1
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
2
|
Song Y, Liang F, Tian W, Rayhill E, Ye L, Tian X. Optimizing therapeutic outcomes: preconditioning strategies for MSC-derived extracellular vesicles. Front Pharmacol 2025; 16:1509418. [PMID: 39995418 PMCID: PMC11847897 DOI: 10.3389/fphar.2025.1509418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) are increasingly recognized for their therapeutic potential in regenerative medicine, driven by their capabilities in immunomodulation and tissue repair. However, MSCs present risks such as immunogenic responses, malignant transformation, and the potential to transmit infectious pathogens due to their intrinsic proliferative and differentiative abilities. In contrast, MSC-EVs, particularly exosomes (MSC-exosomes, 30-150 nm in diameter), offer a safer therapeutic profile. These acellular vesicles mitigate risks associated with immune rejection and tumorigenesis and are inherently incapable of forming ectopic tissues, thereby enhancing their clinical safety and applicability. This review highlights the therapeutic promise of MSC-exosomes especially focusing on the modulation of miRNA (one of bioactive molecules in MSC-EVs) profiles through various preconditioning strategies such as exposure to hypoxia, chemotherapeutic agents, inflammatory cytokines, and physical stimuli. Such conditioning is shown to optimize their therapeutic potential. Key miRNAs including miR-21, miR-146, miR-125a, miR-126, and miR-181a are particularly noted for their roles in facilitating tissue repair and modulating inflammatory responses. These functionalities position MSC-exosomes as a valuable tool in personalized medicine, particularly in the case of exosome-based interventions. Despite the potential of MSC-EVs, this review also acknowledged the limitations of traditional MSC therapies and advocates for a strategic pivot towards exosome-based modalities to enhance therapeutic outcomes. By discussing recent advances in detail and identifying remaining pitfalls, this review aims to guide future directions in improving the efficacy of MSC-exosome-based therapeutics. Additionally, miRNA variability in MSC-EVs presents challenges due to the diverse roles of miRNAs play in regulating gene expression and cell behavior. The miRNA content of MSC-EVs can be influenced by preconditioning strategies and differences in isolation and purification methods, which may alter the expression profiles of specific miRNAs, contributing to differences in their therapeutic effects.
Collapse
Affiliation(s)
- Yuqi Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Fengrui Liang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Weikun Tian
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Erin Rayhill
- Biology Department, Hamilton College, Clinton, NY, United States
| | - Liping Ye
- Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xinghan Tian
- Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
3
|
Teymouri S, Yousefi MH, Heidari S, Farokhi S, Afkhami H, Kashfi M. Beyond antibiotics: mesenchymal stem cells and bacteriophages-new approaches to combat bacterial resistance in wound infections. Mol Biol Rep 2024; 52:64. [PMID: 39699690 DOI: 10.1007/s11033-024-10163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wound management is a major global health problem. With the rising incidence of diabetic wounds, accidents, and other injuries, the demand for prompt wound treatment has become increasingly critical. Millions of people suffer from serious, large wounds resulting from major accidents, surgeries, and wars. These wounds require considerable time to heal and are susceptible to infection. Furthermore, chronic wounds, particularly in elderly and diabetic patients, often require frequent medical interventions to prevent complications. Consequently, wound management imposes a significant economic burden worldwide. The complications arising from wound infections can vary from localized issues to systemic effects. The most severe local complication of wound infection is the non-healing, which results from the disruption of the wound-healing process. This often leads to significant pain, discomfort, and psychological trauma for the patient. Systemic complications may include cellulitis, osteomyelitis, and septicemia. Mesenchymal stem cells are characterized by their high capacity for division, making them suitable candidates for the treatment of tissue damage. Additionally, they produce antimicrobial peptides and various cytokines, which enhance their antimicrobial activity. Evidence shows that phages are effective in treating wound-related infections, and phage therapy has proven to be highly effective for patients when administered correctly. The purpose of this article is to explore the use of bacteriophages and mesenchymal stem cells in wound healing and infection management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
5
|
