1
|
Meng S, Hara T, Miura Y, Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T-cell therapy in solid tumors. Cancer Sci 2024; 115:3532-3542. [PMID: 39169645 PMCID: PMC11531970 DOI: 10.1111/cas.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.
Collapse
Grants
- 2024 Princess Takamatsu Cancer Research Fund
- JP23ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- JP24ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- A20H0054100 Ministry of Education, Culture, Sports, Science and Technology
- T23KK01530 Ministry of Education, Culture, Sports, Science and Technology
- T22K195590 Ministry of Education, Culture, Sports, Science and Technology
- A22H031460 Ministry of Education, Culture, Sports, Science and Technology
- T23K183130 Ministry of Education, Culture, Sports, Science and Technology
- T23K195050 Ministry of Education, Culture, Sports, Science and Technology
- T24K199920 Ministry of Education, Culture, Sports, Science and Technology
- IFO Research Communications (2024)
- Oceanic Wellness Foundation (2024)
- Princess Takamatsu Cancer Research Fund
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Miura
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of TechnologyYokohamaKanagawaJapan
- Department of Life Science and Technology, School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
2
|
Xie Z, Zhou Q, Hu J, He L, Meng H, Liu X, Sun G, Luo Z, Feng Y, Li L, Chu X, Du C, Yang D, Yang X, Zhang J, Ge C, Zhang X, Chen S, Geng M. Integrated omics profiling reveals systemic dysregulation and potential biomarkers in the blood of patients with neuromyelitis optica spectrum disorders. J Transl Med 2024; 22:989. [PMID: 39487546 PMCID: PMC11529322 DOI: 10.1186/s12967-024-05801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune conditions that affect the central nervous system. The contribution of peripheral abnormalities to the disease's pathogenesis is not well understood. METHODS To investigate this, we employed a multi-omics approach analyzing blood samples from 52 NMOSD patients and 46 healthy controls (HC). This included mass cytometry, cytokine arrays, and targeted metabolomics. We then analyzed the peripheral changes of NMOSD, and features related to NMOSD's disease severity. Furthermore, an integrative analysis was conducted to identify the distinguishing characteristics of NMOSD from HC. Additionally, we unveiled the variations in peripheral features among different clinical subgroups within NMOSD. An independent cohort of 40 individuals with NMOSD was utilized to assess the serum levels of fibroblast activation protein alpha (FAP). RESULTS Our analysis revealed a distinct peripheral immune and metabolic signature in NMOSD patients. This signature is characterized by an increase in monocytes and a decrease in regulatory T cells, dendritic cells, natural killer cells, and various T cell subsets. Additionally, we found elevated levels of inflammatory cytokines and reduced levels of tissue-repair cytokines. Metabolic changes were also evident, with higher levels of bile acids, lactates, triglycerides, and lower levels of dehydroepiandrosterone sulfate, homoarginine, octadecadienoic acid (FA[18:2]), and sphingolipids. We identified distinctive biomarkers differentiating NMOSD from HC and found blood factors correlating with disease severity. Among these, fibroblast activation protein alpha (FAP) was a notable marker of disease progression. CONCLUSIONS Our comprehensive blood profile analysis offers new insights into NMOSD pathophysiology, revealing significant peripheral immune and metabolic alterations. This work lays the groundwork for future biomarker identification and mechanistic studies in NMOSD, highlighting the potential of FAP as a marker of disease progression.
Collapse
Affiliation(s)
- Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jin Hu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Lu He
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Huangyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital Fudan University and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, 200040, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Yuan Feng
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Liang Li
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xingkun Chu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Chen Du
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Dabing Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xinying Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Changrong Ge
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xiang Zhang
- Department of Neurology, Huashan Hospital Fudan University and Institute of Neurology, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Neurology, Xinrui Hospital, Wuxi, China.
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China.
| |
Collapse
|
3
|
Vymola P, Garcia‐Borja E, Cervenka J, Balaziova E, Vymolova B, Veprkova J, Vodicka P, Skalnikova H, Tomas R, Netuka D, Busek P, Sedo A. Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination. Brain Pathol 2024; 34:e13265. [PMID: 38705944 PMCID: PMC11483521 DOI: 10.1111/bpa.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.
Collapse
Affiliation(s)
- Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Elena Garcia‐Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Laboratory of proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Barbora Vymolova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jana Veprkova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Helena Skalnikova
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Laboratory of proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Robert Tomas
- Department of NeurosurgeryNa Homolce HospitalPragueCzech Republic
| | - David Netuka
- Department of Neurosurgery and Neurooncology, First Faculty of MedicineCharles University and Military University HospitalPragueCzech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
4
|
Ruan D, Sun J, Han C, Cai J, Yu L, Zhao L, Pang Y, Zuo C, Sun L, Wang Z, Tan G, Qu X, Chen H. 68Ga-FAPI-46 PET/CT in the evaluation of gliomas: comparison with 18F-FDG PET/CT and contrast-enhanced MRI. Theranostics 2024; 14:6935-6946. [PMID: 39629119 PMCID: PMC11610146 DOI: 10.7150/thno.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Rationale: This study compared 68Ga-FAPI-46 PET/CT, 18F-fluorodeoxyglucose (FDG) PET/CT, and contrast-enhanced MRI (CE-MRI) for glioma imaging, classification, and recurrence detection and explored PET parameters and molecular pathological profiles. Methods: Between June 2020 and June 2024, we prospectively enrolled patients with space-occupying lesions in the brain or previously treated gliomas. All patients underwent sequential CE-MRI, 68Ga-FAPI-46, and 18F-FDG PET/CT. Diagnostic accuracy was assessed based on a reference standard, and PET parameters were analysed for correlations with WHO grading and molecular characteristics. Results: Forty-eight patients (median age, 51 years; 32 men) with 40 confirmed gliomas were enrolled. For primary tumour diagnosis, the sensitivity of 68Ga-FAPI-46 PET/CT was equivalent to CE-MRI (95% vs. 100%, P = 0.99) and 18F-FDG PET/CT (95% vs. 77%, P = 0.13). 68Ga-FAPI-46 uptake was higher in grade IV than in grade I-II gliomas (5.03 vs. 1.14, P = 0.02). 68Ga-FAPI-46 PET/CT showed significantly higher maximum standardized uptake value and tumour-to-background ratio (TBR) in recurrent tumours than in treatment-related changes and demonstrated favourable sensitivity and specificity for detecting recurrent gliomas, though not significantly superior to 18F-FDG PET/CT (sensitivity: 100% vs. 85%, P = 0.48; specificity: 100% vs. 80%, P = 0.99) and CE-MRI (sensitivity: 100% vs. 100%, P = NA; specificity: 100% vs. 40%, P = 0.25). Glial fibrillary acidic protein-mutant gliomas exhibited higher 68Ga-FAPI-46 uptake than wild-type gliomas. Conclusion: 68Ga-FAPI-46 PET/CT outperformed 18F-FDG and CE-MRI in diagnosing glioma recurrence, although the results were not statistically significant. For primary glioma diagnosis, 68Ga-FAPI-46 PET/CT, despite having a better TBR, did not surpass 18F-FDG PET/CT and CE-MRI in terms of sensitivity and specificity. However, 68Ga-FAPI-46 PET/CT is superior to 18F-FDG for visualizing and classifying gliomas.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Department of Electronic Science, Intelligent Medical Imaging R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianping Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chengkun Han
- Department of Radiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayu Cai
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingyu Yu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaobo Qu
- National Institute for Data Science in Health and Medicine, Department of Electronic Science, Intelligent Medical Imaging R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
- Department of Radiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
5
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
6
|
Taylor CA, Glover M, Maher J. CAR-T cell technologies that interact with the tumour microenvironment in solid tumours. Expert Rev Clin Immunol 2024; 20:849-871. [PMID: 39021098 DOI: 10.1080/1744666x.2024.2380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database from the first description of a CAR by Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with reversal of suppressive immune checkpoints that operate within solid tumor lesions. EXPERT OPINION In this review, we describe a number of recent advances in CAR T-cell technology that set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, immunosuppression, metabolic compromise, and hypoxia.
