Combination with Immune Checkpoint Blockade. ADVANCED THERAPEUTICS 2022; 5:2100160. [PMID: 35812344 PMCID: PMC9269983 DOI: 10.1002/adtp.202100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Radiotherapy (RT) has demonstrated synergy with immune checkpoint blockade (ICB) in preclinical models. However, its potential as an immunoadjuvant is limited by low immunogenicity at low radiation doses and immunosuppression at high radiation doses. It is hypothesized that radiosensitizers can enhance both the anticancer and immunogenic effects of low-dose radiation. Herein the authors report the antitumor immunity of combined RT and immunotherapy with dimethylaminomicheliolide (DMAMCL), a prodrug of the anti-inflammatory sesquiterpene lactone micheliolide (MCL). DMAMCL sensitized cancer cells to a single fraction of RT in vitro by inducing apoptosis and DNA double-strand breaks. DMAMCL with 5 fractions of 2 Gy focal X-ray irradiation led to significant anticancer efficacy in subcutaneous and spontaneous models of murine cancer. DMAMCL-sensitized RT upregulated programmed death-ligand 1 (PD-L1) expression in the tumors. Combination of DMAMCL-sensitized RT with anti-PD-L1 ICB significantly enhanced antitumor efficacy by increasing tumor-infiltrating CD4+ and CD8+ T cells and establishing immune memory.
Collapse
Affiliation(s)
- Yingying Li
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Kaiyuan Ni
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Christina Chan
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Nining Guo
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Taokun Luo
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Wenbo Han
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - August Culbert
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry University of Chicago Chicago, IL 60637, USA
| |
Collapse
|
29
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|
30
|
Fan L, Li B, Li Z, Sun L. Identification of Autophagy Related circRNA-miRNA-mRNA-Subtypes Network With Radiotherapy Responses and Tumor Immune Microenvironment in Non-small Cell Lung Cancer. Front Genet 2021; 12:730003. [PMID: 34567080 PMCID: PMC8458766 DOI: 10.3389/fgene.2021.730003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer (LC) is one of the most frequently diagnosed cancers and the leading cause of cancer death worldwide, and most LCs are non-small cell lung cancer (NSCLC). Radiotherapy is one of the most effective treatments for patients with lung cancer, either alone or in combination with other treatment methods. However, radiotherapy responses vary considerably among NSCLC patients. The efficacy of radiotherapy is influenced by several factors, among which autophagy is of importance. Autophagy is induced by radiotherapy and also influences cell responses to radiation. We explored the clinical significance of autophagy-related genes (ARGs) and gene sets (ARGSs) and the underlying mechanism in NSCLC patients treated with radiotherapy. First, differentially expressed ARGs (SNCA, SESN3, DAPL1, and ELAPOR1) and miRNAs (miR-205-5p, miR-26a-1-3p, miR-6510-3p, miR-194-3p, miR-215-5p, and miR-375-3p) were identified between radiotherapy-resistant and radiotherapy-sensitive groups. An autophagy-related radiosensitivity risk signature (ARRS) by nine ARmRNAs/miRNAs and an autophagy-related overall survival risk signature (AROS) by three ARmRNAs were then constructed with estimated AUCs of 0.8854 (95% CI: 0.8131–0.9576) and 0.7901 (95% CI: 0.7168–0.8685), respectively. The correlations between ARGSs or prognostic signatures and clinicopathological factors, short-term radiotherapy responses (radiotherapy sensitivity), long-term radiotherapy responses (overall survival), and immune characteristics were analyzed. Both ARGSs and prognostic signatures were related to immune checkpoint inhibitors (ICIs), infiltration of tumor-infiltrating immune cells (TIICs), and the activity of the cancer immune cycle. Finally, after target prediction and correlation analysis, circRNA (hsa_circ_0019709, hsa_circ_0081983, hsa_circ_0112354, hsa_circ_0040569, hsa_circ_0135500, and hsa_circ_0098966)-regulated miRNA/ARmRNA axes (miR-194-3p/SESN3, miR-205-5p/ELAPOR1, and miR-26a-1-3p/SNCA) were considered potential modulatory mechanisms by influencing the regulation of autophagy, macroautophagy, and chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Liyuan Fan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baosheng Li
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhao Li
- Shandong Yidian Gene Technology Co., Ltd., Jinan, China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
31
|
Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, Qin S, Zhang H, Yu F. Immunogenic Cell Death Induction by Ionizing Radiation. Front Immunol 2021; 12:705361. [PMID: 34489957 PMCID: PMC8417736 DOI: 10.3389/fimmu.2021.705361] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various stresses and produces antitumor immunity via damage-associated molecular patterns (DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs). Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell death. Finally, we summarize various methods of improving ICD induced by IR.
