1
|
Cao J, Feng B, Xv Y, Yu J, Cao S, Ma C. Continued attention: The role of exosomal long non-coding RNAs in tumors over the past three years. Int Immunopharmacol 2025; 144:113666. [PMID: 39577219 DOI: 10.1016/j.intimp.2024.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
This review summarizes the research on exosomal lncRNAs in tumors over the past three years. It highlights the significant roles of exosomal lncRNAs in modulating various cellular processes within the tumor microenvironment. Exosomal lncRNAs have been shown to influence the behavior of tumor cells, promoting proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, glycolysis, and contributing to tumor growth and metabolism. Moreover, exosomal lncRNAs have been found to interact with immune cells, such as modulating the functions of macrophages and influencing the overall immune response against tumors. Fibroblasts within the tumor microenvironment are also affected by exosomal lncRNAs, which can alter the extracellular matrix (ECM) and stromal composition. Notably, these exosomal lncRNAs hold promise in the diagnosis and treatment of tumors, offering potential biomarkers and therapeutic targets for improved clinical outcomes.
Collapse
Affiliation(s)
- Jiarui Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Bo Feng
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Yanchao Xv
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Jiangfan Yu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Shasha Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| |
Collapse
|
2
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
3
|
Tang Y, Shi T, Lin S, Fang T. Current status of research on the mechanisms of tumor-associated macrophages in esophageal cancer progression. Front Oncol 2024; 14:1450603. [PMID: 39678502 PMCID: PMC11638059 DOI: 10.3389/fonc.2024.1450603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 12/17/2024] Open
Abstract
Esophageal carcinoma (EC) is one of the most common tumors in China and seriously affects patient survival and quality of life. In recent years, increasing studies have shown that the tumor microenvironment is crucial in promoting tumor progression and metastasis. Tumor-associated macrophages (TAM) are key components of the tumor immune microenvironment and promote both tumor growth and antitumor immunity. Much evidence suggests that TAMs are closely associated with esophageal tumors. However, understanding of the clinical value and mechanism of action of TAM in esophageal cancer remains limited. Therefore, we reviewed the status of research on the role and mechanism of action of TAM in EC progression and summarized its potential clinical application value to provide a theoretical basis for the clinical treatment of EC.
Collapse
Affiliation(s)
- Yuchao Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tingting Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
4
|
Bian J, Shao R, Li J, Zhu J, Shao A, Liu C, Lu LV, Pan H, Shi Y, Fang N. Mechanism research of non-coding RNA in immune checkpoint inhibitors therapy. Cancer Sci 2024; 115:3520-3531. [PMID: 39136293 PMCID: PMC11531961 DOI: 10.1111/cas.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 11/05/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies for tumors of different systems have attained significant achievements and have changed the current situation of tumor treatment due to their therapeutic characteristics of high specificity and low side effects. The immune checkpoint Programmed death 1/Programmed cell death-Ligand 1 (PD-1/PD-L1) axis exerts a vital role in the immune escape of tumor cells. As a result, it has become a key target for tumor immunotherapy. Therefore, to perfect research into potential regulatory factors for the PD-1/PD-L1 axis, in order to understand and illustrate tumor ICI therapy mechanisms, is a significant goal. Moreover, ncRNA has been verified to regulate the PD-1/PD-L1 axis in the tumor immune microenvironment to regulate tumor genesis and development. ncRNAs can improve or decrease the efficacy of ICI therapy by modulating PD-L1 expression. This review aimed to investigate the mechanisms of action of ncRNA in regulating the PD-1/PD-L1 axis in ICI therapy, to provide more efficient immunotherapy for tumors of different systems.