Collapse
Affiliation(s)
| | | | - John Maher
- Leucid Bio Ltd, Guy's Hospital, London, UK
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
7
|
Oster C, Kessler L, Blau T, Keyvani K, Pabst KM, Fendler WP, Fragoso Costa P, Lazaridis L, Schmidt T, Feldheim J, Pierscianek D, Schildhaus HU, Sure U, Ahmadipour Y, Kleinschnitz C, Guberina N, Stuschke M, Deuschl C, Scheffler B, Herrmann K, Kebir S, Glas M. The Role of Fibroblast Activation Protein in Glioblastoma and Gliosarcoma: A Comparison of Tissue, 68Ga-FAPI-46 PET Data, and Survival Data. J Nucl Med 2024; 65:1217-1223. [PMID: 38960714 DOI: 10.2967/jnumed.123.267151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Despite their unique histologic features, gliosarcomas belong to the group of glioblastomas and are treated according to the same standards. Fibroblast activation protein (FAP) is a component of a tumor-specific subpopulation of fibroblasts that plays a critical role in tumor growth and invasion. Some case studies suggest an elevated expression of FAP in glioblastoma and a particularly strong expression in gliosarcoma attributed to traits of predominant mesenchymal differentiation. However, the prognostic impact of FAP and its diagnostic and therapeutic potential remain unclear. Here, we investigate the clinical relevance of FAP expression in gliosarcoma and glioblastoma and how it correlates with 68Ga-FAP inhibitor (FAPI)-46 PET uptake. Methods: Patients diagnosed with gliosarcoma or glioblastoma without sarcomatous differentiation with an overall survival of less than 2.5 y were enrolled. Histologic examination included immunohistochemistry and semiquantitative scoring of FAP (0-3, with higher values indicating stronger expression). Additionally, 68Ga-FAPI-46 PET scans were performed in a subset of glioblastomas without sarcomatous differentiation patients. The clinical SUVs were correlated with FAP expression levels in surgically derived tumor tissue and relevant prognostic factors. Results: Of the 61 patients who were enrolled, 13 of them had gliosarcoma. Immunohistochemistry revealed significantly more FAP in gliosarcomas than in glioblastomas without sarcomatous differentiation of tumor tissue (P < 0.0001). In the latter, FAP expression was confined to the perivascular space, whereas neoplastic cells additionally expressed FAP in gliosarcoma. A significant correlation of immunohistochemical FAP with SUVmean and SUVpeak of 68Ga-FAPI-46 PET indicates that clinical tracer uptake represents FAP expression of the tumor. Although gliosarcomas express higher levels of FAP than do glioblastomas without sarcomatous differentiation, overall survival does not significantly differ between the groups. Conclusion: The analysis reveals a significant correlation between SUVmean and SUVpeak in 68Ga-FAPI-46 PET and immunohistochemical FAP expression. This study indicates that FAP expression is much more abundant in the gliosarcoma subgroup of glioblastomas. This could open not only a diagnostic but also a therapeutic gap, since FAP could be explored as a theranostic target to enhance survival in a distinct subgroup of high-risk brain tumor patients with poor survival prognosis.
Collapse
Affiliation(s)
- Christoph Oster
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Tobias Blau
- Institute of Neuropathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Teresa Schmidt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jonas Feldheim
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, St. Marienhospital Lünen, Lünen, Germany
| | - Hans Ulrich Schildhaus
- Institute of Pathology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Discovery Life Sciences Biomarker Services GmbH, Kassel, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Nika Guberina
- Department of Radiotherapy, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; and National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Heidelberg, Germany
| | - Sied Kebir
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Glas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site Essen-Düsseldorf, Partnership Between DKFZ and University Hospital Essen, Essen, Germany; and DKFZ-Division of Translational Neurooncology at West German Cancer Center (WTZ), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Chen M, Chen F, Gao Z, Li X, Hu L, Yang S, Zhao S, Song Z. CAFs and T cells interplay: The emergence of a new arena in cancer combat. Biomed Pharmacother 2024; 177:117045. [PMID: 38955088 DOI: 10.1016/j.biopha.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuying Yang
- Department of intensive medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
9
|
Yu W, Truong NTH, Polara R, Gargett T, Tea MN, Pitson SM, Cockshell MP, Bonder CS, Ebert LM, Brown MP. Endogenous bystander killing mechanisms enhance the activity of novel FAP-specific CAR-T cells against glioblastoma. Clin Transl Immunology 2024; 13:e1519. [PMID: 38975278 PMCID: PMC11225608 DOI: 10.1002/cti2.1519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives CAR-T cells are being investigated as a novel immunotherapy for glioblastoma, but clinical success has been limited. We recently described fibroblast activation protein (FAP) as an ideal target antigen for glioblastoma immunotherapy, with expression on both tumor cells and tumor blood vessels. However, CAR-T cells targeting FAP have never been investigated as a therapy for glioblastoma. Methods We generated a novel FAP targeting CAR with CD3ζ and CD28 signalling domains and tested the resulting CAR-T cells for their lytic activity and cytokine secretion function in vitro (using real-time impedance, flow cytometry, imaging and bead-based cytokine assays), and in vivo (using a xenograft mimicking the natural heterogeneity of human glioblastoma). Results FAP-CAR-T cells exhibited target specificity against model cell lines and potent cytotoxicity against patient-derived glioma neural stem cells, even when only a subpopulation expressed FAP, indicating a bystander killing mechanism. Using co-culture assays, we confirmed FAP-CAR-T cells mediate bystander killing of antigen-negative tumor cells, but only after activation by FAP-positive target cells. This bystander killing was at least partially mediated by soluble factors and amplified by IL-2 which activated the non-transduced fraction of the CAR-T product. Finally, a low dose of intravenously administered FAP-CAR-T cells controlled, without overt toxicity, the growth of subcutaneous tumors created using a mixture of antigen-negative and antigen-positive glioblastoma cells. Conclusions Our findings advance FAP as a leading candidate for clinical CAR-T therapy of glioblastoma and highlight under-recognised antigen nonspecific mechanisms that may contribute meaningfully to the antitumor activity of CAR-T cells.
Collapse
Affiliation(s)
- Wenbo Yu
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
| | - Nga TH Truong
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
| | - Ruhi Polara
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Tessa Gargett
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Melinda N Tea
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Stuart M Pitson
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Michaelia P Cockshell
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Claudine S Bonder
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Lisa M Ebert
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Michael P Brown
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| |
Collapse
|
10
|
Xu J, Zhang J, Chen W, Ni X. The tumor-associated fibrotic reactions in microenvironment aggravate glioma chemoresistance. Front Oncol 2024; 14:1388700. [PMID: 38863628 PMCID: PMC11165034 DOI: 10.3389/fonc.2024.1388700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Malignant gliomas are one of the most common and lethal brain tumors with poor prognosis. Most patients with glioblastoma (GBM) die within 2 years of diagnosis, even after receiving standard treatments including surgery combined with concomitant radiotherapy and chemotherapy. Temozolomide (TMZ) is the first-line chemotherapeutic agent for gliomas, but the frequent acquisition of chemoresistance generally leads to its treatment failure. Thus, it's urgent to investigate the strategies for overcoming glioma chemoresistance. Currently, many studies have elucidated that cancer chemoresistance is not only associated with the high expression of drug-resistance genes in glioma cells but also can be induced by the alterations of the tumor microenvironment (TME). Numerous studies have explored the use of antifibrosis drugs to sensitize chemotherapy in solid tumors, and surprisingly, these preclinical and clinical attempts have exhibited promising efficacy in treating certain types of cancer. However, it remains unclear how tumor-associated fibrotic alterations in the glioma microenvironment (GME) mediate chemoresistance. Furthermore, the possible mechanisms behind this phenomenon are yet to be determined. In this review, we have summarized the molecular mechanisms by which tumor-associated fibrotic reactions drive glioma transformation from a chemosensitive to a chemoresistant state. Additionally, we have outlined antitumor drugs with antifibrosis functions, suggesting that antifibrosis strategies may be effective in overcoming glioma chemoresistance through TME normalization.
Collapse
Affiliation(s)
- Jiaqi Xu
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ji Zhang
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wubing Chen
- Department of Radiology, Wuxi Fifth People’s Hospital, Jiangnan University, Wuxi, China
| | - Xiangrong Ni
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Chen T, Wang M, Chen Y, Liu Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int 2024; 24:133. [PMID: 38622705 PMCID: PMC11017638 DOI: 10.1186/s12935-024-03315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
The application of chimeric antigen receptor (CAR) T cells in the management of hematological malignancies has emerged as a noteworthy therapeutic breakthrough. Nevertheless, the utilization and effectiveness of CAR-T cell therapy in solid tumors are still limited primarily because of the absence of tumor-specific target antigen, the existence of immunosuppressive tumor microenvironment, restricted T cell invasion and proliferation, and the occurrence of severe toxicity. This review explored the history of CAR-T and its latest advancements in the management of solid tumors. According to recent studies, optimizing the design of CAR-T cells, implementing logic-gated CAR-T cells and refining the delivery methods of therapeutic agents can all enhance the efficacy of CAR-T cell therapy. Furthermore, combination therapy shows promise as a way to improve the effectiveness of CAR-T cell therapy. At present, numerous clinical trials involving CAR-T cells for solid tumors are actively in progress. In conclusion, CAR-T cell therapy has both potential and challenges when it comes to treating solid tumors. As CAR-T cell therapy continues to evolve, further innovations will be devised to surmount the challenges associated with this treatment modality, ultimately leading to enhanced therapeutic response for patients suffered solid tumors.
