1
|
Zhang L, Yang H, Zhou C, Li Y, Long Z, Li Q, Zhang J, Qin X. Artificial intelligence-driven multiomics predictive model for abdominal aortic aneurysm subtypes to identify heterogeneous immune cell infiltration and predict disease progression. Int Immunopharmacol 2024; 138:112608. [PMID: 38981221 DOI: 10.1016/j.intimp.2024.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) poses a significant health risk and is influenced by various compositional features. This study aimed to develop an artificial intelligence-driven multiomics predictive model for AAA subtypes to identify heterogeneous immune cell infiltration and predict disease progression. Additionally, we investigated neutrophil heterogeneity in patients with different AAA subtypes to elucidate the relationship between the immune microenvironment and AAA pathogenesis. METHODS This study enrolled 517 patients with AAA, who were clustered using k-means algorithm to identify AAA subtypes and stratify the risk. We utilized residual convolutional neural network 200 to annotate and extract contrast-enhanced computed tomography angiography images of AAA. A precise predictive model for AAA subtypes was established using clinical, imaging, and immunological data. We performed a comparative analysis of neutrophil levels in the different subgroups and immune cell infiltration analysis to explore the associations between neutrophil levels and AAA. Quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay were performed to elucidate the interplay between CXCL1, neutrophil activation, and the nuclear factor (NF)-κB pathway in AAA pathogenesis. Furthermore, the effect of CXCL1 silencing with small interfering RNA was investigated. RESULTS Two distinct AAA subtypes were identified, one clinically more severe and more likely to require surgical intervention. The CNN effectively detected AAA-associated lesion regions on computed tomography angiography, and the predictive model demonstrated excellent ability to discriminate between patients with the two identified AAA subtypes (area under the curve, 0.927). Neutrophil activation, AAA pathology, CXCL1 expression, and the NF-κB pathway were significantly correlated. CXCL1, NF-κB, IL-1β, and IL-8 were upregulated in AAA. CXCL1 silencing downregulated NF-κB, interleukin-1β, and interleukin-8. CONCLUSION The predictive model for AAA subtypes demonstrated accurate and reliable risk stratification and clinical management. CXCL1 overexpression activated neutrophils through the NF-κB pathway, contributing to AAA development. This pathway may, therefore, be a therapeutic target in AAA.
Collapse
Affiliation(s)
- Lin Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Han Yang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yao Li
- Liuzhou People's Hospital, Liuzhou, Guangxi, PR China
| | - Zhen Long
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Que Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jiangfeng Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xiao Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
2
|
Wang Y, Xie K, Wang J, Chen F, Li X, Zhang L. Mendelian randomization demonstrates a causal link between peripheral circulating acylcarnitines and intracranial aneurysms. Neurotherapeutics 2024; 21:e00428. [PMID: 39098392 DOI: 10.1016/j.neurot.2024.e00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Intracranial aneurysm (IA) is the most prevalent type of cerebral vascular disease causing life-threatening subarachnoid hemorrhages (SAH). A long-term vascular structure remodeling is considered as the main pathophysiological feature of IAs. However, the causal factors triggering the pathophysiological process are not clear. Recently, the abnormalities of peripheral circulating proteins and metabolites have been found in IAs patients and associated with the ruptures. We comprehensively investigated the potential causal relationship between blood metabolites and proteins and IAs using the mendelian randomization (MR) analysis. We applied two-sample MR to explore the potential causal association between peripheral circulating metabolites (191 blood metabolites) and proteins (1398 proteins) and IAs using data from the FinnGen study and the GWAS datasets published by Bakker et al. We identified palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine as causal contributors of IAs and ruptures. Further two-step mediation MR analysis suggested that hypertension as one of the contributors of IAs and ruptures mediated the causal relationship between palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine and IAs. Together, our study demonstrates that blood metabolic palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine are causally linked to the formation and rupture of IAs. Hypertension partially mediates the causal effects.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kang Xie
- Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Junyu Wang
- Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fenghua Chen
- Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Research Center for Cerebrovascular Disease, Central South University, Changsha, 410008, China.
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410008, China.
