1
|
Li N, Hu Z, Zhang N, Liang Y, Feng Y, Ding W, Cheng L, Zheng Y. Pairwise analysis of gene expression for oral squamous cell carcinoma via a large-scale transcriptome integration. J Cell Mol Med 2024; 28:e70153. [PMID: 39470584 PMCID: PMC11520439 DOI: 10.1111/jcmm.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Among all cancers occurring in the head and neck region, oral squamous cell carcinoma (OSCC) is the most common oral malignant tumours characterized by its aggressiveness and metastasis. The development of transcriptomics technology has greatly facilitated the diagnosis of various cancers. However, identifying genetic biomarkers is limited by data from a single batch of OSCC samples, and integrating analysis across different platforms remains a great challenge. In this study, we integrated five OSCC transcriptome datasets using an innovative strategy capable of mitigating batch effect, and extracting information from different datasets based on changes in the relative expression of gene pairs. By leveraging a machine learning method, we developed a prediction model including 27 differential gene pairs (DGPs) to discriminate OSCC from control samples, achieving an area under the receiver operating characteristic curve (AUC) of 0.8987 for the training set. Moreover, the model demonstrated commendable performance in four external validation sets, with AUCs of 0.9926, 0.9688, 0.8052 and 0.8565, respectively. Subsequently, a prognostic model was constructed based on six key gene pairs through univariate and multivariate Cox regression analysis. The AUCs of the model at 1-year and 3-year overall survival time prediction were 0.717 and 0.779 in an independent dataset. Our result demonstrates the effectiveness of this new method of integrating data and identifying DGPs. Using DGPs can significantly improve the performance of both diagnostic and prognostic models.
Collapse
Affiliation(s)
- Nan Li
- Department of StomatologyShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Zunkai Hu
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Ning Zhang
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yining Liang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yating Feng
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Wanfu Ding
- Department of Information and TechnologyShenzhen People's HospitalShenzhenGuangdongChina
| | - Lixin Cheng
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yuyan Zheng
- Department of StomatologyShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| |
Collapse
|
2
|
Xie J, Zheng X, Yan J, Li Q, Jin N, Wang S, Zhao P, Li S, Ding W, Cheng L, Geng Q. Deep learning model to discriminate diverse infection types based on pairwise analysis of host gene expression. iScience 2024; 27:109908. [PMID: 38827397 PMCID: PMC11141160 DOI: 10.1016/j.isci.2024.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
Accurate detection of pathogens, particularly distinguishing between Gram-positive and Gram-negative bacteria, could improve disease treatment. Host gene expression can capture the immune system's response to infections caused by various pathogens. Here, we present a deep neural network model, bvnGPS2, which incorporates the attention mechanism based on a large-scale integrated host transcriptome dataset to precisely identify Gram-positive and Gram-negative bacterial infections as well as viral infections. We performed analysis of 4,949 blood samples across 40 cohorts from 10 countries using our previously designed omics data integration method, iPAGE, to select discriminant gene pairs and train the bvnGPS2. The performance of the model was evaluated on six independent cohorts comprising 374 samples. Overall, our deep neural network model shows robust capability to accurately identify specific infections, paving the way for precise medicine strategies in infection treatment and potentially also for identifying subtypes of other diseases.
Collapse
Affiliation(s)
- Jize Xie
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xubin Zheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
- Great Bay University, Dongguan, China
| | - Jianlong Yan
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| | - Qizhi Li
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Jin
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
- Health Data Science Center, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Shuojia Wang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| | - Pengfei Zhao
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| | - Shuai Li
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wanfu Ding
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
- Health Data Science Center, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Qingshan Geng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University), Shenzhen 518020, China
| |
Collapse
|
3
|
Gong Y, Li T, Liu Q, Wang X, Deng Z, Cheng L, Yu B, Liu H. Analysis of differential metabolites in serum metabolomics of patients with aortic dissection. BMC Cardiovasc Disord 2024; 24:226. [PMID: 38664632 PMCID: PMC11044603 DOI: 10.1186/s12872-024-03798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Pathogenesis and diagnostic biomarkers of aortic dissection (AD) can be categorized through the analysis of differential metabolites in serum. Analysis of differential metabolites in serum provides new methods for exploring the early diagnosis and treatment of aortic dissection. OBJECTIVES This study examined affected metabolic pathways to assess the diagnostic value of metabolomics biomarkers in clients with AD. METHOD The serum from 30 patients with AD and 30 healthy people was collected. The most diagnostic metabolite markers were determined using metabolomic analysis and related metabolic pathways were explored. RESULTS In total, 71 differential metabolites were identified. The altered metabolic pathways included reduced phospholipid catabolism and four different metabolites considered of most diagnostic value including N2-gamma-glutamylglutamine, PC(phocholines) (20:4(5Z,8Z,11Z,14Z)/15:0), propionyl carnitine, and taurine. These four predictive metabolic biomarkers accurately classified AD patient and healthy control (HC) samples with an area under the curve (AUC) of 0.9875. Based on the value of the four different metabolites, a formula was created to calculate the risk of aortic dissection. Risk score = (N2-gamma-glutamylglutamine × -0.684) + (PC (20:4(5Z,8Z,11Z,14Z)/15:0) × 0.427) + (propionyl carnitine × 0.523) + (taurine × -1.242). An additional metabolic pathways model related to aortic dissection was explored. CONCLUSION Metabolomics can assist in investigating the metabolic disorders associated with AD and facilitate a more in-depth search for potential metabolic biomarkers.