Collapse
Affiliation(s)
- Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yanchao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
12
|
Ning L, Quan C, Wang Y, Wu Z, Yuan P, Xie N. scRNA-seq characterizing the heterogeneity of fibroblasts in breast cancer reveals a novel subtype SFRP4 + CAF that inhibits migration and predicts prognosis. Front Oncol 2024; 14:1348299. [PMID: 38686196 PMCID: PMC11056562 DOI: 10.3389/fonc.2024.1348299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Cancer-associated fibroblasts (CAFs) are a diverse group of cells that significantly impact the tumor microenvironment and therapeutic responses in breast cancer (BC). Despite their importance, the comprehensive profile of CAFs in BC remains to be fully elucidated. Methods To address this gap, we utilized single-cell RNA sequencing (scRNA-seq) to delineate the CAF landscape within 14 BC normal-tumor paired samples. We further corroborated our findings by analyzing several public datasets, thereby validating the newly identified CAF subtype. Additionally, we conducted coculture experiments with BC cells to assess the functional implications of this CAF subtype. Results Our scRNA-seq analysis unveiled eight distinct CAF subtypes across five tumor and six adjacent normal tissue samples. Notably, we discovered a novel subtype, designated as SFRP4+ CAFs, which was predominantly observed in normal tissues. The presence of SFRP4+ CAFs was substantiated by two independent scRNA-seq datasets and a spatial transcriptomics dataset. Functionally, SFRP4+ CAFs were found to impede BC cell migration and the epithelial-mesenchymal transition (EMT) process by secreting SFRP4, thereby modulating the WNT signaling pathway. Furthermore, we established that elevated expression levels of SFRP4+ CAF markers correlate with improved survival outcomes in BC patients, yet paradoxically, they predict a diminished response to neoadjuvant chemotherapy in cases of triple-negative breast cancer. Conclusion This investigation sheds light on the heterogeneity of CAFs in BC and introduces a novel SFRP4+ CAF subtype that hinders BC cell migration. This discovery holds promise as a potential biomarker for refined prognostic assessment and therapeutic intervention in BC.
Collapse
Affiliation(s)
- Lvwen Ning
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuntao Quan
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yue Wang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhijie Wu
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, China
| | - Peixiu Yuan
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Zubaľ M, Výmolová B, Matrasová I, Výmola P, Vepřková J, Syrůček M, Tomáš R, Vaníčková Z, Křepela E, Konečná D, Bušek P, Šedo A. Fibroblast activation protein as a potential theranostic target in brain metastases of diverse solid tumours. Pathology 2023; 55:806-817. [PMID: 37419841 DOI: 10.1016/j.pathol.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/09/2023]
Abstract
Brain metastases are a very common and serious complication of oncological diseases. Despite the vast progress in multimodality treatment, brain metastases significantly decrease the quality of life and prognosis of patients. Therefore, identifying new targets in the microenvironment of brain metastases is desirable. Fibroblast activation protein (FAP) is a transmembrane serine protease typically expressed in tumour-associated stromal cells. Due to its characteristic presence in the tumour microenvironment, FAP represents an attractive theranostic target in oncology. However, there is little information on FAP expression in brain metastases. In this study, we quantified FAP expression in samples of brain metastases of various primary origin and characterised FAP-expressing cells. We have shown that FAP expression is significantly higher in brain metastases in comparison to non-tumorous brain tissues, both at the protein and enzymatic activity levels. FAP immunopositivity was localised in regions rich in collagen and containing blood vessels. We have further shown that FAP is predominantly confined to stromal cells expressing markers typical of cancer-associated fibroblasts (CAFs). We have also observed FAP immunopositivity on tumour cells in a portion of brain metastases, mainly originating from melanoma, lung, breast, and renal cancer, and sarcoma. There were no significant differences in the quantity of FAP protein, enzymatic activity, and FAP+ stromal cells among brain metastasis samples of various origins, suggesting that there is no association of FAP expression and/or presence of FAP+ stromal cells with the histological type of brain metastases. In summary, we are the first to establish the expression of FAP and characterise FAP-expressing cells in the microenvironment of brain metastases. The frequent upregulation of FAP and its presence on both stromal and tumour cells support the use of FAP as a promising theranostic target in brain metastases.
Collapse
Affiliation(s)
- Michal Zubaľ
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Výmolová
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Matrasová
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Výmola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Vepřková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Syrůček
- Department of Pathology, Na Homolce Hospital, Prague, Czech Republic
| | - Robert Tomáš
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Zdislava Vaníčková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Evžen Křepela
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dora Konečná
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Departments of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Aleksi Šedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Beer P, Pauli C, Haberecker M, Grest P, Beebe E, Fuchs D, Markkanen E, Krudewig C, Nolff MC. Cross-species evaluation of fibroblast activation protein alpha as potential imaging target for soft tissue sarcoma: a comparative immunohistochemical study in humans, dogs, and cats. Front Oncol 2023; 13:1210004. [PMID: 37727209 PMCID: PMC10505752 DOI: 10.3389/fonc.2023.1210004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Complete surgical tumor resection is paramount in the management of soft tissue sarcoma (STS) in humans, dogs, and cats alike. Near-infrared targeted tracers for fluorescence-guided surgery (FGS) could facilitate intraoperative visualization of the tumor and improve resection accuracy. Target identification is complicated in STS due to the rarity and heterogeneity of the disease. This study aims to validate the expression of fibroblast activation protein alpha (FAP) in selected human, canine, and feline STS subtypes to assess the value of FAP as a target for FGS and to validate companion animals as a translational model. Methods Formalin-fixed and paraffin-embedded tissue samples from 53 canine STSs (perivascular wall tumor (PWT), canine fibrosarcoma (cFS), and STS not further specified (NOS)), 24 feline fibrosarcomas, and 39 human STSs (myxofibrosarcoma, undifferentiated pleomorphic sarcoma, dermatofibrosarcoma protuberans, and malignant peripheral nerve sheath tumor) as well as six canine and seven feline healthy controls and 10 inflamed tissue samples were immunohistochemically stained for their FAP expression. FAP labeling in tumor, peritumoral, healthy skin, and inflamed tissue samples was quantified using a visually assessed semiquantitative expression score and digital image analysis. Target selection criteria (TASC) scoring was subsequently performed as previously described. Results Eighty-five percent (85%) of human (33/39), 76% of canine (40/53), and 92% of feline (22/24) STSs showed FAP positivity in over 10% of the tumor cells. A high expression was determined in 53% canine (28/53), 67% feline (16/24), and 44% human STSs (17/39). The average FAP-labeled area of canine, feline, and human STSs was 31%, 33%, and 42%, respectively (p > 0.8990). The FAP-positive tumor area was larger in STS compared to healthy and peritumoral tissue samples (p < 0.0001). TASC scores were above 18 for all feline and human STS subtypes and canine PWTs but not for canine STS NOS and cFS. Conclusion This study represents the first cross-species target evaluation of FAP for STS. Our results demonstrate that FAP expression is increased in various STS subtypes compared to non-cancerous tissues across species, thereby validating dogs and cats as suitable animal models. Based on a TASC score, FAP could be considered a target for FGS.
Collapse
Affiliation(s)
- Patricia Beer
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
| | - Paula Grest
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Daniel Fuchs
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christiane Krudewig
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mirja Christine Nolff
- Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Kalaei Z, Manafi-Farid R, Rashidi B, Kiani FK, Zarei A, Fathi M, Jadidi-Niaragh F. The Prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun Signal 2023; 21:139. [PMID: 37316886 DOI: 10.1186/s12964-023-01151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
The identification of contributing factors leading to the development of Colorectal Cancer (CRC), as the third fatal malignancy, is crucial. Today, the tumor microenvironment has been shown to play a key role in CRC progression. Fibroblast-Activation Protein-α (FAP) is a type II transmembrane cell surface proteinase expressed on the surface of cancer-associated fibroblasts in tumor stroma. As an enzyme, FAP has di- and endoprolylpeptidase, endoprotease, and gelatinase/collagenase activities in the Tumor Microenvironment (TME). According to recent reports, FAP overexpression in CRC contributes to adverse clinical outcomes such as increased lymph node metastasis, tumor recurrence, and angiogenesis, as well as decreased overall survival. In this review, studies about the expression level of FAP and its associations with CRC patients' prognosis are reviewed. High expression levels of FAP and its association with clinicopathological factors have made as a potential target. In many studies, FAP has been evaluated as a therapeutic target and diagnostic factor into which the current review tries to provide a comprehensive insight. Video Abstract.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Crane JN, Graham DS, Mona CE, Nelson SD, Samiei A, Dawson DW, Dry SM, Masri MG, Crompton JG, Benz MR, Czernin J, Eilber FC, Graeber TG, Calais J, Federman NC. Fibroblast Activation Protein Expression in Sarcomas. Sarcoma 2023; 2023:2480493. [PMID: 37333052 PMCID: PMC10275689 DOI: 10.1155/2023/2480493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Fibroblast activation protein alpha (FAP) is highly expressed by cancer-associated fibroblasts in multiple epithelial cancers. The aim of this study was to characterize FAP expression in sarcomas to explore its potential utility as a diagnostic and therapeutic target and prognostic biomarker in sarcomas. Methods Available tissue samples from patients with bone or soft tissue tumors were identified at the University of California, Los Angeles. FAP expression was evaluated via immunohistochemistry (IHC) in tumor samples (n = 63), adjacent normal tissues (n = 30), and positive controls (n = 2) using semiquantitative systems for intensity (0 = negative; 1 = weak; 2 = moderate; and 3 = strong) and density (none, <25%, 25-75%; >75%) in stromal and tumor/nonstromal cells and using a qualitative overall score (not detected, low, medium, and high). Additionally, RNA sequencing data in publicly available databases were utilized to compare FAP expression in samples (n = 10,626) from various cancer types and evaluate the association between FAP expression and overall survival (OS) in sarcoma (n = 168). Results The majority of tumor samples had FAP IHC intensity scores ≥2 and density scores ≥25% for stromal cells (77.7%) and tumor cells (50.7%). All desmoid fibromatosis, myxofibrosarcoma, solitary fibrous tumor, and undifferentiated pleomorphic sarcoma samples had medium or high FAP overall scores. Sarcomas were among cancer types with the highest mean FAP expression by RNA sequencing. There was no significant difference in OS in patients with sarcoma with low versus high FAP expression. Conclusion The majority of the sarcoma samples showed FAP expression by both stromal and tumor/nonstromal cells. Further investigation of FAP as a potential diagnostic and therapeutic target in sarcomas is warranted.