Collapse
Affiliation(s)
- Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
33
|
Siri SO, Martino J, Gottifredi V. Structural Chromosome Instability: Types, Origins, Consequences, and Therapeutic Opportunities. Cancers (Basel) 2021; 13:3056. [PMID: 34205328 PMCID: PMC8234978 DOI: 10.3390/cancers13123056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
Chromosomal instability (CIN) refers to an increased rate of acquisition of numerical and structural changes in chromosomes and is considered an enabling characteristic of tumors. Given its role as a facilitator of genomic changes, CIN is increasingly being considered as a possible therapeutic target, raising the question of which variables may convert CIN into an ally instead of an enemy during cancer treatment. This review discusses the origins of structural chromosome abnormalities and the cellular mechanisms that prevent and resolve them, as well as how different CIN phenotypes relate to each other. We discuss the possible fates of cells containing structural CIN, focusing on how a few cell duplication cycles suffice to induce profound CIN-mediated genome alterations. Because such alterations can promote tumor adaptation to treatment, we discuss currently proposed strategies to either avoid CIN or enhance CIN to a level that is no longer compatible with cell survival.
Collapse
Affiliation(s)
- Sebastián Omar Siri
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405 BWE Buenos Aires, Argentina
| | - Julieta Martino
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
| | - Vanesa Gottifredi
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405 BWE Buenos Aires, Argentina
| |
Collapse
|
34
|
Zhang L, Zhang J, Xu L, Zhuang Z, Liu J, Liu S, Wu Y, Gong A, Zhang M, Du F. NIR responsive tumor vaccine in situ for photothermal ablation and chemotherapy to trigger robust antitumor immune responses. J Nanobiotechnology 2021; 19:142. [PMID: 34001148 PMCID: PMC8130144 DOI: 10.1186/s12951-021-00880-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Therapeutic tumor vaccine (TTV) that induces tumor-specific immunity has enormous potentials in tumor treatment, but high heterogeneity and poor immunogenicity of tumor seriously impair its clinical efficacy. Herein, a novel NIR responsive tumor vaccine in situ (HA-PDA@IQ/DOX HG) was prepared by integrating hyaluronic acid functionalized polydopamine nanoparticles (HA-PDA NPs) with immune adjuvants (Imiquimod, IQ) and doxorubicin (DOX) into thermal-sensitive hydrogel. Results HA-PDA@IQ NPs with high photothermal conversion efficiency (41.2%) and T1-relaxation efficiency were using HA as stabilizer by the one-pot oxidative polymerization. Then, HA-PDA@IQ loaded DOX via π-π stacking and mixed with thermal-sensitive hydrogel to form the HA-PDA@IQ/DOX HG. The hydrogel-confined delivery mode endowed HA-PDA@IQ/DOX NPs with multiple photothermal ablation performance once injection upon NIR irradiation due to the prolonged retention in tumor site. More importantly, this mode enabled HA-PDA@IQ/DOX NPs to promote the DC maturation, memory T cells in lymphatic node as well as cytotoxic T lymphocytes in spleen. Conclusion Taken together, the HA-PDA@IQ/DOX HG could be served as a theranostic tumor vaccine for complete photothermal ablation to trigger robust antitumor immune responses. ![]()
Collapse
Affiliation(s)
- Lirong Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Jingjing Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lixia Xu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zijian Zhuang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Jingjin Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Suwan Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yunchao Wu
- The Third People's Hospital of Changzhou, Changzhou, People's Republic of China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Miaomiao Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| | - Fengyi Du
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Song L, Wang S, Fang T, Qiu X, Wang X, Zhou X, Morse MA, Hobeika A, Wu W, Yang H, Ren J, Lyerly HK. Changes in Peripheral Blood Regulatory T Cells and IL-6 and IL-10 Levels Predict Response of Pediatric Medulloblastoma and Germ Cell Tumors With Residual or Disseminated Disease to Craniospinal Irradiation. Int J Radiat Oncol Biol Phys 2021; 111:479-490. [PMID: 33974888 DOI: 10.1016/j.ijrobp.2021.