Collapse
Affiliation(s)
- Yun Gong
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Tangzhiming Li
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Qiyun Liu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Xiaoyu Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Zixian Deng
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Lixin Cheng
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Biao Yu
- Luohu People's Hospital (Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518020, China.
| | - Huadong Liu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| |
Collapse
|
4
|
Zhang N, Yang F, Zhao P, Jin N, Wu H, Liu T, Geng Q, Yang X, Cheng L. MrGPS: an m6A-related gene pair signature to predict the prognosis and immunological impact of glioma patients. Brief Bioinform 2023; 25:bbad498. [PMID: 38171932 PMCID: PMC10782913 DOI: 10.1093/bib/bbad498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the predominant epigenetic modification for mRNAs that regulates various cancer-related pathways. However, the prognostic significance of m6A modification regulators remains unclear in glioma. By integrating the TCGA lower-grade glioma (LGG) and glioblastoma multiforme (GBM) gene expression data, we demonstrated that both the m6A regulators and m6A-target genes were associated with glioma prognosis and activated various cancer-related pathways. Then, we paired m6A regulators and their target genes as m6A-related gene pairs (MGPs) using the iPAGE algorithm, among which 122 MGPs were significantly reversed in expression between LGG and GBM. Subsequently, we employed LASSO Cox regression analysis to construct an MGP signature (MrGPS) to evaluate glioma prognosis. MrGPS was independently validated in CGGA and GEO glioma cohorts with high accuracy in predicting overall survival. The average area under the receiver operating characteristic curve (AUC) at 1-, 3- and 5-year intervals were 0.752, 0.853 and 0.831, respectively. Combining clinical factors of age and radiotherapy, the AUC of MrGPS was much improved to around 0.90. Furthermore, CIBERSORT and TIDE algorithms revealed that MrGPS is indicative for the immune infiltration level and the response to immune checkpoint inhibitor therapy in glioma patients. In conclusion, our study demonstrated that m6A methylation is a prognostic factor for glioma and the developed prognostic model MrGPS holds potential as a valuable tool for enhancing patient management and facilitating accurate prognosis assessment in cases of glioma.
Collapse
Affiliation(s)
- Ning Zhang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Fengxia Yang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Pengfei Zhao
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Nana Jin
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Haonan Wu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Tao Liu
- International Digital Economy Academy, Shenzhen, China
| | - Qingshan Geng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Xiaojun Yang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| |
Collapse
|
5
|
Li Y, Gao J, Zheng X, Nie G, Qin J, Wang H, He T, Wheelock Å, Li CX, Cheng L, Li X. Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model. Brief Bioinform 2023; 25:bbad478. [PMID: 38221905 PMCID: PMC10788706 DOI: 10.1093/bib/bbad478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Portal vein thrombosis (PVT) is a significant issue in cirrhotic patients, necessitating early detection. This study aims to develop a data-driven predictive model for PVT diagnosis in chronic hepatitis liver cirrhosis patients. METHODS We employed data from a total of 816 chronic cirrhosis patients with PVT, divided into the Lanzhou cohort (n = 468) for training and the Jilin cohort (n = 348) for validation. This dataset encompassed a wide range of variables, including general characteristics, blood parameters, ultrasonography findings and cirrhosis grading. To build our predictive model, we employed a sophisticated stacking approach, which included Support Vector Machine (SVM), Naïve Bayes and Quadratic Discriminant Analysis (QDA). RESULTS In the Lanzhou cohort, SVM and Naïve Bayes classifiers effectively classified PVT cases from non-PVT cases, among the top features of which seven were shared: Portal Velocity (PV), Prothrombin Time (PT), Portal Vein Diameter (PVD), Prothrombin Time Activity (PTA), Activated Partial Thromboplastin Time (APTT), age and Child-Pugh score (CPS). The QDA model, trained based on the seven shared features on the Lanzhou cohort and validated on the Jilin cohort, demonstrated significant differentiation between PVT and non-PVT cases (AUROC = 0.73 and AUROC = 0.86, respectively). Subsequently, comparative analysis showed that our QDA model outperformed several other machine learning methods. CONCLUSION Our study presents a comprehensive data-driven model for PVT diagnosis in cirrhotic patients, enhancing clinical decision-making. The SVM-Naïve Bayes-QDA model offers a precise approach to managing PVT in this population.
Collapse
Affiliation(s)
- Ying Li
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Gao
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xubin Zheng
- School of Computing and Information Technology, Great Bay University, Guangdong, China
| | - Guole Nie
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Jican Qin
- School of Computing and Information Technology, Great Bay University, Guangdong, China
| | - Haiping Wang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Tao He
- Jilin Hepato-Biliary Diseases Hospital, Changchun, China
| | - Åsa Wheelock
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lixin Cheng
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Xun Li
- The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Liu X, Hong C, Jiang Y, Li W, Chen Y, Ma Y, Zhao P, Li T, Chen H, Liu X, Cheng L. Co-expression module analysis reveals high expression homogeneity for both coding and non-coding genes in sepsis. BMC Genomics 2023; 24:418. [PMID: 37488493 PMCID: PMC10364430 DOI: 10.1186/s12864-023-09460-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis is a life-threatening condition characterized by a harmful host response to infection with organ dysfunction. Annually about 20 million people are dead owing to sepsis and its mortality rates is as high as 20%. However, no studies have been carried out to investigate sepsis from the system biology point of view, as previous research predominantly focused on individual genes without considering their interactions and associations. Here, we conducted a comprehensive exploration of genome-wide expression alterations in both mRNAs and long non-coding RNAs (lncRNAs) in sepsis, using six microarray datasets. Co-expression networks were conducted to identify mRNA and lncRNA modules, respectively. Comparing these sepsis modules with normal modules, we observed a homogeneous expression pattern within the mRNA/lncRNA members, with the majority of them displaying consistent expression direction. Moreover, we identified consistent modules across diverse datasets, consisting of 20 common mRNA members and two lncRNAs, namely CHRM3-AS2 and PRKCQ-AS1, which are potential regulators of sepsis. Our results reveal that the up-regulated common mRNAs are mainly involved in the processes of neutrophil mediated immunity, while the down-regulated mRNAs and lncRNAs are significantly overrepresented in T-cell mediated immunity functions. This study sheds light on the co-expression patterns of mRNAs and lncRNAs in sepsis, providing a novel perspective and insight into the sepsis transcriptome, which may facilitate the exploration of candidate therapeutic targets and molecular biomarkers for sepsis.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Chengying Hong
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Yichun Jiang
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Wei Li
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Youlian Chen
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Yonghui Ma
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Pengfei Zhao
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Tiyuan Li
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Huaisheng Chen
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.