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University, 818 Renmin Street, Wuling District, Changde, Hunan 415003, China; Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Pi S, Xiong S, Yuan Y, Deng H. The Role of Inflammasome in Abdominal Aortic Aneurysm and Its Potential Drugs. Int J Mol Sci 2024; 25:5001. [PMID: 38732221 PMCID: PMC11084561 DOI: 10.3390/ijms25095001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) has been recognized as a serious chronic inflammatory degenerative aortic disease in recent years. At present, there is no other effective intervention except surgical treatment for AAA. With the aging of the human population, its incidence is increasing year by year, posing a serious threat to human health. Modern studies suggest that vascular chronic inflammatory response is the core process in AAA occurrence and development. Inflammasome, a multiprotein complex located in the cytoplasm, mediates the expression of various inflammatory cytokines like interleukin (IL)-1β and IL-18, and thus plays a pivotal role in inflammation regulation. Therefore, inflammasome may exert a crucial influence on the progression of AAA. This article reviews some mechanism studies to investigate the role of inflammasome in AAA and then summarizes several potential drugs targeting inflammasome for the treatment of AAA, aiming to provide new ideas for the clinical prevention and treatment of AAA beyond surgical methods.
Collapse
Affiliation(s)
- Suyu Pi
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Yan Yuan
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| |
Collapse
|
4
|
Nocun W, Muscogliati R, Al-Tawil M, Jubouri M, Alsmadi AS, Surkhi AO, Bailey DM, Williams IM, Bashir M. Impact of patient demographics and intraoperative characteristics on abdominal aortic aneurysm sac following endovascular repair. Asian Cardiovasc Thorac Ann 2023; 31:633-643. [PMID: 37264635 DOI: 10.1177/02184923231178704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Endovascular aortic repair (EVAR) has become the preferred treatment for abdominal aortic aneurysm (AAA). Its main aim is to seal the perfusion of the aneurysmal sac and, thus, induce sac regression and subsequent aortic remodelling. Aneurysmal sac regression has been linked to the short- and long-term clinical outcomes post-EVAR. It has also been shown to be influenced by endograft device choice, with several of these available commercially. This review summarises and discusses current evidence on the influence of pre- and intraoperative factors on sac regression. Additionally, this review aims to highlight the device-specific variations in sac regression to provide an overall holistic approach to treating AAAs with EVAR. METHODS A comprehensive literature search was conducted using multiple electronic databases to identify and extract relevant data. RESULTS Female sex, >70 mm original sac diameters, higher pre-procedural fibrinogen levels, smoking and low intra-aneurysmal pressure were found to positively impact sac regression. Whereas renal impairment, ischemic heart disease, high intra-aneurysmal pressure and aneurysm neck thrombus negatively influenced sac regression. Patent lumbar arteries, age, statins and hypercholesterolaemia displayed conflicting evidence regarding sac regression. Regarding the EVAR endografts compared, newer generation devices such as the Anaconda mainly showed the most optimal results. CONCLUSION Sac regression following EVAR in AAA is an important prognostic factor for morbidity and mortality. Nevertheless, several pre- and intraoperative factors can have an influence on sac regression. Therefore, it is necessary to take them into account when assessing AAA patients for EVAR to optimise outcomes. The choice of EVAR stent-graft can also affect sac regression, with evidence suggesting that the Fenestrated Anaconda is associated with the most favourable results.
Collapse
Affiliation(s)
- Weronika Nocun
- School of Medicine, University of Nottingham, Nottingham, UK
| | | | | | - Matti Jubouri
- Hull York Medical School, University of York, York, UK
| | - Ayah S Alsmadi
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | | | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Ian M Williams
- Department of Vascular Surgery, University Hospital of Wales, Cardiff, UK
| | - Mohamad Bashir
- Vascular and Endovascular Surgery, Velindre University NHS Trust, Health Education and Improvement Wales, Cardiff, UK
| |
Collapse
|
5
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
6
|
López-Sanz L, Bernal S, Jiménez-Castilla L, Pardines M, Hernández-García A, Blanco-Colio L, Martín-Ventura JL, Gómez Guerrero C. The presence of activating IgG Fc receptors in macrophages aggravates the development of experimental abdominal aortic aneurysm. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:185-194. [PMID: 36737385 DOI: 10.1016/j.arteri.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Abdominal aortic aneurysm (AAA) is a multifactorial, degenerative disease characterized by progressive aortic dilation and chronic activation of inflammation, proteolytic activity, and oxidative stress in the aortic wall. The immune response triggered by antibodies against antigens present in the vascular wall participates in the formation and progression of AAA through mechanisms not completely understood. This work analyses the function of specific IgG receptors (FcγR), especially those expressed by monocytes/macrophages, in the development of experimental AAA. METHODS In the elastase-induced AAA model, the abdominal aortas from wildtype and FcγR deficient mice with/without macrophage adoptive transfer were analysed by histology and quantitative PCR. In vitro, mouse macrophages were transfected with RNA interference of FcγRIV/CD16.2 or treated with Syk kinase inhibitor before stimulation with IgG immune complexes. RESULTS Macrophage adoptive transfer in FcγR deficient mice increased the susceptibility to AAA development. Mice receiving macrophages with functional FcγR exhibited higher aortic diameter increase, higher content of macrophages and B lymphocytes, and upregulated expression of chemokine CCL2, cytokines (TNF-α and IL-17), metalloproteinase MMP2, prooxidant enzyme NADPH oxidase-2, and the isoforms FcγRIII/CD16 and FcγRIV/CD16.2. In vitro, both FcγRIV/CD16.2 gene silencing and Syk inhibition reduced cytokines and reactive oxygen species production induced by immune complexes in macrophages. CONCLUSIONS Activation of macrophage FcγR contributes to AAA development by inducing mediators of inflammation, proteolysis, and oxidative stress. Modulation of FcγR or effector molecules may represent a potential target for AAA treatment.