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Radiation therapy (RT) modulates immune cells and cytokines, resulting in both clinically beneficial and detrimental effects. The changes in peripheral blood T lymphocyte subsets and cytokines during RT for pediatric brain tumors and the association of these changes with therapeutic outcomes have not been well described. METHODS AND MATERIALS The study population consisted of children (n = 83, aged 3~18) with primary brain tumors (medulloblastoma, glioma, germ cell tumors (GCT), and central nervous system embryonal tumor-not otherwise specified), with or without residual or disseminated (R/D) diseases who were starting standard postoperative focal or craniospinal irradiation (CSI). Peripheral blood T lymphocyte subsets collected before and 4 weeks after RT were enumerated by flow cytometry. Plasma levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, and IL-17A were measured by cytometric bead array. RESULTS Patients with R/D lesions receiving CSI (n = 32) had a post-RT increase in the frequency of CD3+T and CD8+T cells, a decrease in CD4+T cells, and an increase in regulatory T cells (Tregs) and CD8+CD28- suppressor cells, which was more predominantly seen in these patients than in other groups. In the CSI group with such R/D lesions, consisting of patients with medulloblastoma and germ cell tumors, 19 experienced a complete response (CR) and 13 experienced a partial response (PR) on imaging at 4 weeks after RT. The post/pre-RT ratio of Tregs (P = .0493), IL-6 (P = .0111), and IL-10 (P = .0070) was lower in the CR group than in the PR group. Multivariate analysis revealed that the post/pre-RT ratios of Treg, IL-6, and IL-10 were independent predictors of CR (P < .0001, P = .018, P < .0001, respectively). The areas under the receiver operating curves and confidence intervals were 0.7652 (0.5831-0.8964), 0.7794 (0.5980-0.9067), and 0.7085 (0.5223-0.8552) for IL-6, IL-10, and Treg, respectively. The sensitivities of IL-6, IL-10, and Treg to predict radiotherapeutic responses were 100%, 92.3%, and 61.5%, and specificity was 52.6%, 57.9%, and 84.2%, respectively. CONCLUSIONS CSI treatment to those with R/D lesions predominantly exerted an effect on antitumor immune response compared with both R/D lesion-free but exposed to focal or CSI RT and with R/D lesions and exposed to focal RT. Such CSI with R/D lesions group experiencing CR is more likely to have a decrease in immunoinhibitory molecules and cells than patients who only achieve PR. Measuring peripheral blood Treg, IL-6, and IL-10 levels could be valuable for predicting radiotherapeutic responses of pediatric brain tumors with R/D lesions to CSI for medulloblastoma and intracranial germ cell tumors.
Collapse
Affiliation(s)
- Linan Song
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Departments of Radio-Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuo Wang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Tong Fang
- Departments of Radio-Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaoguang Qiu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaoli Wang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xinna Zhou
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Wanshui Wu
- Department of Pediatrics, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Huabing Yang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jun Ren
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
36
|
Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:650486. [PMID: 34025657 PMCID: PMC8137829 DOI: 10.3389/fimmu.2021.650486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
37
|
Saltman DL, Nielsen TJ, Salina D, Hout DR, McMahon FB, Valev BR, Huk M, Chandra PK, Spille J, Seitz RS, Schweitzer BL. Characterization of the tumor immune-microenvironment of adenocarcinoma of lung with a metastatic lesion in the pancreas treated successfully with first-line, single-agent pembrolizumab. Ther Adv Med Oncol 2021; 13:17588359211010156. [PMID: 33953802 PMCID: PMC8058789 DOI: 10.1177/17588359211010156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Single-agent immune checkpoint inhibitor therapy in advanced non-small cell lung cancer can significantly prolong progression-free and overall survival when compared with cytotoxic chemotherapy. Here, we report a case of newly diagnosed adenocarcinoma of the lung with a solitary brain metastasis and a biopsy confirmed adenocarcinoma in the tail of the pancreas. Cytomorphology and immunohistochemistry suggested the lung and pancreas tumors were distinct primaries. However, molecular analysis of the lung primary and tumor in the pancreas revealed the same mutations of functional significance in PIK3CA, NF1 and TP53, suggesting the tumors were clonal. A total of three cycles of single-agent pembrolizumab, and radiation to the lung and brain administered between cycles 1 and 2, resulted in marked responses in lung, brain and pancreatic tumors. Despite the discontinuation of the pembrolizumab after three cycles due to severe immune-mediated toxicities, the patient has had no progression 11 months after stopping all active treatment. Results of a novel 27-gene immuno-oncology (IO) expression assay revealed strong IO scores for the lung and pancreatic tumors, indicating a favorable tumor immune-microenvironment and possibly explaining the significant response.