Jiang Y, Song Y, Zeng Q, Jiang B. Mesenchymal Stem Cells and Their Extracellular Vesicles Are a Promising Alternative to Antibiotics for Treating Sepsis. Bioengineering (Basel) 2024; 11:1160. [PMID: 39593820 PMCID: PMC11591657 DOI: 10.3390/bioengineering11111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Sepsis is a life-threatening disease caused by the overwhelming response to pathogen infections. Currently, treatment options for sepsis are limited to broad-spectrum antibiotics and supportive care. However, the growing resistance of pathogens to common antibiotics complicates treatment efforts. Excessive immune response (i.e., cytokine storm) can persist even after the infection is cleared. This overactive inflammatory response can severely damage multiple organ systems. Given these challenges, managing the excessive immune response is critical in controlling sepsis progression. Therefore, Mesenchymal stem cells (MSCs), with their immunomodulatory and antibacterial properties, have emerged as a promising option for adjunctive therapy in treating sepsis. Moreover, MSCs exhibit a favorable safety profile, as they are eventually eliminated by the host's immune system within several months post-administration, resulting in minimal side effects and have not been linked to common antibiotic therapy drawbacks (i.e., antibiotic resistance). This review explores the potential of MSCs as a personalized therapy for sepsis treatment, clarifying their mechanisms of action and providing up-to-date technological advancements to enhance their protective efficacy for patients suffering from sepsis and its consequences.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu 610041, China
| | - Yunjuan Song
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Bin Jiang
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Yuan Q, Li W, Yang K, Guo J, Zheng Y. Predictive Mortality of the Prognostic Nutritional Index Combined with APACHE II Score for Critically Ill Tuberculosis Patients. Am J Trop Med Hyg 2024; 111:1027-1033. [PMID: 39288766 PMCID: PMC11542510 DOI: 10.4269/ajtmh.23-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/13/2024] [Indexed: 09/19/2024] Open
Abstract
High mortality rates are commonly found in critically ill patients with tuberculosis (TB), which is due partially to limitations in the existing prognostic evaluation methods. Therefore, we aimed to find more effective prognostic evaluation tools to reduce the mortality rate. Data from critically ill patients with TB admitted to the intensive care unit of The Second Hospital of Nanjing, Nanjing, China, between January 2020 and December 2022 were analyzed retrospectively. A total of 115 patients were enrolled and divided into a survival group (n = 62) and a death group (n = 53) according to 30-day survival. Univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were used to investigate the risk factors for 30-day death in critically ill patients with TB. A prediction model for risk of 30-day mortality was developed for critically ill patients with TB in the intensive care unit. The LASSO regression model showed that the prognostic nutritional index (PNI) and Acute Physiology and Chronic Health Status (APACHE II) scores on the third day after admission to the intensive care unit were independent risk factors for 30-day mortality in critically ill patients with TB (P <0.05). The area under the curve value and that PA3 represents the combination of the PNI and APACHE II score on the third day, which was 0.952 (95% CI: 0.913-0.991, P <0.001), was significantly higher than that of the PNI or the APACHE II score on the third day. The new model is as follows: PA3 = APACHE II score (on the third day) × 0.421 - PNI × 0.204. The PNI combined with the APACHE II score on the third day could well predict the 30-day mortality risk of critically ill patients with TB.
Collapse
Affiliation(s)
- Qi Yuan
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Li
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Yang
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Guo
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yishan Zheng
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Ryu CM, Kim Y, Shin JH, Lee S, Ju H, Nam YJ, Kwon H, Jo MY, Lee J, Im HJ, Jang MG, Hong KS, Chung HM, Song SH, Choo MS, Kim SW, Park J, Shin DM. Mesenchymal stem cells with an enhanced antioxidant capacity integrate as smooth muscle cells in a model of diabetic detrusor underactivity. Clin Transl Med 2024; 14:e70052. [PMID: 39390754 PMCID: PMC11467036 DOI: 10.1002/ctm2.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Affiliation(s)
- Chae-Min Ryu
- Center for Cell Therapy, Asan Medical Center, Seoul, South Korea
| | - YongHwan Kim
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Hyun Shin
- Department of Urology, Mokdong Hospital, Ewha Womans University, Seoul, South Korea
| | - Seungun Lee
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyein Ju
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun Ji Nam
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyungu Kwon
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min-Young Jo
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinah Lee
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Jun Im
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min Gi Jang
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki-Sung Hong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea
- Mirae Cell Bio Co., Ltd., Seoul, South Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea
- Mirae Cell Bio Co., Ltd., Seoul, South Korea
| | - Sang Hoon Song
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Myung-Soo Choo
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Dr Joo Urology Clinic, Seoul, South Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| | - Juhyun Park
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong-Myung Shin
- Center for Cell Therapy, Asan Medical Center, Seoul, South Korea