| | - Xueyan Liu
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.
| | - Lixin Cheng
- Department of Critical Care, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.
| |
Collapse
|
7
|
Li Q, Zheng X, Xie J, Wang R, Li M, Wong MH, Leung KS, Li S, Geng Q, Cheng L. bvnGPS: a generalizable diagnostic model for acute bacterial and viral infection using integrative host transcriptomics and pretrained neural networks. Bioinformatics 2023; 39:7066914. [PMID: 36857587 PMCID: PMC9997702 DOI: 10.1093/bioinformatics/btad109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
MOTIVATION The confusion of acute inflammation infected by virus and bacteria or noninfectious inflammation will lead to missing the best therapy occasion resulting in poor prognoses. The diagnostic model based on host gene expression has been widely used to diagnose acute infections, but the clinical usage was hindered by the capability across different samples and cohorts due to the small sample size for signature training and discovery. RESULTS Here, we construct a large-scale dataset integrating multiple host transcriptomic data and analyze it using a sophisticated strategy which removes batch effect and extracts the common information from different cohorts based on the relative expression alteration of gene pairs. We assemble 2680 samples across 16 cohorts and separately build gene pair signature (GPS) for bacterial, viral, and noninfected patients. The three GPSs are further assembled into an antibiotic decision model (bacterial-viral-noninfected GPS, bvnGPS) using multiclass neural networks, which is able to determine whether a patient is bacterial infected, viral infected, or noninfected. bvnGPS can distinguish bacterial infection with area under the receiver operating characteristic curve (AUC) of 0.953 (95% confidence interval, 0.948-0.958) and viral infection with AUC of 0.956 (0.951-0.961) in the test set (N = 760). In the validation set (N = 147), bvnGPS also shows strong performance by attaining an AUC of 0.988 (0.978-0.998) on bacterial-versus-other and an AUC of 0.994 (0.984-1.000) on viral-versus-other. bvnGPS has the potential to be used in clinical practice and the proposed procedure provides insight into data integration, feature selection and multiclass classification for host transcriptomics data. AVAILABILITY AND IMPLEMENTATION The codes implementing bvnGPS are available at https://github.com/Ritchiegit/bvnGPS. The construction of iPAGE algorithm and the training of neural network was conducted on Python 3.7 with Scikit-learn 0.24.1 and PyTorch 1.7. The visualization of the results was implemented on R 4.2, Python 3.7, and Matplotlib 3.3.4.
Collapse
Affiliation(s)
- Qizhi Li
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xubin Zheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,Great Bay University, Dongguan, China
| | - Jize Xie
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Mengyao Li
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Man-Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,Department of Applied Data Science, Hong Kong Shue Yan University, North Point, Hong Kong
| | - Shuai Li
- John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qingshan Geng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Lixin Cheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| |
Collapse
|
8
|
Cheng L, Wu H, Zheng X, Zhang N, Zhao P, Wang R, Wu Q, Liu T, Yang X, Geng Q. GPGPS: a robust prognostic gene pair signature of glioma ensembling IDH mutation and 1p/19q co-deletion. Bioinformatics 2023; 39:6986965. [PMID: 36637205 PMCID: PMC9843586 DOI: 10.1093/bioinformatics/btac850] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Indexed: 01/14/2023] Open
Abstract
MOTIVATION Many studies have shown that IDH mutation and 1p/19q co-deletion can serve as prognostic signatures of glioma. Although these genetic variations affect the expression of one or more genes, the prognostic value of gene expression related to IDH and 1p/19q status is still unclear. RESULTS We constructed an ensemble gene pair signature for the risk evaluation and survival prediction of glioma based on the prior knowledge of the IDH and 1p/19q status. First, we separately built two gene pair signatures IDH-GPS and 1p/19q-GPS and elucidated that they were useful transcriptome markers projecting from corresponding genome variations. Then, the gene pairs in these two models were assembled to develop an integrated model named Glioma Prognostic Gene Pair Signature (GPGPS), which demonstrated high area under the curves (AUCs) to predict 1-, 3- and 5-year overall survival (0.92, 0.88 and 0.80) of glioma. GPGPS was superior to the single GPSs and other existing prognostic signatures (avg AUC = 0.70, concordance index = 0.74). In conclusion, the ensemble prognostic signature with 10 gene pairs could serve as an independent predictor for risk stratification and survival prediction in glioma. This study shed light on transferring knowledge from genetic alterations to expression changes to facilitate prognostic studies. AVAILABILITY AND IMPLEMENTATION Codes are available at https://github.com/Kimxbzheng/GPGPS.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lixin Cheng
- To whom correspondence should be addressed. or
| | | | - Xubin Zheng
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ning Zhang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pengfei Zhao
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
- Department of Geriatrics, Shenzhen Clinical Research Center for Aging, Shenzhen 518020, China