Collapse
Affiliation(s)
- Jie Bian
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Rui Shao
- Department of PathologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Juan Li
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Jing‐Feng Zhu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Ai‐Zhong Shao
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Chao Liu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - L. V. Lu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Hui‐Wen Pan
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Yi‐Jun Shi
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Na Fang
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| |
Collapse
|
5
|
Hang Y, Huang J, Ding M, Shen Y, Zhou Y, Cai W. Extracellular vesicles reshape the tumor microenvironment to improve cancer immunotherapy: Current knowledge and future prospects. Int Immunopharmacol 2024; 140:112820. [PMID: 39096874 DOI: 10.1016/j.intimp.2024.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor immunotherapy has revolutionized cancer treatment, but limitations remain, including low response rates and immune complications. Extracellular vesicles (EVs) are emerging as a new class of therapeutic agents for various diseases. Recent research shows that changes in the amount and composition of EVs can reshape the tumor microenvironment (TME), potentially improving the effectiveness of immunotherapy. This exciting discovery has sparked clinical interest in using EVs to enhance the immune system's response to cancer. In this Review, we delve into the world of EVs, exploring their origins, how they're generated, and their complex interactions within the TME. We also discuss the crucial role EVs play in reshaping the TME during tumor development. Specifically, we examine how their cargo, including molecules like PD-1 and non-coding RNA, influences the behavior of key immune cells within the TME. Additionally, we explore the current applications of EVs in various cancer therapies, the latest advancements in engineering EVs for improved immunotherapy, and the challenges faced in translating this research into clinical practice. By gaining a deeper understanding of how EVs impact the TME, we can potentially uncover new therapeutic vulnerabilities and significantly enhance the effectiveness of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Yu Hang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JingYi Huang
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingming Ding
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhua Shen
- Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YaoZhong Zhou
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China.
| | - Wan Cai
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Wang J, Si J, Zhao Z, Gao C, Liu T, Jia Y, Liu L. SNHG6 facilitates the epithelial-mesenchymal transition and metastatic potential of esophageal squamous carcinoma through miR-26b-5p/ ITGB1 axis. Sci Rep 2024; 14:25005. [PMID: 39443675 PMCID: PMC11499871 DOI: 10.1038/s41598-024-76521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), such as SNHG6, have been identified as crucial regulators in the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). Although the role of SNHG6 in ESCC is not completely understood, our findings demonstrated that SNHG6 expression is upregulated in ESCC tissues compared to adjacent normal tissues. Furthermore, elevated levels of SNHG6 are significantly correlated with higher TNM stage and poorer clinical prognosis in ESCC patients. Functionally, both in vivo and in vitro experiments have shown that knocking down SNHG6 inhibits proliferation, invasion, and metastasis. Luciferase reporter assays and Ago2-RIP assay confirm that SNHG6 functions as a competing endogenous RNA (ceRNA) by sponging miR-26b-5p to modulate ITGB1 expression in ESCC. Given that ITGB1 is instrumental in EMT and metastasis, we assessed the expression of EMT-related proteins. The findings suggest that miR-26b-5p and reduced ITGB1 expression can reverse the EMT induced by lncRNA SHNG6, as demonstrated through rescue analysis. Overall, this study aims to elucidate the molecular mechanisms through which SNHG6 promotes EMT and metastasis in ESCC, providing a novel theoretical foundation for understanding ESCC progression and identifying new targets for improving outcomes in metastatic ESCC.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Jiaxin Si
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Ziyuan Zhao
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Changlin Gao
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Tianxu Liu
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Yunlong Jia
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China.