Collapse
Affiliation(s)
- Jacquelyn N. Crane
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Stanford University School of Medicine, 1000 Welch Rd, Suite 300, Palo Alto, CA 94304, USA
| | - Danielle S. Graham
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
| | - Christine E. Mona
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Scott D. Nelson
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Alireza Samiei
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - David W. Dawson
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Sarah M. Dry
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Marwan G. Masri
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Joseph G. Crompton
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Matthias R. Benz
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Johannes Czernin
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Fritz C. Eilber
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Thomas G. Graeber
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jeremie Calais
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Noah C. Federman
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
- University of California Los Angeles, Department of Pediatrics, Los Angeles, CA, USA
| |
Collapse
|
18
|
Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42:2155-2165. [PMID: 37277603 PMCID: PMC10913075 DOI: 10.1038/s41388-023-02738-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.
Collapse
Affiliation(s)
- David Eisenbarth
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Y Alan Wang
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
19
|
Dmochowska N, Milanova V, Mukkamala R, Chow KK, Pham NTH, Srinivasarao M, Ebert LM, Stait-Gardner T, Le H, Shetty A, Nelson M, Low PS, Thierry B. Nanoparticles Targeted to Fibroblast Activation Protein Outperform PSMA for MRI Delineation of Primary Prostate Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204956. [PMID: 36840671 DOI: 10.1002/smll.202204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/23/2023] [Indexed: 05/25/2023]
Abstract
Accurate delineation of gross tumor volumes remains a barrier to radiotherapy dose escalation and boost dosing in the treatment of solid tumors, such as prostate cancer. Magnetic resonance imaging (MRI) of tumor targets has the power to enable focal dose boosting, particularly when combined with technological advances such as MRI-linear accelerator. Fibroblast activation protein (FAP) is overexpressed in stromal components of >90% of epithelial carcinomas. Herein, the authors compare targeted MRI of prostate specific membrane antigen (PSMA) with FAP in the delineation of orthotopic prostate tumors. Control, FAP, and PSMA-targeting iron oxide nanoparticles were prepared with modification of a lymphotropic MRI agent (FerroTrace, Ferronova). Mice with orthotopic LNCaP tumors underwent MRI 24 h after intravenous injection of nanoparticles. FAP and PSMA nanoparticles produced contrast enhancement on MRI when compared to control nanoparticles. FAP-targeted MRI increased the proportion of tumor contrast-enhancing black pixels by 13%, compared to PSMA. Analysis of changes in R2 values between healthy prostates and LNCaP tumors indicated an increase in contrast-enhancing pixels in the tumor border of 15% when targeting FAP, compared to PSMA. This study demonstrates the preclinical feasibility of PSMA and FAP-targeted MRI which can enable targeted image-guided focal therapy of localized prostate cancer.
Collapse
Affiliation(s)
- Nicole Dmochowska
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| | - Valentina Milanova
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| | - Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Kwok Keung Chow
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Lisa M Ebert
- Centre for Cancer Biology, University of South Australia; SA Pathology; Cancer Clinical Trials Unit, Royal Adelaide Hospital; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Timothy Stait-Gardner
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Sydney, New South Wales, 2560, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Anil Shetty
- Ferronova Pty Ltd, Mawson Lakes, South Australia, 5095, Australia
| | - Melanie Nelson
- Ferronova Pty Ltd, Mawson Lakes, South Australia, 5095, Australia
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, South Australia, 5095, Australia
| |
Collapse
|
20
|
Zhang N, Pan F, Pan L, Diao W, Su F, Huang R, Yang B, Li Y, Qi Z, Zhang W, Wu X. Synthesis, radiolabeling, and evaluation of a (4-quinolinoyl)glycyl-2-cyanopyrrolidine analogue for fibroblast activation protein (FAP) PET imaging. Front Bioeng Biotechnol 2023; 11:1167329. [PMID: 37057133 PMCID: PMC10086185 DOI: 10.3389/fbioe.2023.1167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Fibroblast activation protein (FAP) is regarded as a promising target for the diagnosis and treatment of tumors as it was overexpressed in cancer-associated fibroblasts. FAP inhibitors bearing a quinoline scaffold have been proven to show high affinity against FAP in vitro and in vivo, and the scaffold has been radio-labeled for the imaging and treatment of FAP-positive tumors. However, currently available FAP imaging agents both contain chelator groups to enable radio-metal labeling, making those tracers more hydrophilic and not suitable for the imaging of lesions in the brain. Herein, we report the synthesis, radio-labeling, and evaluation of a 18F-labeled quinoline analogue ([18F]3) as a potential FAP-targeted PET tracer, which holds the potential to be blood–brain barrier-permeable. [18F]3 was obtained by one-step radio-synthesis via a copper-mediated SNAR reaction from a corresponding boronic ester precursor. [18F]3 showed moderate lipophilicity with a log D7.4 value of 1.11. In cell experiments, [18F]3 showed selective accumulation in A549-FAP and U87 cell lines and can be effectively blocked by the pre-treatment of a cold reference standard. Biodistribution studies indicated that [18F]3 was mainly excreted by hepatic clearance and urinary excretion, and it may be due to its moderate lipophilicity. In vivo PET imaging studies indicated [18F]3 showed selective accumulation in FAP-positive tumors, and specific binding was confirmed by blocking studies. However, low brain uptake was observed in biodistribution and PET imaging studies. Although our preliminary data indicated that [18F]3 holds the potential to be developed as a blood–brain barrier penetrable FAP-targeted PET tracer, its low brain uptake limits its application in the detection of brain lesions. Herein, we report the synthesis and evaluation of [18F]3 as a novel small-molecule FAPI-targeted PET tracer, and our results suggest further structural optimizations would be needed to develop a BBB-permeable PET tracer with this scaffold.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Diao
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feijing Su
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Bo Yang
- Department of Pharmacy, The Seventh People’s Hospital of Chengdu, Chengdu, China
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yunchun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongzhi Qi
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Zhongzhi Qi, ; Wenjie Zhang,
| | - Wenjie Zhang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Zhongzhi Qi, ; Wenjie Zhang,
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Antonova DV, Gnatenko DA, Kotova ES, Pleshkan VV, Kuzmich AI, Didych DA, Sverdlov ED, Alekseenko IV. Cell-specific expression of the FAP gene is regulated by enhancer elements. Front Mol Biosci 2023; 10:1111511. [PMID: 36825204 PMCID: PMC9941708 DOI: 10.3389/fmolb.2023.1111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Fibroblast activation protein (FAP) is an integral membrane serine protease that acts as both dipeptidyl peptidase and collagenase. In recent years, FAP has attracted considerable attention due to its specific upregulation in multiple types of tumor cell populations, including cancer cells in various cancer types, making FAP a potential target for therapy. However, relatively few papers pay attention to the mechanisms driving the cell-specific expression of the FAP gene. We found no correlation between the activities of the two FAP promoter variants (short and long) and the endogenous FAP mRNA expression level in several cell lines with different FAP expression levels. This suggested that other mechanisms may be responsible for specific transcriptional regulation of the FAP gene. We analyzed the distribution of known epigenetic and structural chromatin marks in FAP-positive and FAP-negative cell lines and identified two potential enhancer-like elements (E1 and E2) in the FAP gene locus. We confirmed the specific enrichment of H3K27ac in the putative enhancer regions in FAP-expressing cells. Both the elements exhibited enhancer activity independently of each other in the functional test by increasing the activity of the FAP promoter variants to a greater extent in FAP-expressing cell lines than in FAP-negative cell lines. The transcription factors AP-1, CEBPB, and STAT3 may be involved in FAP activation in the tumors. We hypothesized the existence of a positive feedback loop between FAP and STAT3, which may have implications for developing new approaches in cancer therapy.