| | - Ran Wang
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Qiong Wu
- Hong Kong Genome Institute, Shatin, New Territories, Hong Kong
| | - Tao Liu
- International Digital Economy Academy, Shenzhen 518020, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | | |
Collapse
|
9
|
Wei SY, Feng B, Bi M, Guo HY, Ning SW, Cui R. Construction of a ferroptosis-related signature based on seven lncRNAs for prognosis and immune landscape in clear cell renal cell carcinoma. BMC Med Genomics 2022; 15:263. [PMID: 36528763 PMCID: PMC9758795 DOI: 10.1186/s12920-022-01418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are involved in regulating tumor cell ferroptosis. However, prognostic signatures based on ferroptosis-related lncRNAs (FRLs) and their relationship to the immune microenvironment have not been comprehensively explored in clear cell renal cell carcinoma (ccRCC). METHODS In the present study, the expression profiles of ccRCC were acquired from The Cancer Genome Atlas (TCGA) database; 459 patient specimens and 69 adjacent normal tissues were randomly separated into training or validation cohorts at a 7:3 ratio. We identified 7 FRLs that constitute a prognostic signature according to the differential analysis, correlation analysis, univariate regression, and least absolute shrinkage and selection operator (LASSO) Cox analysis. To identify the independence of risk score as a prognostic factor, univariate and multivariate regression analyses were also performed. Furthermore, CIBERSORT was conducted to analyze the immune infiltration of patients in the high-risk and low-risk groups. Subsequently, the differential expression of immune checkpoint and m6A genes was analyzed in the two risk groups. RESULTS A 7-FRLs prognostic signature of ccRCC was developed to distinguish patients into high-risk and low-risk groups with significant survival differences. This signature has great prognostic performance, with the area under the curve (AUC) for 1, 3, and 5 years of 0.713, 0.700, 0.726 in the training set and 0.727, 0.667, and 0.736 in the testing set, respectively. Moreover, this signature was significantly associated with immune infiltration. Correlation analysis showed that risk score was positively correlated with regulatory T cells (Tregs), activated CD4 memory T cells, CD8 T cells and follicular helper T cells, whereas it was inversely correlated with monocytes and M2 macrophages. In addition, the expression of fourteen immune checkpoint genes and nine m6A-related genes varied significantly between the two risk groups. CONCLUSION We established a novel FRLs-based prognostic signature for patients with ccRCC, containing seven lncRNAs with precise predictive performance. The FRLs prognostic signature may play a significant role in antitumor immunity and provide a promising idea for individualized targeted therapy for patients with ccRCC.
Collapse
Affiliation(s)
- Shi-Yao Wei
- grid.412463.60000 0004 1762 6325Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China ,grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang Province People’s Republic of China
| | - Bei Feng
- grid.411491.8Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China ,grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang Province People’s Republic of China
| | - Min Bi
- grid.412463.60000 0004 1762 6325Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Hai-Ying Guo
- grid.411491.8Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| | - Shang-Wei Ning
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang Province People’s Republic of China
| | - Rui Cui
- grid.411491.8Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang Province People’s Republic of China
| |
Collapse
|
10
|
Yang Q, Li B, Wang P, Xie J, Feng Y, Liu Z, Zhu F. LargeMetabo: an out-of-the-box tool for processing and analyzing large-scale metabolomic data. Brief Bioinform 2022; 23:6768054. [PMID: 36274234 DOI: 10.1093/bib/bbac455] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 12/14/2022] Open
Abstract
Large-scale metabolomics is a powerful technique that has attracted widespread attention in biomedical studies focused on identifying biomarkers and interpreting the mechanisms of complex diseases. Despite a rapid increase in the number of large-scale metabolomic studies, the analysis of metabolomic data remains a key challenge. Specifically, diverse unwanted variations and batch effects in processing many samples have a substantial impact on identifying true biological markers, and it is a daunting challenge to annotate a plethora of peaks as metabolites in untargeted mass spectrometry-based metabolomics. Therefore, the development of an out-of-the-box tool is urgently needed to realize data integration and to accurately annotate metabolites with enhanced functions. In this study, the LargeMetabo package based on R code was developed for processing and analyzing large-scale metabolomic data. This package is unique because it is capable of (1) integrating multiple analytical experiments to effectively boost the power of statistical analysis; (2) selecting the appropriate biomarker identification method by intelligent assessment for large-scale metabolic data and (3) providing metabolite annotation and enrichment analysis based on an enhanced metabolite database. The LargeMetabo package can facilitate flexibility and reproducibility in large-scale metabolomics. The package is freely available from https://github.com/LargeMetabo/LargeMetabo.