Collapse
Affiliation(s)
| | | | - Davide Salina
- Department of Laboratory Medicine, Royal Jubilee Hospital, Victoria, BC, Canada
| | | | | | | | - Michael Huk
- Department of Medical Imaging, Royal Jubilee Hospital, Victoria, BC, Canada
| | | | | | | | | |
Collapse
|
38
|
Zhang N, Gao Y, Zeng Z, Luo Y, Jiang X, Zhang J, Li J, Zhang J, Gong Y, Xie C. PARP inhibitor niraparib as a radiosensitizer promotes antitumor immunity of radiotherapy in EGFR-mutated non-small cell lung cancer. Clin Transl Oncol 2021; 23:1827-1837. [PMID: 33774805 DOI: 10.1007/s12094-021-02591-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Poly-(ADP-Ribose)-Polymerase inhibitors (PARPi) were reported as radiosensitizers in non-small cell lung cancer (NSCLC) with wide-type epidermal growth factor receptor (EGFR), but the effects of radiation combined with PARPi were not investigated in EGFR-mutated NSCLC. Moreover, the underlying mechanisms were not well examined. This study aimed to study the efficacy of radiation combined with niraparib in EGFR-mutated NSCLC and explore their influence on the immune system. METHODS Clone formation and apoptosis assay were conducted to explore the effects of niraparib and radiation. Immunofluorescence was conducted to detect the double-strand DNA breaks. Real-time PCR and immunoblotting were employed to evaluate the activation of STING/TBK1/TRF3 pathway and the expression levels of interferon β, CCL5 and CXCL10. Immunocompetent mice model bearing with subcutaneous Lewis lung cancer was established to confirm the results in vivo. RESULTS Niraparib and radiation were synergistic to inhibit tumor both in vitro and in vivo. Radiation plus niraparib could activate anti-tumor immunity, which appeared as increased CD8+ T lymphocytes and activated STING/TBK1/IRF3 pathway. CONCLUSION PARPi not only as a radiosensitizer inhibited EGFR-mutated NSCLC tumor growth, but also cooperated with radiation to promote anti-tumor immune responses.
Collapse
Affiliation(s)
- N Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Y Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Z Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Y Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - X Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - J Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - J Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - J Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Y Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - C Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
39
|
Nunno VD, Nuvola G, Mosca M, Maggio I, Gatto L, Tosoni A, Lodi R, Franceschi E, Brandes AA. Clinical efficacy of immune checkpoint inhibitors in patients with brain metastases. Immunotherapy 2021; 13:419-432. [PMID: 33472433 DOI: 10.2217/imt-2020-0208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain metastases (BMs) represent a negative prognostic factor for patients with solid malignancies. BMs are generally approached with loco-regional treatments and the blood-brain barrier limits the efficacy of some systemic drugs. The aim of this review is to summarize current knowledge about the role of immune checkpoint inhibitors for the management of brain metastases in patients with solid malignancies. We performed a review of available literature. Immune checkpoint inhibitors represent the standard treatment for several advanced solid malignancies. However, with the exception of melanoma their clinical role in other solid malignancies is not completely clear due to the exclusion of patients with BM from approval clinical trials. Immune-checkpoint inhibitors may be an effective treatment of brain metastases of melanoma while their clinical role on brain metastases from other solid malignancies is uncertain.