Collapse
Affiliation(s)
- Laura López-Sanz
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, España
| | - Susana Bernal
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, España
| | - Luna Jiménez-Castilla
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, España
| | - Marisa Pardines
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España
| | - Ana Hernández-García
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España
| | - Luis Blanco-Colio
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, España
| | - José Luis Martín-Ventura
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, España
| | - Carmen Gómez Guerrero
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, España.
| |
Collapse
|
7
|
Zhou Y, Zhang Y, Yu W, Qin Y, He H, Dai F, Wang Y, Zhu F, Zhou G. Immunomodulatory role of spleen tyrosine kinase in chronic inflammatory and autoimmune diseases. Immun Inflamm Dis 2023; 11:e934. [PMID: 37506139 PMCID: PMC10373573 DOI: 10.1002/iid3.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The high prevalence of chronic inflammatory diseases or autoimmune reactions is a major source of concern and affects the quality of life of patients. Chronic inflammatory or autoimmune diseases are associated with many diseases in humans, including asthma, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and cancer. Splenic tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an important role in immune receptor signalling in immune and inflammatory responses. METHODS This is a review article in which we searched for keywords "splenic tyrosine kinase", "inflammation" and "autoimmune diseases" in published literature such as Pubmed and Web of Science to collect relevant information and then conducted a study focusing on the latest findings on the involvement of SYK in chronic inflammatory or autoimmune diseases. RESULTS This paper reviews the regulation of Fcγ, NF-κB, B cell and T cell-related signalling pathways by SYK, which contributes to disease progression in chronic inflammatory and autoimmune diseases such as airway fibrosis, inflammatory skin disease and inflammatory bowel disease. CONCLUSION This paper shows that SYK plays an important role in chronic inflammatory and autoimmune diseases. syk targets hematological, autoimmune and other inflammatory diseases and therefore, inhibition of SYK expression or blocking its related pathways may provide new ideas for clinical prevention and treatment of inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- Yaqi Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yaowen Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Wei Yu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yufen Qin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengxian Dai
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
8
|
Jia Y, Ren S, Song L, Wang S, Han W, Li J, Yu Y, Ma B. PGLYRP1-mIgG2a-Fc inhibits macrophage activation via AKT/NF-κB signaling and protects against fatal lung injury during bacterial infection. iScience 2023; 26:106653. [PMID: 37113764 PMCID: PMC10102533 DOI: 10.1016/j.isci.2023.106653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Severe bacterial pneumonia leads to acute respiratory distress syndrome (ARDS), with a high incidence rate and mortality. It is well-known that continuous and dysregulated macrophage activation is vital for aggravating the progression of pneumonia. Here, we designed and produced an antibody-like molecule, peptidoglycan recognition protein 1-mIgG2a-Fc (PGLYRP1-Fc). PGLYRP1 was fused to the Fc region of mouse IgG2a with high binding to macrophages. We demonstrated that PGLYRP1-Fc ameliorated lung injury and inflammation in ARDS, without affecting bacterial clearance. Besides, PGLYRP1-Fc reduced AKT/nuclear factor kappa-B (NF-κB) activation via the Fc segment bound Fc gamma receptor (FcγR)-dependent mechanism, making macrophage unresponsive, and immediately suppressed proinflammatory response upon bacteria or lipopolysaccharide (LPS) stimulus in turn. These results confirm that PGLYRP1-Fc protects against ARDS by promoting host tolerance with reduced inflammatory response and tissue damage, irrespective of the host's pathogen burden, and provide a promising therapeutic strategy for bacterial infection.