Collapse
Affiliation(s)
- Qingxia Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing, Chongqing 401331, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jicheng Xie
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yuhao Feng
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ziqiang Liu
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Yang Y, Zhang Y, Li S, Zheng X, Wong MH, Leung KS, Cheng L. A Robust and Generalizable Immune-Related Signature for Sepsis Diagnostics. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3246-3254. [PMID: 34437068 DOI: 10.1109/tcbb.2021.3107874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-throughput sequencing can detect tens of thousands of genes in parallel, providing opportunities for improving the diagnostic accuracy of multiple diseases including sepsis, which is an aggressive inflammatory response to infection that can cause organ failure and death. Early screening of sepsis is essential in clinic, but no effective diagnostic biomarkers are available yet. Here, we present a novel method, Recurrent Logistic Regression, to identify diagnostic biomarkers for sepsis from the blood transcriptome data. A panel including five immune-related genes, LRRN3, IL2RB, FCER1A, TLR5, and S100A12, are determined as diagnostic biomarkers (LIFTS) for sepsis. LIFTS discriminates patients with sepsis from normal controls in high accuracy (AUROC = 0.9959 on average; IC = [0.9722-1.0]) on nine validation cohorts across three independent platforms, which outperforms existing markers. Our analysis determined an accurate prediction model and reproducible transcriptome biomarkers that can lay a foundation for clinical diagnostic tests and biological mechanistic studies.
Collapse
|
12
|
Li H, Zheng X, Gao J, Leung KS, Wong MH, Yang S, Liu Y, Dong M, Bai H, Ye X, Cheng L. Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer. Comput Biol Med 2022; 148:105881. [DOI: 10.1016/j.compbiomed.2022.105881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
|
13
|
Li F, Yin J, Lu M, Yang Q, Zeng Z, Zhang B, Li Z, Qiu Y, Dai H, Chen Y, Zhu F. ConSIG: consistent discovery of molecular signature from OMIC data. Brief Bioinform 2022; 23:6618243. [PMID: 35758241 DOI: 10.1093/bib/bbac253] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The discovery of proper molecular signature from OMIC data is indispensable for determining biological state, physiological condition, disease etiology, and therapeutic response. However, the identified signature is reported to be highly inconsistent, and there is little overlap among the signatures identified from different biological datasets. Such inconsistency raises doubts about the reliability of reported signatures and significantly hampers its biological and clinical applications. Herein, an online tool, ConSIG, was constructed to realize consistent discovery of gene/protein signature from any uploaded transcriptomic/proteomic data. This tool is unique in a) integrating a novel strategy capable of significantly enhancing the consistency of signature discovery, b) determining the optimal signature by collective assessment, and c) confirming the biological relevance by enriching the disease/gene ontology. With the increasingly accumulated concerns about signature consistency and biological relevance, this online tool is expected to be used as an essential complement to other existing tools for OMIC-based signature discovery. ConSIG is freely accessible to all users without login requirement at https://idrblab.org/consig/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
14
|
Wang R, Zheng X, Wang J, Wan S, Song F, Wong MH, Leung KS, Cheng L. Improving bulk RNA-seq classification by transferring gene signature from single cells in acute myeloid leukemia. Brief Bioinform 2022; 23:6523149. [PMID: 35136933 DOI: 10.1093/bib/bbac002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
The advances in single-cell RNA sequencing (scRNA-seq) technologies enable the characterization of transcriptomic profiles at the cellular level and demonstrate great promise in bulk sample analysis thereby offering opportunities to transfer gene signature from scRNA-seq to bulk data. However, the gene expression signatures identified from single cells are typically inapplicable to bulk RNA-seq data due to the profiling differences of distinct sequencing technologies. Here, we propose single-cell pair-wise gene expression (scPAGE), a novel method to develop single-cell gene pair signatures (scGPSs) that were beneficial to bulk RNA-seq classification to transfer knowledge across platforms. PAGE was adopted to tackle the challenge of profiling differences. We applied the method to acute myeloid leukemia (AML) and identified the scGPS from mouse scRNA-seq that allowed discriminating between AML and control cells. The scGPS was validated in bulk RNA-seq datasets and demonstrated better performance (average area under the curve [AUC] = 0.96) than the conventional gene expression strategies (average AUC$\le$ 0.88) suggesting its potential in disclosing the molecular mechanism of AML. The scGPS also outperformed its bulk counterpart, which highlighted the benefit of gene signature transfer. Furthermore, we confirmed the utility of scPAGE in sepsis as an example of other disease scenarios. scPAGE leveraged the advantages of single-cell profiles to enhance the analysis of bulk samples revealing great potential of transferring knowledge from single-cell to bulk transcriptome studies.
Collapse
Affiliation(s)
- Ran Wang
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xubin Zheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Jun Wang
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Fangda Song
- School of Data Science, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Man Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwong Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lixin Cheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| |
Collapse
|
15
|
Hu F, Dong X, Li W, Lv J, Lin F, Song G, Hou G, Li R. miR‑351‑5p aggravates lipopolysaccharide‑induced acute lung injury via inhibiting AMPK. Mol Med Rep 2021; 24:689. [PMID: 34328196 PMCID: PMC8365417 DOI: 10.3892/mmr.2021.12330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/22/2021] [Indexed: 11/05/2022] Open
Abstract
Inflammation and oxidative stress have indispensable roles in the development of acute lung injury (ALI). MicroRNA (miRNA/miR)‑351‑5p was initially identified as a myogenesis‑associated miRNA; however, its role in lipopolysaccharide (LPS)‑induced ALI remains unclear. The aim of the present study was to investigate the role and potential mechanisms of miR‑351‑5p in ALI. ALI was induced through a single intratracheal injection of LPS for 12 h, and miR‑351‑5p agomir, antagomir or their corresponding negative controls were injected into the tail vein before LPS stimulation. Compound C, 2',5'‑dideoxyadenosine and H89 were used to inhibit AMP‑activated protein kinase (AMPK), adenylate cyclase and protein kinase A (PKA), respectively. miR‑351‑5p levels in the lungs were significantly increased in response to LPS injection. miR‑351‑5p antagomir alleviated, while miR‑351‑5p agomir aggravated LPS‑induced oxidative stress and inflammation in the lungs. The present results also demonstrated that miR‑351‑5p antagomir attenuated LPS‑induced ALI via activating AMPK, and that the cAMP/PKA axis was required for the activation of AMPK by the miR‑351‑5p antagomir. In conclusion, the present study indicated that miR‑351‑5p aggravated LPS‑induced ALI via inhibiting AMPK, suggesting that targeting miR‑351‑5p may help to develop efficient therapeutic approaches for treating ALI.