- China International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
7
|
Uttam V, Kapoor HS, Rana MK, Yadav R, Prakash H, Jain M, Tuli HS, Jain A. Immune-Related Long Non-Coding RNA Signature Determines Prognosis and Immunotherapeutic Coherence in Esophageal Cancer. Cancer Inform 2024; 23:11769351241276757. [PMID: 39282627 PMCID: PMC11401149 DOI: 10.1177/11769351241276757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives Aim of this study was to explore the immune-related lncRNAs having prognostic role and establishing risk score model for better prognosis and immunotherapeutic coherence for esophageal cancer (EC) patients. Methods To determine the role of immune-related lncRNAs in EC, we analyzed the RNA-seq expression data of 162 EC patients and 11 non-cancerous individuals and their clinically relevant information from the cancer genome atlas (TCGA) database. Bioinformatic and statistical analysis such as Differential expression analysis, co-expression analysis, Kaplan Meier survival analysis, Cox proportional hazards model, ROC analysis of risk model was employed. Results Utilizing a cutoff criterion (log2FC > 1 + log2FC < -1 and FDR < 0.01), we identified 3737 RNAs were significantly differentially expressed in EC patients. Among these, 2222 genes were classified as significantly differentially expressed mRNAs (demRNAs), and 966 were significantly differentially expressed lncRNAs (delncRNA). Through Pearson correlation analysis between differentially expressed lncRNAs and immune related-mRNAs, we identified 12 immune-related lncRNAs as prognostic signatures for EC. Notably, through Kaplan-Meier analysis on these lncRNAs, we found the low-risk group patients showed significantly improved survival compared to the high-risk group. Moreover, this prognostic signature has consistent performance across training, testing and entire validation cohort sets. Using ESTIMATE and CIBERSORT algorithm we further observed significant enriched infiltration of naive B cells, regulatory T cells resting CD4+ memory T cells, and, plasma cells in the low-risk group compared to high-risk EC patients group. On the contrary, tumor-associated M2 macrophages were highly enriched in high-risk patients. Additionally, we confirmed immune-related biological functions and pathways such as inflammatory, cytokines, chemokines response and natural killer cell-mediated cytotoxicity, toll-like receptor signaling pathways, JAK-STAT signaling pathways, chemokine signaling pathways significantly associated with identified IRlncRNA signature and their co-expressed immune genes. Furthermore, we assessed the predictive potential of the lncRNA signature in immune checkpoint inhibitors; we found that programed cell death ligand 1 (PD-L1; P-value = .048), programed cell death ligand 2 (PD-L2; P-value = .002), and T cell immunoglobulin and mucin-domain containing-3 (TIM-3; P-value = .045) expression levels were significantly higher in low-risk patients compared to high-risk patients. Conclusion We believe this study will contribute to better prognosis prediction and targeted treatment of EC in the future.
Collapse
Affiliation(s)
- Vivek Uttam
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| | | | - Manjit Kaur Rana
- Department of Pathology/Lab Medicine, AIIMS, Bathinda, Punjab, India
| | - Ritu Yadav
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| | | | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Ghudda, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| |
Collapse
|
8
|
Song Y, Liu P, Qi X, Shi XL, Wang YS, Guo D, Luo H, Du ZJ, Wang MY. Helicobacter pylori infection delays neutrophil apoptosis and exacerbates inflammatory response. Future Microbiol 2024; 19:1145-1156. [PMID: 39056165 PMCID: PMC11529197 DOI: 10.1080/17460913.2024.2360798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/24/2024] [Indexed: 07/28/2024] Open
Abstract
Aim: Understanding molecular mechanisms of Helicobacter pylori (H. pylori)-induced inflammation is important for developing new therapeutic strategies for gastrointestinal diseases.Materials & methods: We designed an H. pylori-neutrophil infection model and explored the effects of H. pylori infection on neutrophils.Results: H. pylori infected neutrophils showed a low level of apoptosis. H. pylori stimulation activated the NACHT/LRR/PYD domain-containing protein 3 (NLRP3)-gasdermin-D (GSDMD) pathway for interleukin (IL)-1β secretion. However, IL-1β secretion was not completely dependent on GSDMD, as inhibition of autophagy significantly reduced IL-1β release, and autophagy-related molecules were significantly upregulated in H. pylori-infected neutrophils.Conclusion: Therefore, H. pylori infection inhibits neutrophils apoptosis and induces IL-1β secretion through autophagy. These findings may be utilized to formulate therapeutic strategies against H. pylori mediated chronic gastritis.