Collapse
Affiliation(s)
| | - Giacomo Nuvola
- Department of Specialized, Experimental & Diagnostic Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna
| | - Mirta Mosca
- Department of Specialized, Experimental & Diagnostic Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna
| | - Ilaria Maggio
- Department of Medical Oncology, Azienda USL, Bologna, Italy
| | - Lidia Gatto
- Department of Medical Oncology, Azienda USL, Bologna, Italy
| | - Alicia Tosoni
- Department of Medical Oncology, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | | | | |
Collapse
|
40
|
Wang M, Wang S, Desai J, Trapani JA, Neeson PJ. Therapeutic strategies to remodel immunologically cold tumors. Clin Transl Immunology 2020; 9:e1226. [PMID: 35136604 PMCID: PMC8809427 DOI: 10.1002/cti2.1226] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) induce a durable response in a wide range of tumor types, but only a minority of patients outside these 'responsive' tumor types respond, with some totally resistant. The primary predictor of intrinsic immune resistance to ICIs is the complete or near-complete absence of lymphocytes from the tumor, so-called immunologically cold tumors. Here, we propose two broad approaches to convert 'cold' tumors into 'hot' tumors. The first is to induce immunogenic tumor cell death, through the use of oncolytic viruses or bacteria, conventional cancer therapies (e.g. chemotherapy or radiation therapy) or small molecule drugs. The second approach is to target the tumor microenvironment, and covers diverse options such as depleting immune suppressive cells; inhibiting transforming growth factor-beta; remodelling the tumor vasculature or hypoxic environment; strengthening the infiltration and activation of antigen-presenting cells and/or effector T cells in the tumor microenvironment with immune modulators; and enhancing immunogenicity through personalised cancer vaccines. Strategies that successfully modify cold tumors to overcome their resistance to ICIs represent mechanistically driven approaches that will ultimately result in rational combination therapies to extend the clinical benefits of immunotherapy to a broader cancer cohort.
Collapse
Affiliation(s)
- Minyu Wang
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| | - Sen Wang
- South Australian Genomics CentreSouth Australian Health and Medical Research InstituteAdelaideSAAustralia
- Medical Genomics PlatformHudson Institute of Medical ResearchClaytonVICAustralia
| | - Jayesh Desai
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Division of Medical OncologyPeter MacCallum Cancer CentreMelbourneVICAustralia
| | - Joseph A Trapani
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| | - Paul J Neeson
- Cancer Immunology ProgramPeter MacCallum Cancer CentreMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
- Centre for Cancer ImmunotherapyPeter Mac and VCCC allianceMelbourneVICAustralia
| |
Collapse
|
41
|
Hack SP, Zhu AX, Wang Y. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Front Immunol 2020; 11:598877. [PMID: 33250900 PMCID: PMC7674951 DOI: 10.3389/fimmu.2020.598877] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy (CIT) with antibodies targeting the programmed cell death 1 protein (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis have changed the standard of care in multiple cancers. However, durable antitumor responses have been observed in only a minority of patients, indicating the presence of other inhibitory mechanisms that act to restrain anticancer immunity. Therefore, new therapeutic strategies targeted against other immune suppressive mechanisms are needed to enhance anticancer immunity and maximize the clinical benefit of CIT in patients who are resistant to immune checkpoint inhibition. Preclinical and clinical studies have identified abnormalities in the tumor microenvironment (TME) that can negatively impact the efficacy of PD-1/PD-L1 blockade. Angiogenic factors such as vascular endothelial growth factor (VEGF) drive immunosuppression in the TME by inducing vascular abnormalities, suppressing antigen presentation and immune effector cells, or augmenting the immune suppressive activity of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. In turn, immunosuppressive cells can drive angiogenesis, thereby creating a vicious cycle of suppressed antitumor immunity. VEGF-mediated immune suppression in the TME and its negative impact on the efficacy of CIT provide a therapeutic rationale to combine PD-1/PD-L1 antibodies with anti-VEGF drugs in order to normalize the TME. A multitude of clinical trials have been initiated to evaluate combinations of a PD-1/PD-L1 antibody with an anti-VEGF in a variety of cancers. Recently, the positive results from five Phase III studies in non-small cell lung cancer (adenocarcinoma), renal cell carcinoma, and hepatocellular carcinoma have shown that combinations of PD-1/PD-L1 antibodies and anti-VEGF agents significantly improved clinical outcomes compared with respective standards of care. Such combinations have been approved by health authorities and are now standard treatment options for renal cell carcinoma, non-small cell lung cancer, and hepatocellular carcinoma. A plethora of other randomized studies of similar combinations are currently ongoing. Here, we discuss the principle mechanisms of VEGF-mediated immunosuppression studied in preclinical models or as part of translational clinical studies. We also discuss data from recently reported randomized clinical trials. Finally, we discuss how these concepts and approaches can be further incorporated into clinical practice to improve immunotherapy outcomes for patients with cancer.
Collapse
Affiliation(s)
- Stephen P. Hack
- Product Development (Oncology), Genentech, Inc., South San Francisco, CA, United States
| | - Andrew X. Zhu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - Yulei Wang
- Product Development (Oncology), Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
42
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|