Collapse
Affiliation(s)
- Fen Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Jiangxia District, Wuhan, Hubei 430200, P.R. China
| | - Xianfeng Dong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Jiangxia District, Wuhan, Hubei 430200, P.R. China
| | - Weixin Li
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Jiangxia District, Wuhan, Hubei 430200, P.R. China
| | - Jianfa Lv
- Department of Thoracic Surgery, Hanchuan People's Hospital, Xiaogan, Hubei 431600, P.R. China
| | - Feng Lin
- Department of Thoracic Surgery, Macheng People's Hospital, Huanggang, Hubei 438300, P.R. China
| | - Gan Song
- Department of Thoracic Surgery, Macheng People's Hospital, Huanggang, Hubei 438300, P.R. China
| | - Guoqiang Hou
- Department of Thoracic Surgery, Yangxin People's Hospital, Huangshi, Hubei 435200, P.R. China
| | - Ruiyun Li
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
16
|
Song Y, Zhu S, Zhang N, Cheng L. Blood Circulating miRNA Pairs as a Robust Signature for Early Detection of Esophageal Cancer. Front Oncol 2021; 11:723779. [PMID: 34368003 PMCID: PMC8343071 DOI: 10.3389/fonc.2021.723779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
Esophageal cancer (EC) is a common malignant tumor in the digestive system which is often diagnosed at the middle and late stages. Noninvasive diagnosis using circulating miRNA as biomarkers enables accurate detection of early-stage EC to reduce mortality. We built a diagnostic signature consisting of four miRNA pairs for the early detection of EC using individualized Pairwise Analysis of Gene Expression (iPAGE). Profiling of miRNA expression identified 496 miRNA pairs with significant relative expression change. Four miRNA pairs consistently selected from LASSO were used to construct the final diagnostic model. The performance of the signature was validated using two independent datasets, yielding both AUCs and PRCs over 0.99. Furthermore, precision, recall, and F-score were also evaluated for clinical application, when a fixed threshold is given, resulting in all the scores are larger than 0.92 in the training set, test set, and two validation sets. Our results suggested that the 4-miRNA signature is a new biomarker for the early diagnosis of patients with EC. The clinical use of this signature would have improved the detection of EC for earlier therapy and more favorite prognosis.
Collapse
Affiliation(s)
- Yang Song
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Suzhu Zhu
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Ning Zhang
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Lixin Cheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| |
Collapse
|
17
|
Wang C, Chen Y, Cheng NT, Yang ZT, Tang HX, Xu M. MicroRNA-762 Modulates Lipopolysaccharide-induced Acute Lung Injury via SIRT7. Immunol Invest 2021; 51:1407-1422. [PMID: 34251977 DOI: 10.1080/08820139.2021.1951753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Inflammation and oxidative stress contribute to the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury (ALI). MicroRNA-762 (miR-762) has been implicated in the progression of inflammation and oxidative stress; however, its role in ALI remains unclear. In this study, we aim to investigate the role and underlying mechanisms of miR-762 in LPS-induced ALI. Methods: Mice were intravenously injected with miR-762 antagomir, agomir or the negative controls for 3 consecutive days and then received a single intratracheal instillation of LPS (5 mg/kg) for 12 h to establish ALI model. Adenoviral vectors were used to knock down the endogenous SIRT7 expression. Results: An increased miR-762 expression was detected in LPS-treated lungs. miR-762 antagomir significantly reduced inflammation, oxidative stress and ALI in mice, while the mice with miR-762 agomir treatment exhibited a deleterious phenotype. Besides, we found that SIRT7 upregulation was essential for the pulmonoprotective effects of miR-762 antagomir, and that SIRT7 silence completely abolished the anti-inflammatory and anti-oxidant capacities of miR-762 antagomir. Conclusion: miR-762 is implicated in the pathogenesis of LPS-induced ALI via modulating inflammation and oxidative stress, which depends on its regulation of SIRT7 expression. It might be a valuable therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Chen
- Department of Thoracic Surgery, Xishui People's Hospital Affiliated to Hubei University of Science and Technology, Huanggang, Hubei, China
| | - Ni-Tao Cheng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Tian Yang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - He-Xiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Xu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Zheng X, Wu Q, Wu H, Leung KS, Wong MH, Liu X, Cheng L. Evaluating the Consistency of Gene Methylation in Liver Cancer Using Bisulfite Sequencing Data. Front Cell Dev Biol 2021; 9:671302. [PMID: 33996828 PMCID: PMC8116545 DOI: 10.3389/fcell.2021.671302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023] Open
Abstract
Bisulfite sequencing is considered as the gold standard approach for measuring DNA methylation, which acts as a pivotal part in regulating a variety of biological processes without changes in DNA sequences. In this study, we introduced the most prevalent methods for processing bisulfite sequencing data and evaluated the consistency of the data acquired from different measurements in liver cancer. Firstly, we introduced three commonly used bisulfite sequencing assays, i.e., reduced-representation bisulfite sequencing (RRBS), whole-genome bisulfite sequencing (WGBS), and targeted bisulfite sequencing (targeted BS). Next, we discussed the principles and compared different methods for alignment, quality assessment, methylation level scoring, and differentially methylated region identification. After that, we screened differential methylated genes in liver cancer through the three bisulfite sequencing assays and evaluated the consistency of their results. Ultimately, we compared bisulfite sequencing to 450 k beadchip and assessed the statistical similarity and functional association of differentially methylated genes (DMGs) among the four assays. Our results demonstrated that the DMGs measured by WGBS, RRBS, targeted BS and 450 k beadchip are consistently hypo-methylated in liver cancer with high functional similarity.