- Department of Cell and Genetic Engineering, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Trivedi A, Lin M, Miyazawa B, Nair A, Vivona L, Fang X, Bieback K, Schäfer R, Spohn G, McKenna D, Zhuo H, Matthay MA, Pati S. Inter- and Intra-donor variability in bone marrow-derived mesenchymal stromal cells: implications for clinical applications. Cytotherapy 2024; 26:1062-1075. [PMID: 38852094 DOI: 10.1016/j.jcyt.2024.03.486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are attractive as a therapeutic modality in multiple disease conditions characterized by inflammation and vascular compromise. Logistically they are advantageous because they can be isolated from adult tissue sources, such as bone marrow (BM). The phase 2a START clinical trial determined BM-MSCs to be safe in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Herein, we examine a subset of the clinical doses of MSCs generated for the phase 2a START trial from three unique donors (1-3), where one of the donors' donated BM on two separate occasions (donor 3 and 3W). METHODS The main objective of this study was to correlate properties of the cells from the four lots with plasma biomarkers from treated patients and relevant to ARDS outcomes. To do this we evaluated MSC donor lots for (i) post-thaw viability, (ii) growth kinetics, (iii) metabolism, (iv) surface marker expression, (v) protein expression, (vi) immunomodulatory ability and (vii) their functional effects on regulating endothelial cell permeability. RESULTS MSC-specific marker expression and protection of thrombin-challenged endothelial barrier permeability was similar among all four donor lots. Inter and intra-donor variability was observed in all the other in vitro assays. Furthermore, patient plasma ANG-2 and protein C levels at 6 hours post-transfusion were correlated to cell viability in an inter- and intra-donor dependent manner. CONCLUSIONS These findings highlight the potential of donor dependent (inter-) and collection dependent (intra-) effects in patient biomarker expression.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Maximillian Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Byron Miyazawa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alison Nair
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Lindsay Vivona
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Schäfer
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany; Institute for Transfusion Medicine and Gene Therapy, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Germany
| | - Gabriele Spohn
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - David McKenna
- University of Minnesota, Molecular and Cellular Therapeutics, Saint Paul, Minnesota, USA
| | - Hanjing Zhuo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA; Department of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California, USA
| | - Shibani Pati
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Surgery, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
10
|
Dunbar H, Hawthorne IJ, English K. Carbon monoxide licensing of MSCs enhances their efficacy through autophagy-mediated miRNA mechanisms. Mol Ther 2024; 32:2047-2049. [PMID: 38906151 PMCID: PMC11286800 DOI: 10.1016/j.ymthe.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
11
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
12
|
Vélez-Pinto JF, Garcia-Arranz M, García-Bernal D, García Gómez-Heras S, Villarejo-Campos P, García-Hernández AM, Vega-Clemente L, Jiménez-Galanes S, Guadalajara H, Moraleda JM, García-Olmo D. Therapeutic effect of adipose-derived mesenchymal stem cells in a porcine model of abdominal sepsis. Stem Cell Res Ther 2023; 14:365. [PMID: 38087374 PMCID: PMC10717819 DOI: 10.1186/s13287-023-03588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The term sepsis refers to a complex and heterogeneous syndrome. Although great progress has been made in improving the diagnosis and treatment of this condition, it continues to have a huge impact on morbidity and mortality worldwide. Mesenchymal stem cells are a population of multipotent cells that have immunomodulatory properties, anti-apoptotic effects, and antimicrobial activity. We studied these capacities in a porcine model of peritoneal sepsis. METHODS We infused human adipose-derived mesenchymal stem cells (ADSCs) into a porcine model of peritoneal sepsis. Twenty piglets were treated with antibiotics alone (control group) or antibiotics plus peritoneal infusion of ADSCs at a concentration of 2 × 106 cells/kg or 4 × 106 cells/kg (low- and high-dose experimental groups, respectively). The animals were evaluated at different time points to determine their clinical status, biochemical and hematologic parameters, presence of inflammatory cytokines and chemokines in blood and peritoneal fluid, and finally by histologic analysis of the organs of the peritoneal cavity. RESULTS One day after sepsis induction, all animals presented peritonitis with bacterial infection as well as elevated C-reactive protein, haptoglobin, IL-1Ra, IL-6, and IL-1b. Xenogeneic ADSC infusion did not elicit an immune response, and peritoneal administration of the treatment was safe and feasible. One day after infusion, the two experimental groups showed a superior physical condition (e.g., mobility, feeding) and a significant increase of IL-10 and TGF-β in blood and a decrease of IL-1Ra, IL-1b, and IL-6. After 7 days, all animals treated with ADSCs had better results concerning blood biomarkers, and histopathological analysis revealed a lower degree of inflammatory cell infiltration of the organs of the peritoneal cavity. CONCLUSIONS Intraperitoneal administration of ADSCs as an adjuvant therapy for sepsis improves the outcome and diminishes the effects of peritonitis and associated organ damage by regulating the immune system and reducing intra-abdominal adhesions in a clinically relevant porcine model of abdominal sepsis.