Collapse
Affiliation(s)
- Yu Song
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Xi Qi
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Xiao-Lin Shi
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Yu-Shan Wang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Dong Guo
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hong Luo
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ming-Yi Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
9
|
Yuan L, Ji H, Cao Y, Yi H, Leng Q, Zhou J, Mei X. Exosomes in esophageal cancer: Promising nanocarriers in cancer progression, diagnosis, prognosis, and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1989. [PMID: 39217461 DOI: 10.1002/wnan.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Esophageal cancer (EC) is one of the most fatal cancers all over the world. Sensitive detection modalities for early-stage EC and efficient treatment methods are urgently needed for the improvement of the prognosis of EC. Exosomes are small vesicles for intercellular communication, mediating many biological responses including cancer progression, which are not only promising biomarkers for diagnosis and prognosis but also therapeutic tools for EC. This review provides an overview of the relationships between exosomes and EC progression, as well as the application of exosomes in the diagnosis, prognosis, and treatment of EC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ligong Yuan
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Cao
- Peking University Health Science Center, Peking University, Beijing, China
| | - Hang Yi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Xinyu Mei
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Sun S, Shao Y, Gu W. The roles of exosomes in esophageal cancer. Discov Oncol 2024; 15:371. [PMID: 39190048 DOI: 10.1007/s12672-024-01259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
The incidence and mortality rate of esophageal cancer (EC) are higher worldwide. Exosomes are nanoscale vesicles derived from various types of cells, exhibiting a stable presence in bodily fluids, and contain a plethora of bioactive components including proteins, DNA, and RNA. Exosomes can mediate cell-to-cell communication and signaling. Numerous studies conducted both domestically and internationally have indicated the significant involvement of exosomes in tumor development and their potential as novel diagnostic and prognostic biomarkers for liquid biopsy. This review seeks to consolidate the role of exosomes and bioactive substances in the progression of EC and elaborate on the opportunities and challenges associated with the clinical application of exosomes in EC.
Collapse
Affiliation(s)
- Shihong Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
11
|
Wang B, Peng X, Li J, Wang Y, Chen L, Wu M, Zhang Y, Wang W, Feng D, Tang S, Zhang L, Zhan X. Personalized mRNA vaccine combined with PD-1 inhibitor therapy in a patient with advanced esophageal squamous cell carcinoma. Am J Cancer Res 2024; 14:3896-3904. [PMID: 39267685 PMCID: PMC11387870 DOI: 10.62347/nvfb3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Therapeutic cancer vaccines are valuable tools for educating the immune system to fight tumors precisely. Cancer cells are characterized with genetic instability and abundant somatic mutations, leading to the production of tumor specific antigens (TSA) called neoantigens. The main goal of neoantigen-based cancer vaccines is to activate the immune system and elicit effective tumor-specific T-cell responses. There have been no reports of advanced esophageal squamous cell carcinoma (ESCC) cases achieving partial remission after personalized mRNA (messenger RNA) vaccine treatment. As personalized neoantigen-based immunotherapies are emerging, here we report a 67-year-old male patient diagnosed with ESCC and multiple enlarged mediastinal lymph nodes, where mRNA vaccines were used for the first time. Tissue samples from the recurrence focus in the esophagus were subjected to whole transcriptome sequencing. The neoantigens were identified by bioinformatics analyses. The top 20 neoantigens were selected to compose the polyneoantigen vaccine, which were administered at 1 mg every 3 weeks for 4 cycles in combination with a PD-1 (programmed death-1) inhibitor. The patient was boosted with a single dose of the PD-1 inhibitor 8 weeks after the 4th cycle. In addition, immune responses were evaluated before and after the 4 cycles of vaccine therapy, and the lesions were evaluated by imaging examination. Our results revealed that neoantigen-based vaccines significantly activated the tumour-specific immune response. TCR (T cell receptor) V-J pairing analysis showed an increase in the abundance of oligoclonal TCRs, indicating improved homogeneity. No grade 3 or higher drug-related adverse events were observed, except for grade 4 thrombocytopenia caused by PD-1 inhibitor treatment. The patient achieved a partial response (PR), with a progression-free survival (PFS) time of 457 days, the OS (overall survival) time of 457 days, and DOR (duration of response) of 377 days. Our report suggests that combining the personalized mRNA vaccine therapy with PD-1 blockade therapy may be an effective treatment strategy for patient with advanced esophageal cancer. However, further clinical trials are necessary to confirm the efficacy and safety of personalized neoantigen-based immunotherapies in the treatment of advanced ESCC. This trial is registered with ClinicalTrials.gov, NCT03468244 on March 16, 2018, and is now complete.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Jie Li
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Yiran Wang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Longpei Chen
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Wei Wang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Shuhui Tang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Linli Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Naval Medical University No. 168 Changhai Road, Shanghai 200433, P. R. China
| |
Collapse
|
12
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
13
|
Jang S, Lee H, Kim HW, Baek M, Jung S, Kim SJ. Human disease-related long noncoding RNAs: Impact of ginsenosides. J Ginseng Res 2024; 48:347-353. [PMID: 39036728 PMCID: PMC11258377 DOI: 10.1016/j.jgr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 07/23/2024] Open
Abstract
Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA ( lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.