Collapse
Affiliation(s)
- Xubin Zheng
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiong Wu
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haonan Wu
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Man-Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Xueyan Liu
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Lixin Cheng
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| |
Collapse
|
19
|
Zheng X, Leung KS, Wong MH, Cheng L. Long non-coding RNA pairs to assist in diagnosing sepsis. BMC Genomics 2021; 22:275. [PMID: 33863291 PMCID: PMC8050902 DOI: 10.1186/s12864-021-07576-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Sepsis is the major cause of death in Intensive Care Unit (ICU) globally. Molecular detection enables rapid diagnosis that allows early intervention to minimize the death rate. Recent studies showed that long non-coding RNAs (lncRNAs) regulate proinflammatory genes and are related to the dysfunction of organs in sepsis. Identifying lncRNA signature with absolute abundance is challenging because of the technical variation and the systematic experimental bias. Results Cohorts (n = 768) containing whole blood lncRNA profiling of sepsis patients in the Gene Expression Omnibus (GEO) database were included. We proposed a novel diagnostic strategy that made use of the relative expressions of lncRNA pairs, which are reversed between sepsis patients and normal controls (eg. lncRNAi > lncRNAj in sepsis patients and lncRNAi < lncRNAj in normal controls), to identify 14 lncRNA pairs as a sepsis diagnostic signature. The signature was then applied to independent cohorts (n = 644) to evaluate its predictive performance across different ages and normalization methods. Comparing to common machine learning models and existing signatures, SepSigLnc consistently attains better performance on the validation cohorts from the same age group (AUC = 0.990 & 0.995 in two cohorts) and across different groups (AUC = 0.878 on average), as well as cohorts processed by an alternative normalization method (AUC = 0.953 on average). Functional analysis demonstrates that the lncRNA pairs in SepsigLnc are functionally similar and tend to implicate in the same biological processes including cell fate commitment and cellular response to steroid hormone stimulus. Conclusion Our study identified 14 lncRNA pairs as signature that can facilitate the diagnosis of septic patients at an intervenable point when clinical manifestations are not dramatic. Also, the computational procedure can be generalized to a standard procedure for discovering diagnostic molecule signatures. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07576-4.
Collapse
Affiliation(s)
- Xubin Zheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man-Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lixin Cheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.
| |
Collapse
|
20
|
Wang L, Chu CY, McCall MN, Slaunwhite C, Holden-Wiltse J, Corbett A, Falsey AR, Topham DJ, Caserta MT, Mariani TJ, Walsh EE, Qiu X. Airway gene-expression classifiers for respiratory syncytial virus (RSV) disease severity in infants. BMC Med Genomics 2021; 14:57. [PMID: 33632195 PMCID: PMC7908785 DOI: 10.1186/s12920-021-00913-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A substantial number of infants infected with RSV develop severe symptoms requiring hospitalization. We currently lack accurate biomarkers that are associated with severe illness. METHOD We defined airway gene expression profiles based on RNA sequencing from nasal brush samples from 106 full-tem previously healthy RSV infected subjects during acute infection (day 1-10 of illness) and convalescence stage (day 28 of illness). All subjects were assigned a clinical illness severity score (GRSS). Using AIC-based model selection, we built a sparse linear correlate of GRSS based on 41 genes (NGSS1). We also built an alternate model based upon 13 genes associated with severe infection acutely but displaying stable expression over time (NGSS2). RESULTS NGSS1 is strongly correlated with the disease severity, demonstrating a naïve correlation (ρ) of ρ = 0.935 and cross-validated correlation of 0.813. As a binary classifier (mild versus severe), NGSS1 correctly classifies disease severity in 89.6% of the subjects following cross-validation. NGSS2 has slightly less, but comparable, accuracy with a cross-validated correlation of 0.741 and classification accuracy of 84.0%. CONCLUSION Airway gene expression patterns, obtained following a minimally-invasive procedure, have potential utility for development of clinically useful biomarkers that correlate with disease severity in primary RSV infection.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Chin-Yi Chu
- Department of Pediatrics, University of Rochester School Medicine, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | | | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Anthony Corbett
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA
| | - Ann R Falsey
- Department of Medicine, University of Rochester School Medicine, Rochester, NY, USA
- Department of Medicine, Rochester General Hospital, Rochester, NY, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester School Medicine, Rochester, NY, USA
| | - Mary T Caserta
- Department of Pediatrics, University of Rochester School Medicine, Rochester, NY, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester School Medicine, Rochester, NY, USA.
| | - Edward E Walsh
- Department of Medicine, University of Rochester School Medicine, Rochester, NY, USA.