Collapse
Affiliation(s)
- Dina V. Antonova
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Gnatenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Kotova
- Laboratory of Human Molecular Genetics, FSBI Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexey I. Kuzmich
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Dmitry A. Didych
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,*Correspondence: Dmitry A. Didych,
| | - Eugene D. Sverdlov
- Kurchatov Center for Genome Research, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Irina V. Alekseenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia,Laboratory of Epigenetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
22
|
Li F, Zhao S, Wei C, Hu Y, Xu T, Xin X, Zhu T, Shang L, Ke S, Zhou J, Xu X, Gao Y, Zhao A, Gao J. Development of Nectin4/FAP-targeted CAR-T cells secreting IL-7, CCL19, and IL-12 for malignant solid tumors. Front Immunol 2022; 13:958082. [PMID: 36479116 PMCID: PMC9720259 DOI: 10.3389/fimmu.2022.958082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Chimeric antigen receptor T (CAR-T) cell therapy has made significant advances for hematological malignancies but encounters obstacles in the treatment of solid tumors mainly due to tumor immunosuppressive microenvironment. Methods Immunohistochemistry analysis was performed to examine the cellular expression of nectin cell adhesion molecule-4 (Nectin4) and fibroblast activation protein (FAP) in a variety of malignant solid tumors. Then, we engineered the fourth-generation Nectin4-targeted CAR-T (Nectin4-7.19 CAR-T) and FAP-targeted CAR-T (FAP-12 CAR-T) cells to evaluate their safety and efficacy in vitro and in vivo. Results In our study, we firstly demonstrated the aberrant overexpression of Nectin4 on both primary and metastatic solid tumors and FAP on cancer-associated fibroblasts. Then, we found that our fourth-generation Nectin4-7.19 CAR-T cells expressed IL-7 and CCL19 efficiently and exhibited superior proliferation, migration, and cytotoxicity compared to the second-generation Nectin4 CAR-T cells, while FAP-12 CAR-T cells exerted their ability of targeting both murine and human FAP effectively in vitro. In a fully immune-competent mouse model of metastatic colorectal cancer, lymphodepletion pretreated mice achieved complete remission with human Nectin4-targeted murine CAR-T (Nectin4 mCAR-T) cells. In the NSG mouse model of lung metastases, Nectin4-7.19 CAR-T cells eradicated metastatic tumors and prolonged survival in combination with FAP-12 CAR-T cells. Conclusions These findings showed that Nectin4-7.19 CAR-T cells had potential therapeutic efficacy and exerted a synergistic role with FAP-12 CAR-T cells, further demonstrating that Nectin4 and FAP were able to serve as promising targets for safe and effective CAR-T therapy of malignant solid tumors.
Collapse
Affiliation(s)
- Fanfan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China,Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuping Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yaodi Hu
- Medical Laboratory, Fenghua District People’s Hospital, Ningbo, China
| | - Tianlong Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xueyi Xin
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tingwei Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Liting Shang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shanwen Ke
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiang Zhou
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China,*Correspondence: Jimin Gao, ; Ai Zhao, ; Yue Gao, ; Xiaojun Xu,
| | - Yue Gao
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Jimin Gao, ; Ai Zhao, ; Yue Gao, ; Xiaojun Xu,
| | - Ai Zhao
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Jimin Gao, ; Ai Zhao, ; Yue Gao, ; Xiaojun Xu,
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China,Zhejiang Qixin Biotech, Wenzhou, China,*Correspondence: Jimin Gao, ; Ai Zhao, ; Yue Gao, ; Xiaojun Xu,
| |
Collapse
|
23
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies’ clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Qin X, Wu F, Chen C, Li Q. Recent advances in CAR-T cells therapy for colorectal cancer. Front Immunol 2022; 13:904137. [PMID: 36238297 PMCID: PMC9551069 DOI: 10.3389/fimmu.2022.904137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer, with a high mortality rate and a serious impact on people’s life and health. In recent years, adoptive chimeric antigen receptor T (CAR-T) cells therapy has shown well efficacy in the treatment of hematological malignancies, but there are still many problems and challenges in solid tumors such as CRC. For example, the tumor immunosuppressive microenvironment, the low targeting of CAR-T cells, the short time of CAR-T cells in vivo, and the limited proliferation capacity of CAR-T cells, CAR-T cells can not effectively infiltrate into the tumor and so on. New approaches have been proposed to address these challenges in CRC, and this review provides a comprehensive overview of the current state of CAR-T cells therapy in CRC.
Collapse
Affiliation(s)
- Xiaoling Qin
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fengjiao Wu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Department of Pharmacology, Harbin Medical University, Harbin, China
- *Correspondence: Qi Li, ; Chang Chen,
| | - Qi Li
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Qi Li, ; Chang Chen,
| |
Collapse
|
25
|
Gargett T, Ebert LM, Truong NTH, Kollis PM, Sedivakova K, Yu W, Yeo ECF, Wittwer NL, Gliddon BL, Tea MN, Ormsby R, Poonnoose S, Nowicki J, Vittorio O, Ziegler DS, Pitson SM, Brown MP. GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J Immunother Cancer 2022; 10:jitc-2022-005187. [PMID: 36167468 PMCID: PMC9516307 DOI: 10.1136/jitc-2022-005187] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Background Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. Methods We profiled an extensive biobank of patients’ biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. Results Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. Conclusions Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.
Collapse
Affiliation(s)
- Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia .,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nga T H Truong
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Paris M Kollis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kristyna Sedivakova
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wenbo Yu
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia
| | - Erica C F Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia
| | - Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Melinda N Tea
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Rebecca Ormsby
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Santosh Poonnoose
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Neurosurgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Jake Nowicki
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Neurosurgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,Kid's Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Stuart M Pitson
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Molecular Therapeutics Laboratory, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and Univeristy of South Australia, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Chen L, Chen F, Niu H, Li J, Pu Y, Yang C, Wang Y, Huang R, Li K, Lei Y, Huang Y. Chimeric Antigen Receptor (CAR)-T Cell Immunotherapy Against Thoracic Malignancies: Challenges and Opportunities. Front Immunol 2022; 13:871661. [PMID: 35911706 PMCID: PMC9334018 DOI: 10.3389/fimmu.2022.871661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Different from surgery, chemical therapy, radio-therapy and target therapy, Chimeric antigen receptor-modified T (CAR-T) cells, a novel adoptive immunotherapy strategy, have been used successfully against both hematological tumors and solid tumors. Although several problems have reduced engineered CAR-T cell therapeutic outcomes in clinical trials for the treatment of thoracic malignancies, including the lack of specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR-T cell infiltration into tumor tissues, off-target toxicity, and other safety issues, CAR-T cell treatment is still full of bright future. In this review, we outline the basic structure and characteristics of CAR-T cells among different period, summarize the common tumor-associated antigens in clinical trials of CAR-T cell therapy for thoracic malignancies, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for preclinical experiments and clinical trials of CAR-T cell therapy for thoracic malignancies.
Collapse
Affiliation(s)
- Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Huatao Niu
- Department of Neurosurgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yue Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Rong Huang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
27
|
A Novel Thrombosis-Related Signature for Predicting Survival and Drug Compounds in Glioblastoma. JOURNAL OF ONCOLOGY 2022; 2022:6792850. [PMID: 35874629 PMCID: PMC9300384 DOI: 10.1155/2022/6792850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022]
Abstract
Glioblastoma is the most common primary tumor in the central nervous system, and thrombosis-associated genes are related to its occurrence and progression. Univariate Cox and LASSO regression analysis were utilized to develop a new prognostic signature based on thrombosis-associated genes. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and HALLMARK were used for functional annotation of risk signature. ESTIMATE, MCP-counter, xCell, and TIMER algorithms were used to quantify immune infiltration in the tumor microenvironment. Genomics of Drug Sensitivity in Cancer (GDSC) was used for selecting potential drug compounds. Risk signature based on thrombosis-associated genes shows moderate performance in prognosis prediction. The functional annotation of the risk signature indicates that the signaling pathways related to the cell cycle, apoptosis, tumorigenesis, and immune suppression are rich in the high-risk group. Somatic mutation analysis shows that tumor-suppressive gene TP53 and oncogene PTEN have higher expression in low-risk and high-risk groups, respectively. Potential drug compounds are explored in risk score groups and show higher AUC values in the low-risk score group. A nomogram with valuable prognostic factors exhibits high sensitivity in predicting the survival outcome of GBM patients. Our research screens out multiple thromboses-associated genes with remarkable clinical significance in GBM and further develops a meaningful prognostic risk signature predicting drug sensitivity and survival outcome.