Collapse
Affiliation(s)
| | | | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
14
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH, Lv J. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:2638-2656. [PMID: 38855150 PMCID: PMC11154680 DOI: 10.3748/wjg.v30.i20.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Meng-Yao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Xi Qi
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
15
|
Zhong P, Bai L, Hong M, Ouyang J, Wang R, Zhang X, Chen P. A Comprehensive Review on Circulating cfRNA in Plasma: Implications for Disease Diagnosis and Beyond. Diagnostics (Basel) 2024; 14:1045. [PMID: 38786343 PMCID: PMC11119755 DOI: 10.3390/diagnostics14101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Circulating cfRNA in plasma has emerged as a fascinating area of research with potential applications in disease diagnosis, monitoring, and personalized medicine. Circulating RNA sequencing technology allows for the non-invasive collection of important information about the expression of target genes, eliminating the need for biopsies. This comprehensive review aims to provide a detailed overview of the current knowledge and advancements in the study of plasma cfRNA, focusing on its diverse landscape and biological functions, detection methods, its diagnostic and prognostic potential in various diseases, challenges, and future perspectives.
Collapse
Affiliation(s)
- Pengqiang Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengzhi Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Ouyang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ruizhi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoli Zhang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
Sha G, Zhang W, Jiang Z, Zhao Q, Wang D, Tang D. Exosomal non-coding RNA: A new frontier in diagnosing and treating pancreatic cancer: A review. Int J Biol Macromol 2024; 263:130149. [PMID: 38365161 DOI: 10.1016/j.ijbiomac.2024.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Pancreatic cancer is the most fatal malignancy worldwide. Once diagnosed, most patients are already at an advanced stage because of their highly heterogeneous, drug-resistant, and metastatic nature and the lack of effective diagnostic markers. Recently, the study of proliferation, metastasis, and drug resistance mechanisms in pancreatic cancer and the search for useful diagnostic markers have posed significant challenges to the scientific community. Exosomes carry various biomolecules (DNA, non-coding RNAs (ncRNAs), proteins, and lipids) that mediate communication between tumors and other cells. ncRNAs can be transported through exosomes to numerous relevant receptor cells and regulate local epithelial-mesenchymal transition (EMT) in tumor tissue, proliferation, drug resistance, and the establishment of pre-metastatic ecological niches in distant organs. In summary, exosomal ncRNAs promote tumor cell proliferation, invasion, and metastasis through multiple EMT, immunosuppression, angiogenesis, and extracellular matrix remodeling pathways. Moreover, we discuss the significant therapeutic significance of exosomal ncRNAs as PC biomarkers.
Collapse
Affiliation(s)
- Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Qianqian Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China.
| | - Daorong Wang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China; Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225000, China.
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225000, China; Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225000, China.