- Department of Medicine, Rochester General Hospital, Rochester, NY, USA.
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester School Medicine, Rochester, NY, USA.
| |
Collapse
|
21
|
Cheng L, Zeng Y, Hu S, Zhang N, Cheung KCP, Li B, Leung KS, Jiang L. Systematic prediction of autophagy-related proteins using Arabidopsis thaliana interactome data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:708-720. [PMID: 33128829 DOI: 10.1111/tpj.15065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a self-degradative process that is crucial for maintaining cellular homeostasis by removing damaged cytoplasmic components and recycling nutrients. Such an evolutionary conserved proteolysis process is regulated by the autophagy-related (Atg) proteins. The incomplete understanding of plant autophagy proteome and the importance of a proteome-wide understanding of the autophagy pathway prompted us to predict Atg proteins and regulators in Arabidopsis. Here, we developed a systems-level algorithm to identify autophagy-related modules (ARMs) based on protein subcellular localization, protein-protein interactions, and known Atg proteins. This generates a detailed landscape of the autophagic modules in Arabidopsis. We found that the newly identified genes in each ARM tend to be upregulated and coexpressed during the senescence stage of Arabidopsis. We also demonstrated that the Golgi apparatus ARM, ARM13, functions in the autophagy process by module clustering and functional analysis. To verify the in silico analysis, the Atg candidates in ARM13 that are functionally similar to the core Atg proteins were selected for experimental validation. Interestingly, two of the previously uncharacterized proteins identified from the ARM analysis, AGD1 and Sec14, exhibited bona fide association with the autophagy protein complex in plant cells, which provides evidence for a cross-talk between intracellular pathways and autophagy. Thus, the computational framework has facilitated the identification and characterization of plant-specific autophagy-related proteins and novel autophagy proteins/regulators in higher eukaryotes.
Collapse
Affiliation(s)
- Lixin Cheng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuai Hu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ning Zhang
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Kenneth C P Cheung
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
22
|
Nan CC, Zhang N, Cheung KCP, Zhang HD, Li W, Hong CY, Chen HS, Liu XY, Li N, Cheng L. Knockdown of lncRNA MALAT1 Alleviates LPS-Induced Acute Lung Injury via Inhibiting Apoptosis Through the miR-194-5p/FOXP2 Axis. Front Cell Dev Biol 2020; 8:586869. [PMID: 33117815 PMCID: PMC7575725 DOI: 10.3389/fcell.2020.586869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose We aimed to identify and verify the key genes and lncRNAs associated with acute lung injury (ALI) and explore the pathogenesis of ALI. Research showed that lower expression of the lncRNA metastasis-associated lung carcinoma transcript 1 (MALAT1) alleviates lung injury induced by lipopolysaccharide (LPS). Nevertheless, the mechanisms of MALAT1 on cellular apoptosis remain unclear in LPS-stimulated ALI. We investigated the mechanism of MALAT1 in modulating the apoptosis of LPS-induced human pulmonary alveolar epithelial cells (HPAEpiC). Methods Differentially expressed lncRNAs between the ALI samples and normal controls were identified using gene expression profiles. ALI-related genes were determined by the overlap of differentially expressed genes (DEGs), genes correlated with lung, genes correlated with key lncRNAs, and genes sharing significantly high proportions of microRNA targets with MALAT1. Quantitative real-time PCR (qPCR) was applied to detect the expression of MALAT1, microRNA (miR)-194-5p, and forkhead box P2 (FOXP2) mRNA in 1 μg/ml LPS-treated HPAEpiC. MALAT1 knockdown vectors, miR-194-5p inhibitors, and ov-FOXP2 were constructed and used to transfect HPAEpiC. The influence of MALAT1 knockdown on LPS-induced HPAEpiC proliferation and apoptosis via the miR-194-5p/FOXP2 axis was determined using Cell counting kit-8 (CCK-8) assay, flow cytometry, and Western blotting analysis, respectively. The interactions between MALAT1, miR-194-5p, and FOXP2 were verified using dual-luciferase reporter gene assay. Results We identified a key lncRNA (MALAT1) and three key genes (EYA1, WNT5A, and FOXP2) that are closely correlated with the pathogenesis of ALI. LPS stimulation promoted MALAT1 expression and apoptosis and also inhibited HPAEpiC viability. MALAT1 knockdown significantly improved viability and suppressed the apoptosis of LPS-stimulated HPAEpiC. Moreover, MALAT1 directly targeted miR-194-5p, a downregulated miRNA in LPS-stimulated HPAEpiC, when FOXP2 was overexpressed. MALAT1 knockdown led to the overexpression of miR-194-5p and restrained FOXP2 expression. Furthermore, inhibition of miR-194-5p exerted a rescue effect on MALAT1 knockdown of FOXP2, whereas the overexpression of FOXP2 reversed the effect of MALAT1 knockdown on viability and apoptosis of LPS-stimulated HPAEpiC. Conclusion Our results demonstrated that MALAT1 knockdown alleviated HPAEpiC apoptosis by competitively binding to miR-194-5p and then elevating the inhibitory effect on its target FOXP2. These data provide a novel insight into the role of MALAT1 in the progression of ALI and potential diagnostic and therapeutic strategies for ALI patients.
Collapse
Affiliation(s)
- Chuan-Chuan Nan
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ning Zhang
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Stomatology Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Kenneth C P Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Hua-Dong Zhang
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wei Li
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Cheng-Ying Hong
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Huai-Sheng Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xue-Yan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Nan Li
- Department of Stomatology Center, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lixin Cheng
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|