Collapse
|
28
|
Koh L, Novera W, Lim SW, Chong YK, Pang QY, Low D, Ang BT, Tang C. Integrative multi-omics approach to targeted therapy for glioblastoma. Pharmacol Res 2022; 182:106308. [PMID: 35714825 DOI: 10.1016/j.phrs.2022.106308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
This review describes recent technological advances applied to glioblastoma (GBM), a brain tumor with dismal prognosis. International consortial efforts suggest the presence of molecular subtypes within histologically identical GBM tumors. This emphasizes that future treatment decisions should no longer be made based solely on morphological analyses, but must now take into consideration such molecular and cellular heterogeneity. The use of single-cell technologies has advanced our understanding and assignation of functional subtypes revealing therapeutic vulnerabilities. Our team has developed stratification approaches in the past few years, and we have been able to identify patient cohorts enriched for various signaling pathways. Importantly, our Glioportal brain tumor resource has been established under the National Neuroscience Institute Tissue Bank in 2021. This resource offers preclinical capability to validate working hypotheses established from patient clinical datasets. This review highlights recent developments with the ultimate goal of assigning functional meaning to molecular subtypes, revealing therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lynnette Koh
- Department of Research, National Neuroscience Institute, Singapore.
| | - Wisna Novera
- Department of Research, National Neuroscience Institute, Singapore
| | - See Wee Lim
- Department of Research, National Neuroscience Institute, Singapore
| | - Yuk Kien Chong
- Department of Research, National Neuroscience Institute, Singapore
| | - Qing You Pang
- Department of Research, National Neuroscience Institute, Singapore
| | - David Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
29
|
Kollis PM, Ebert LM, Toubia J, Bastow CR, Ormsby RJ, Poonnoose SI, Lenin S, Tea MN, Pitson SM, Gomez GA, Brown MP, Gargett T. Characterising Distinct Migratory Profiles of Infiltrating T-Cell Subsets in Human Glioblastoma. Front Immunol 2022; 13:850226. [PMID: 35464424 PMCID: PMC9019231 DOI: 10.3389/fimmu.2022.850226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is the most common and aggressive form of primary brain cancer, with no improvements in the 5-year survival rate of 4.6% over the past three decades. T-cell-based immunotherapies such as immune-checkpoint inhibitors and chimeric antigen receptor T-cell therapy have prolonged the survival of patients with other cancers and have undergone early-phase clinical evaluation in glioblastoma patients. However, a major challenge for T-cell-based immunotherapy of glioblastoma and other solid cancers is T-cell infiltration into tumours. This process is mediated by chemokine-chemokine receptor and integrin-adhesion molecule interactions, yet the specific nature of the molecules that may facilitate T-cell homing into glioblastoma are unknown. Here, we have characterised chemokine receptor and integrin expression profiles of endogenous glioblastoma-infiltrating T cells, and the chemokine expression profile of glioblastoma-associated cells, by single-cell RNA-sequencing. Subsequently, chemokine receptors and integrins were validated at the protein level to reveal enrichment of receptors CCR2, CCR5, CXCR3, CXCR4, CXCR6, CD49a, and CD49d in glioblastoma-infiltrating T-cell populations relative to T cells in matched patient peripheral blood. Complementary chemokine ligand expression was then validated in glioblastoma biopsies and glioblastoma-derived primary cell cultures. Together, enriched expression of homing receptor-ligand pairs identified in this study implicate a potential role in mediating T-cell infiltration into glioblastoma. Importantly, our data characterising the migratory receptors on endogenous tumour-infiltrating T cells could be exploited to enhance the tumour-homing properties of future T-cell immunotherapies for glioblastoma.
Collapse
Affiliation(s)
- Paris M Kollis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Toubia
- Australian Cancer Research Foundation (ACRF) Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Cameron R Bastow
- Chemokine Biology Laboratory, Molecular Life Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca J Ormsby
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Santosh I Poonnoose
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Sakthi Lenin
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Melinda N Tea
- Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Stuart M Pitson
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Molecular Therapeutics Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Guillermo A Gomez
- Tissue Architecture and Organ Function Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
30
|
Ma H, Li F, Shen G, Pan L, Liu W, Liang R, Lan T, Yang Y, Yang J, Liao J, Liu N. In vitro and in vivo evaluation of 211At-labeled fibroblast activation protein inhibitor for glioma treatment. Bioorg Med Chem 2022; 55:116600. [PMID: 34999526 DOI: 10.1016/j.bmc.2021.116600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023]
Abstract
Glioma is the most common primary intracranial tumor without effective treatment. Positron emission tomography tracers labeled with 68Ga targeting fibroblast activation protein (FAP) have shown favorable characteristics in the diagnosis of glioma. However, to the best of our knowledge, FAP-targeted endoradiotherapy has never been explored in glioma. Hence, in this study, we investigated the therapeutic effect of 211At-labeled fibroblast activation protein inhibitor (FAPI) for glioma in vitro and in vivo. By astatodestannylation reaction, we prepared 211At-FAPI-04 with a radiochemical yield of 45 ± 6.7% and radiochemical purity of 98%. With good stability in vitro, 211At-FAPI-04 showed fast and specific binding to FAP-positive U87MG cells, and could significantly reduce the cell viability, arrested cell cycle at G2/M phase and suppressed cell proliferative efficacy. Biodistribution studies revealed that 6-fold higher accumulation in tumor sites was achieved by intratumoral injection in comparison with intravenous injection. In U87MG xenografts, 211At-FAPI-04 obviously suppressed the tumor growth and prolonged the median survival in a dose-dependent manner without obvious toxicity to normal organs. In addition, reduced proliferation and increased apoptosis were also observed after 211At-FAPI-04 treatment. All these results suggest that targeted alpha-particle therapy (TAT) mediated by 211At-FAPI-04 can provide an effective and promising strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Huan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| | - Guohua Shen
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
31
|
Rangarajan V, Choudhury S, Agrawal A, Puranik A, Shah S, Purandare N. Fibroblast activation protein inhibitors: New frontier of molecular imaging and therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
32
|
Unravelling glioblastoma heterogeneity by means of single-cell RNA sequencing. Cancer Lett 2021; 527:66-79. [PMID: 34902524 DOI: 10.1016/j.canlet.2021.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most invasive and deadliest brain cancer in adults. Its inherent heterogeneity has been designated as the main cause of treatment failure. Thus, a deeper understanding of the diversity that shapes GBM pathobiology is of utmost importance. Single-cell RNA sequencing (scRNA-seq) technologies have begun to uncover the hidden composition of complex tumor ecosystems. Herein, a semi-systematic search of reference literature databases provided all existing publications using scRNA-seq for the investigation of human GBM. We compared and discussed findings from these works to build a more robust and unified knowledge base. All aspects ranging from inter-patient heterogeneity to intra-tumoral organization, cancer stem cell diversity, clonal mosaicism, and the tumor microenvironment (TME) are comprehensively covered in this report. Tumor composition not only differs across patients but also involves a great extent of heterogeneity within itself. Spatial and cellular heterogeneity can reveal tumor evolution dynamics. In addition, the discovery of distinct cell phenotypes might lead to the development of targeted treatment approaches. In conclusion, scRNA-seq expands our knowledge of GBM heterogeneity and helps to unravel putative therapeutic targets.