| |
Collapse
|
17
|
Yue Y, Tao J, An D, Shi L. A prognostic exosome-related long non-coding RNAs risk model related to the immune microenvironment and therapeutic responses for patients with liver hepatocellular carcinoma. Heliyon 2024; 10:e24462. [PMID: 38293480 PMCID: PMC10826312 DOI: 10.1016/j.heliyon.2024.e24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the third largest cause of cancer mortality. Exosomes are vital regulators in the development of cancer. However, the mechanisms regarding the association of exosome-related long non-coding RNAs (lncRNAs) in LIHC are not clear. Methods LIHC RNA sequences and exosome-associated genes were collected according to The Cancer Genome Atlas (TCGA), Hepatocellular Carcinoma Cell DataBase (HCCDB) and ExoBCD databases, and exosome-related lncRNAs with prognostic differential expression were screened as candidate lncRNAs using Spearman's method and univariate Cox regression analysis. Candidate lncRNAs were then used to construct a prognostic model and mRNA-lncRNA co-expression network. Differentially expressed genes (DEGs) in low- and high-risk groups were identified and enrichment analysis was performed for up- and down-regulated DEGs, respectively. The expression of immune checkpoint-related genes, immune escape potential and microsatellite instability among different risk groups were further analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transwell assay were applied for detecting gene expression levels and invasion and migration ability. Results Based on 17 prognostical exosome-associated lncRNAs, four hub lncRNAs (BACE1_AS, DSTNP2, PLGLA, and SNHG3) were selected for constructing a prognostic model, which was demonstrated to be an independent prognostic variable for LIHC. High risk score was indicative of poorer overall survival, lower anti-tumor immune cells, higher genomic instability, higher immune escape potential, and less benefit for immunotherapy. The qRT-PCR test verified the expression level of the lncRNAs in LIHC cells, and the inhibitory effect of BACE1_AS on immune checkpoint genes levels. BACE1_AS silence also depressed the ability of migration and invasion of LIHC cells. Conclusion The Risk model constructed by exosome-associated lncRNAs could well predict immunotherapy response and prognostic outcomes for LIHC patients. We comprehensively reveal the clinical features of prognostical exosome-related lncRNAs and their potential ability to predict immunotherapeutic response of patients with LIHC and their prognosis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| |
Collapse
|
18
|
Li W, Xu T, Jin H, Li M, Jia Q. Emerging role of cancer-associated fibroblasts in esophageal squamous cell carcinoma. Pathol Res Pract 2024; 253:155002. [PMID: 38056131 DOI: 10.1016/j.prp.2023.155002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Esophageal carcinoma is the sixth leading cause of cancer death globally and the majority of global cases are esophageal squamous cell carcinoma (ESCC). Difficulty in diagnosis exists as more than 70% of ESCC patients are diagnosed at the intermediate or advanced stage. Cancer-associated fibroblasts (CAFs) have been considered one of the crucial components in the process of tumor growth, promoting communications between cancer cells and the tumor microenvironment (TME). CAFs grow alongside malignancies dynamically and interact with ESCC cells to promote their progression, proliferation, invasion, tumor escape, chemo- and radio-resistance, etc. It is believed that CAFs qualify as a promising direction for treatment. Analyzing CAFs' subtypes and functions will elucidate the involvement of CAFs in ESCC and aid in therapeutics. This review summarizes current information on CAFs in ESCC and focuses on the latest interaction between CAFs and ESCC cancer cell discoveries. The origin of CAFs and their communication with ESCC cells and TME are also demonstrated. On the foundation of a thorough analysis, we highlight the clinical prospects and CAFs-related therapies in ESCC in the future.
Collapse
Affiliation(s)
- Wenqing Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
19
|
Yue M, Hu S, Sun H, Tuo B, Jia B, Chen C, Wang W, Liu J, Liu Y, Sun Z, Hu J. Extracellular vesicles remodel tumor environment for cancer immunotherapy. Mol Cancer 2023; 22:203. [PMID: 38087360 PMCID: PMC10717809 DOI: 10.1186/s12943-023-01898-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Tumor immunotherapy has transformed neoplastic disease management, yet low response rates and immune complications persist as major challenges. Extracellular vesicles including exosomes have emerged as therapeutic agents actively involved in a diverse range of pathological conditions. Mounting evidence suggests that alterations in the quantity and composition of extracellular vesicles (EVs) contribute to the remodeling of the immune-suppressive tumor microenvironment (TME), thereby influencing the efficacy of immunotherapy. This revelation has sparked clinical interest in utilizing EVs for immune sensitization. In this perspective article, we present a comprehensive overview of the origins, generation, and interplay among various components of EVs within the TME. Furthermore, we discuss the pivotal role of EVs in reshaping the TME during tumorigenesis and their specific cargo, such as PD-1 and non-coding RNA, which influence the phenotypes of critical immune cells within the TME. Additionally, we summarize the applications of EVs in different anti-tumor therapies, the latest advancements in engineering EVs for cancer immunotherapy, and the challenges encountered in clinical translation. In light of these findings, we advocate for a broader understanding of the impact of EVs on the TME, as this will unveil overlooked therapeutic vulnerabilities and potentially enhance the efficacy of existing cancer immunotherapies.
Collapse
Affiliation(s)
- Ming Yue
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|