Collapse
Affiliation(s)
- J F Vélez-Pinto
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033, Madrid, Spain
| | - M Garcia-Arranz
- New Therapy Laboratory, Health Research Institute of the Jimenez Diaz Foundation (Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz), Avda Reyes Católicos 2, 28040, Madrid, Spain.
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
| | - D García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - S García Gómez-Heras
- Department of Basic Health Science, Faculty of Health Sciences, Rey Juan Carlos University, 28922, Alcorcón, Madrid, Spain
| | - P Villarejo-Campos
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033, Madrid, Spain
| | - A M García-Hernández
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - L Vega-Clemente
- New Therapy Laboratory, Health Research Institute of the Jimenez Diaz Foundation (Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz), Avda Reyes Católicos 2, 28040, Madrid, Spain
| | - S Jiménez-Galanes
- Department of Surgery, Infanta Elena University Hospital, 28342, Valdemoro, Madrid, Spain
| | - H Guadalajara
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - J M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - D García-Olmo
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033, Madrid, Spain
- New Therapy Laboratory, Health Research Institute of the Jimenez Diaz Foundation (Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz), Avda Reyes Católicos 2, 28040, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| |
Collapse
|
13
|
Sikora JP, Karawani J, Sobczak J. Neutrophils and the Systemic Inflammatory Response Syndrome (SIRS). Int J Mol Sci 2023; 24:13469. [PMID: 37686271 PMCID: PMC10488036 DOI: 10.3390/ijms241713469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
We are not entirely able to understand, assess, and modulate the functioning of the immune system in clinical situations that lead to a systemic inflammatory response. In the search for diagnostic and treatment strategies (which are still far from perfect), it became very important to study the pathogenesis and participation of endogenous inflammation mediators. This study attempts to more precisely establish the role of neutrophils in individual phenomena occurring during an inflammatory and anti-inflammatory reaction, taking into account their cidal, immunoregulatory, and reparative abilities. Pro- and anticoagulatory properties of endothelium in systemic inflammatory response syndrome (SIRS) are emphasised, along with the resulting clinical implications (the application of immunotherapy using mesenchymal stem/stromal cells (MSCs) or IL-6 antagonists in sepsis and COVID-19 treatment, among others). Special attention is paid to reactive oxygen species (ROS), produced by neutrophils activated during "respiratory burst" in the course of SIRS; the protective and pathogenic role of these endogenous mediators is highlighted. Moreover, clinically useful biomarkers of SIRS (neutrophil extracellular traps, cell-free DNA, DAMP, TREMs, NGAL, miRNA, selected cytokines, ROS, and recognised markers of endothelial damage from the group of adhesins by means of immunohistochemical techniques) related to the neutrophils are presented, and their role in the diagnosing and forecasting of sepsis, burn disease, and COVID-19 is emphasised. Finally, examples of immunomodulation of sepsis and antioxidative thermal injury therapy are presented.
Collapse
Affiliation(s)
- Janusz P. Sikora
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
| | - Jakub Karawani
- Faculty of Medicine, Lazarski University, ul. Świeradowska 43, 02-662 Warsaw, Poland;
| | - Jarosław Sobczak
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
- Department of Management and Logistics in Healthcare, Medical University of Łódź, ul. Lindleya 6, 90-131 Łódź, Poland
| |
Collapse
|