Collapse
|
33
|
Meng Y, Zhang H, Li Q, Xing P, Liu F, Cao K, Fang X, Li J, Yu J, Feng X, Ma C, Wang L, Jiang H, Lu J, Bian Y, Shao C. Noncontrast Magnetic Resonance Radiomics and Multilayer Perceptron Network Classifier: An approach for Predicting Fibroblast Activation Protein Expression in Patients With Pancreatic Ductal Adenocarcinoma. J Magn Reson Imaging 2021; 54:1432-1443. [PMID: 33890347 DOI: 10.1002/jmri.27648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP) in pancreatic ductal adenocarcinoma (PDAC) is closely related to the prognosis and treatment of patients. Accurate preoperative FAP expression can better identify the population benefitting from FAP-targeting drugs. PURPOSE To develop and validate a machine learning classifier based on noncontrast MRI for the preoperative prediction of FAP expression in patients with PDAC. STUDY TYPE Retrospective cohort study. POPULATION Altogether, 129 patients with pathology-confirmed PDAC undergoing MR scan and surgical resection; 90 patients in a training cohort, and 39 patients in a validation cohort. FIELD STRENGTH/SEQUENCE/3T: Breath-hold single-shot fast-spin echo T2-weighted sequence and unenhanced and noncontrast T1-weighted fat-suppressed sequences. ASSESSMENT FAP expression was quantified using immunohistochemistry. For each patient, 1409 radiomics features were extracted from T1- and T2-weighted images and reduced using the least absolute shrinkage and selection operator logistic regression algorithm. A multilayer perceptron (MLP) network classifier was developed using the training and validation set. The MLP network classifier performance was determined by its discriminative ability, calibration, and clinical utility. STATISTICAL TESTS Kaplan-Meier estimates, student's t-test, the Kruskal-Wallis H test, and the chi-square test, univariable regression analysis, receiver operating characteristic curve, and decision curve analysis were used. RESULTS A log-rank test showed that the survival of patients with low FAP expression (24.43 months) was significantly longer (P < 0.05) than that in the FAP-high group (13.50 months). The prediction model showed good discrimination in the training set (area under the curve [AUC], 0.84) and the validation set (AUC, 0.77). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 75.00%, 79.41%, 0.77, 0.86, and 0.66, respectively, whereas those for the validation set were 85.00%, 63.16%, 0.74, 0.71, and 0.80, respectively. DATA CONCLUSIONS The MLP network classifier based on noncontrast MRI can accurately predict FAP expression in patients with PDAC. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yinghao Meng
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
- Department of Radiology, Qingdao, Shandong, China
| | - Hao Zhang
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Qi Li
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Pengyi Xing
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Fang Liu
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Kai Cao
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xu Fang
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jing Li
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jieyu Yu
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xiaochen Feng
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Li Wang
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
34
|
Álvaro-Espinosa L, de Pablos-Aragoneses A, Valiente M, Priego N. Brain Microenvironment Heterogeneity: Potential Value for Brain Tumors. Front Oncol 2021; 11:714428. [PMID: 34540682 PMCID: PMC8440906 DOI: 10.3389/fonc.2021.714428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Uncovering the complexity of the microenvironment that emerges in brain disorders is key to identify potential vulnerabilities that might help challenging diseases affecting this organ. Recently, genomic and proteomic analyses, especially at the single cell level, have reported previously unrecognized diversity within brain cell types. The complexity of the brain microenvironment increases during disease partly due to the immune infiltration from the periphery that contributes to redefine the brain connectome by establishing a new crosstalk with resident brain cell types. Within the rewired brain ecosystem, glial cell subpopulations are emerging hubs modulating the dialogue between the Immune System and the Central Nervous System with important consequences in the progression of brain tumors and other disorders. Single cell technologies are crucial not only to define and track the origin of disease-associated cell types, but also to identify their molecular similarities and differences that might be linked to specific brain injuries. These altered molecular patterns derived from reprogramming the healthy brain into an injured organ, might provide a new generation of therapeutic targets to challenge highly prevalent and lethal brain disorders that remain incurable with unprecedented specificity and limited toxicities. In this perspective, we present the most relevant clinical and pre-clinical work regarding the characterization of the heterogeneity within different components of the microenvironment in the healthy and injured brain with a special interest on single cell analysis. Finally, we discuss how understanding the diversity of the brain microenvironment could be exploited for translational purposes, particularly in primary and secondary tumors affecting the brain.
Collapse
Affiliation(s)
| | | | | | - Neibla Priego
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
35
|
Zadeh Shirazi A, McDonnell MD, Fornaciari E, Bagherian NS, Scheer KG, Samuel MS, Yaghoobi M, Ormsby RJ, Poonnoose S, Tumes DJ, Gomez GA. A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma. Br J Cancer 2021; 125:337-350. [PMID: 33927352 PMCID: PMC8329064 DOI: 10.1038/s41416-021-01394-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Glioblastoma is the most aggressive type of brain cancer with high-levels of intra- and inter-tumour heterogeneity that contribute to its rapid growth and invasion within the brain. However, a spatial characterisation of gene signatures and the cell types expressing these in different tumour locations is still lacking. METHODS We have used a deep convolutional neural network (DCNN) as a semantic segmentation model to segment seven different tumour regions including leading edge (LE), infiltrating tumour (IT), cellular tumour (CT), cellular tumour microvascular proliferation (CTmvp), cellular tumour pseudopalisading region around necrosis (CTpan), cellular tumour perinecrotic zones (CTpnz) and cellular tumour necrosis (CTne) in digitised glioblastoma histopathological slides from The Cancer Genome Atlas (TCGA). Correlation analysis between segmentation results from tumour images together with matched RNA expression data was performed to identify genetic signatures that are specific to different tumour regions. RESULTS We found that spatially resolved gene signatures were strongly correlated with survival in patients with defined genetic mutations. Further in silico cell ontology analysis along with single-cell RNA sequencing data from resected glioblastoma tissue samples showed that these tumour regions had different gene signatures, whose expression was driven by different cell types in the regional tumour microenvironment. Our results further pointed to a key role for interactions between microglia/pericytes/monocytes and tumour cells that occur in the IT and CTmvp regions, which may contribute to poor patient survival. CONCLUSIONS This work identified key histopathological features that correlate with patient survival and detected spatially associated genetic signatures that contribute to tumour-stroma interactions and which should be investigated as new targets in glioblastoma. The source codes and datasets used are available in GitHub: https://github.com/amin20/GBM_WSSM .
Collapse
Affiliation(s)
- Amin Zadeh Shirazi
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Computational Learning Systems Laboratory, UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia
| | - Mark D McDonnell
- Computational Learning Systems Laboratory, UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia
| | - Eric Fornaciari
- Department of Mathematics of Computation, University of California, Los Angeles (UCLA), CA, USA
| | | | - Kaitlin G Scheer
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Mahdi Yaghoobi
- Electrical and Computer Engineering Department, Department of Artificial Intelligence, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Rebecca J Ormsby
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Santosh Poonnoose
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
- Department of Neurosurgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Guillermo A Gomez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
36
|
Balaziova E, Vymola P, Hrabal P, Mateu R, Zubal M, Tomas R, Netuka D, Kramar F, Zemanova Z, Svobodova K, Brabec M, Sedo A, Busek P. Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis. Cancers (Basel) 2021; 13:cancers13133304. [PMID: 34282761 PMCID: PMC8267680 DOI: 10.3390/cancers13133304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The perivascular niche in glioblastoma is crucial for maintaining a tumour- permissive microenvironment. In various extracranial cancers, mesenchymal cells that express fibroblast activation protein (FAP) are an important stromal component and a potential therapeutic target. In this study, we examine their functions in the glioblastoma microenvironment where their role is so far largely unexplored. Glioblastoma-associated FAP+ mesenchymal cells are localised around activated endothelial cells and their presence positively correlates with vascular density. They represent a subpopulation of stromal, non-tumorigenic cells which mostly lack the chromosomal aberrations characteristic of glioma cells. By soluble factors they induce angiogenic sprouting, chemotaxis of endothelial cells, contribute to destabilisation of blood vessels, and increase the migration and growth of glioma cells. Taken together, we identified a subpopulation of FAP+ mesenchymal cells in the perivascular niche in glioblastoma that may contribute to tumour progression by promoting angiogenesis and supporting dissemination of transformed cells into the surrounding tissue. Abstract Fibroblast activation protein (FAP) is a membrane-bound protease that is upregulated in a wide range of tumours and viewed as a marker of tumour-promoting stroma. Previously, we demonstrated increased FAP expression in glioblastomas and described its localisation in cancer and stromal cells. In this study, we show that FAP+ stromal cells are mostly localised in the vicinity of activated CD105+ endothelial cells and their quantity positively correlates with glioblastoma vascularisation. FAP+ mesenchymal cells derived from human glioblastomas are non-tumorigenic and mostly lack the cytogenetic aberrations characteristic of glioblastomas. Conditioned media from these cells induce angiogenic sprouting and chemotaxis of endothelial cells and promote migration and growth of glioma cells. In a chorioallantoic membrane assay, co-application of FAP+ mesenchymal cells with glioma cells was associated with enhanced abnormal angiogenesis, as evidenced by an increased number of erythrocytes in vessel-like structures and higher occurrence of haemorrhages. FAP+ mesenchymal cells express proangiogenic factors, but in comparison to normal pericytes exhibit decreased levels of antiangiogenic molecules and an increased Angiopoietin 2/1 ratio. Our results show that FAP+ mesenchymal cells promote angiogenesis and glioma cell migration and growth by paracrine communication and in this manner, they may thus contribute to glioblastoma progression.
Collapse
Affiliation(s)
- Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Petr Hrabal
- Department of Pathology, Military University Hospital, 169 02 Prague, Czech Republic;
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Michal Zubal
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Robert Tomas
- Departments of Neurosurgery, Na Homolce Hospital, 150 00 Prague, Czech Republic;
| | - David Netuka
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, 168 02 Prague, Czech Republic; (D.N.); (F.K.)
| | - Filip Kramar
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, 168 02 Prague, Czech Republic; (D.N.); (F.K.)
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (Z.Z.); (K.S.)
| | - Karla Svobodova
- Center of Oncocytogenomics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (Z.Z.); (K.S.)
| | - Marek Brabec
- Institute of Computer Science, The Czech Academy of Sciences, 128 00 Prague, Czech Republic;
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
- Correspondence: (A.S.); (P.B.)
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
- Correspondence: (A.S.); (P.B.)
| |
Collapse
|
37
|
Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A. State-of-the-art of FAPI-PET imaging: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2021; 48:4396-4414. [PMID: 34173007 DOI: 10.1007/s00259-021-05475-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Fibroblast activation protein-α (FAPα) is overexpressed on cancer-associated fibroblasts in approximately 90% of epithelial neoplasms, representing an appealing target for therapeutic and molecular imaging applications. [68 Ga]Ga-labelled radiopharmaceuticals-FAP-inhibitors (FAPI)-have been developed for PET. We systematically reviewed and meta-analysed published literature to provide an overview of its clinical role. MATERIALS AND METHODS The search, limited to January 1st, 2018-March 31st, 2021, was performed on MedLine and Embase databases using all the possible combinations of terms "FAP", "FAPI", "PET/CT", "positron emission tomography", "fibroblast", "cancer-associated fibroblasts", "CAF", "molecular imaging", and "fibroblast imaging". Study quality was assessed using the QUADAS-2 criteria. Patient-based and lesion-based pooled sensitivities/specificities of FAPI PET were computed using a random-effects model directly from the STATA "metaprop" command. Between-study statistical heterogeneity was tested (I2-statistics). RESULTS Twenty-three studies were selected for systematic review. Investigations on staging or restaging head and neck cancer (n = 2, 29 patients), abdominal malignancies (n = 6, 171 patients), various cancers (n = 2, 143 patients), and radiation treatment planning (n = 4, 56 patients) were included in the meta-analysis. On patient-based analysis, pooled sensitivity was 0.99 (95% CI 0.97-1.00) with negligible heterogeneity; pooled specificity was 0.87 (95% CI 0.62-1.00), with negligible heterogeneity. On lesion-based analysis, sensitivity and specificity had high heterogeneity (I2 = 88.56% and I2 = 97.20%, respectively). Pooled sensitivity for the primary tumour was 1.00 (95% CI 0.98-1.00) with negligible heterogeneity. Pooled sensitivity/specificity of nodal metastases had high heterogeneity (I2 = 89.18% and I2 = 95.74%, respectively). Pooled sensitivity in distant metastases was good (0.93 with 95% CI 0.88-0.97) with negligible heterogeneity. CONCLUSIONS FAPI-PET appears promising, especially in imaging cancers unsuitable for [18F]FDG imaging, particularly primary lesions and distant metastases. However, high-level evidence is needed to define its role, specifically to identify cancer types, non-oncological diseases, and clinical settings for its applications.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4Pieve Emanuele, 20090, Milan, Italy.,IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Margarita Kirienko
- Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4Pieve Emanuele, 20090, Milan, Italy. .,IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Francesco Fiz
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Noemi Gozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4Pieve Emanuele, 20090, Milan, Italy.,IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| |
Collapse
|
38
|
Xing Y, Ruan G, Ni H, Qin H, Chen S, Gu X, Shang J, Zhou Y, Tao X, Zheng L. Tumor Immune Microenvironment and Its Related miRNAs in Tumor Progression. Front Immunol 2021; 12:624725. [PMID: 34084160 PMCID: PMC8167795 DOI: 10.3389/fimmu.2021.624725] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells. These cells include lymphocytes with tumor suppressor effects such as CD8+ T cells and natural killer cells, as well as some tumor-promoting cells with immunosuppressive functions, such as regulatory T cells and myeloid-derived suppressor cells. MiRNA can affect the tumor immune microenvironment by regulating the function of immune cells, which in turn modulates the progression of tumor cells. Investigating the role of miRNA in regulating the tumor immune microenvironment will help elucidate the specific mechanisms of interaction between immune cells and tumor cells, and may facilitate the use of miRNA as a predictor of immune disorders in tumor progression. This review summarizes the multifarious roles of miRNA in tumor progression through regulation of the tumor immune microenvironment, and provides guidance for the development of miRNA drugs to treat tumors and for the use of miRNA as an auxiliary means in tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haiwei Ni
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinyue Gu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiamin Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yantong Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xi Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
39
|
Oncogenesis, Microenvironment Modulation and Clinical Potentiality of FAP in Glioblastoma: Lessons Learned from Other Solid Tumors. Cells 2021; 10:cells10051142. [PMID: 34068501 PMCID: PMC8151573 DOI: 10.3390/cells10051142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, glioblastoma (GBM) is the most common malignant tumor of the central nervous system in adults. Fibroblast activation protein (FAP) is a member of the dipeptidyl peptidase family, which has catalytic activity and is engaged in protein recruitment and scaffolds. Recent studies have found that FAP expression in different types of cells within the GBM microenvironment is typically upregulated compared with that in lower grade glioma and is most pronounced in the mesenchymal subtype of GBM. As a marker of cancer-associated fibroblasts (CAFs) with tumorigenic activity, FAP has been proven to promote tumor growth and invasion via hydrolysis of molecules such as brevican in the extracellular matrix and targeting of downstream pathways and substrates, such as fibroblast growth factor 21 (FGF21). In addition, based on its ability to suppress antitumor immunity in GBM and induce temozolomide resistance, FAP may be a potential target for immunotherapy and reversing temozolomide resistance; however, current studies on therapies targeting FAP are still limited. In this review, we summarized recent progress in FAP expression profiling and the understanding of the biological function of FAP in GBM and raised the possibility of FAP as an imaging biomarker and therapeutic target.
Collapse
|
40
|
Lenin S, Ponthier E, Scheer KG, Yeo ECF, Tea MN, Ebert LM, Oksdath Mansilla M, Poonnoose S, Baumgartner U, Day BW, Ormsby RJ, Pitson SM, Gomez GA. A Drug Screening Pipeline Using 2D and 3D Patient-Derived In Vitro Models for Pre-Clinical Analysis of Therapy Response in Glioblastoma. Int J Mol Sci 2021; 22:4322. [PMID: 33919246 PMCID: PMC8122466 DOI: 10.3390/ijms22094322] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the most common and lethal types of primary brain tumor. Despite aggressive treatment with chemotherapy and radiotherapy, tumor recurrence within 6-9 months is common. To overcome this, more effective therapies targeting cancer cell stemness, invasion, metabolism, cell death resistance and the interactions of tumor cells with their surrounding microenvironment are required. In this study, we performed a systematic review of the molecular mechanisms that drive glioblastoma progression, which led to the identification of 65 drugs/inhibitors that we screened for their efficacy to kill patient-derived glioma stem cells in two dimensional (2D) cultures and patient-derived three dimensional (3D) glioblastoma explant organoids (GBOs). From the screening, we found a group of drugs that presented different selectivity on different patient-derived in vitro models. Moreover, we found that Costunolide, a TERT inhibitor, was effective in reducing the cell viability in vitro of both primary tumor models as well as tumor models pre-treated with chemotherapy and radiotherapy. These results present a novel workflow for screening a relatively large groups of drugs, whose results could lead to the identification of more personalized and effective treatment for recurrent glioblastoma.
Collapse
Affiliation(s)
- Sakthi Lenin
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Elise Ponthier
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Kaitlin G. Scheer
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Erica C. F. Yeo
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Melinda N. Tea
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Mariana Oksdath Mansilla
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Santosh Poonnoose
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia; (S.P.); (R.J.O.)
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia
| | - Ulrich Baumgartner
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (U.B.); (B.W.D.)
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan W. Day
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (U.B.); (B.W.D.)
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca J. Ormsby
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia; (S.P.); (R.J.O.)
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| |
Collapse
|
41
|
Yeo ECF, Brown MP, Gargett T, Ebert LM. The Role of Cytokines and Chemokines in Shaping the Immune Microenvironment of Glioblastoma: Implications for Immunotherapy. Cells 2021; 10:607. [PMID: 33803414 PMCID: PMC8001644 DOI: 10.3390/cells10030607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common form of primary brain tumour in adults. For more than a decade, conventional treatment has produced a relatively modest improvement in the overall survival of glioblastoma patients. The immunosuppressive mechanisms employed by neoplastic and non-neoplastic cells within the tumour can limit treatment efficacy, and this can include the secretion of immunosuppressive cytokines and chemokines. These factors can play a significant role in immune modulation, thus disabling anti-tumour responses and contributing to tumour progression. Here, we review the complex interplay between populations of immune and tumour cells together with defined contributions by key cytokines and chemokines to these intercellular interactions. Understanding how these tumour-derived factors facilitate the crosstalk between cells may identify molecular candidates for potential immunotherapeutic targeting, which may enable better tumour control and improved patient survival.
Collapse
Affiliation(s)
- Erica C. F. Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Lisa M. Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|