Collapse
Affiliation(s)
- Yan Jia
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Shan Ren
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District, Shanghai 200000, China
| | - Luyao Song
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Siyi Wang
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Wei Han
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Yan Yu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District, Shanghai 200000, China
| | - BuYong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| |
Collapse
|
9
|
Huanggu H, Yang D, Zheng Y. Blood immunological profile of abdominal aortic aneurysm based on autoimmune injury. Autoimmun Rev 2023; 22:103258. [PMID: 36563768 DOI: 10.1016/j.autrev.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Abdominal aortic aneurysm (AAA) occupies a large part of aorta aneurysm, and if there's no timely intervention or treatment, the risks of rupture and death would rise sharply. With the depth of research in AAA, more and more evidence showed correlations between AAA and autoimmune injury. Currently, a variety of bioactive peptides and cells have been confirmed to be related with AAA progression. Despite the tremendous progress, more than half researches were sampling from lesion tissues, which would be difficult to obtain. Given that the intrusiveness and convenience, serological test take advantages in initial diagnosis. Here we review blood biomarkers associated with autoimmune injury work in AAA evolution, aiming to make a profile on blood immune substances of AAA and provide a thought for potential clinical practice.
Collapse
Affiliation(s)
- Haotian Huanggu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Ling X, Jie W, Qin X, Zhang S, Shi K, Li T, Guo J. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:1063683. [PMID: 36505348 PMCID: PMC9732037 DOI: 10.3389/fcvm.2022.1063683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high disability and mortality. Its susceptible risk factors include old age, being male, smoking, hypertension, and aortic atherosclerosis. With the improvement of screening techniques, AAA incidence and number of deaths caused by aneurysm rupture increase annually, attracting much clinical attention. Due to the lack of non-invasive treatment, early detection and development of novel treatment of AAA is an urgent clinical concern. The pathophysiology and progression of AAA are characterized by inflammatory destruction. The gut microbiota is an "invisible organ" that directly or indirectly affects the vascular wall inflammatory cell infiltration manifested with enhanced arterial wall gut microbiota and metabolites, which plays an important role in the formation and progression of AAA. As such, the gut microbiome may become an important risk factor for AAA. This review summarizes the direct and indirect effects of the gut microbiome on the pathogenesis of AAA and highlights the gut microbiome-mediated inflammatory responses and discoveries of relevant therapeutic targets that may help manage the development and rupture of AAA.
Collapse
Affiliation(s)
- Xuebin Ling
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xue Qin
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shuya Zhang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianfa Li
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Typiak M, Audzeyenka I, Dubaniewicz A. Presence and possible impact of Fcγ receptors on resident kidney cells in health and disease. Immunol Cell Biol 2022; 100:591-604. [DOI: 10.1111/imcb.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of General and Medical Biochemistry, Faculty of Biology University of Gdansk Gdansk Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of Molecular Biotechnology, Faculty of Chemistry University of Gdansk Gdansk Poland
| | - Anna Dubaniewicz
- Department of Pulmonology Medical University of Gdansk Gdansk Poland
| |
Collapse
|
12
|
Lu S, White JV, Nwaneshiudu I, Nwaneshiudu A, Monos DS, Solomides CC, Oleszak EL, Platsoucas CD. Human abdominal aortic aneurysm (AAA): Evidence for an autoimmune antigen-driven disease. Clin Exp Rheumatol 2022; 21:103164. [PMID: 35926768 DOI: 10.1016/j.autrev.2022.103164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
Abdominal aortic aneurism (AAA) is a complex immunological disease with a strong genetic component, and one of the ten leading causes of death of individuals 55-74 years old worldwide. Strong evidence has been accumulated suggesting that AAA is an autoimmune specific antigen-driven disease. Mononuclear cells infiltrating AAA lesions comprised of T and B lymphocytes and other cells expressing early-, intermediate- and late-activation antigens, and the presence of antigen-presenting cells have been documented, demonstrating an ongoing immune response. The three components of the trimolecular complex, T-cell receptor (TCR)/peptide (antigen)/HLA have been identified in AAA, and specifically: (i) clonal expansions of T-cell clones in AAA lesions; (ii) the association of AAA with particular HLA Class I and Class II; and (iii) self or nonself putative AAA-associated antigens. IgG autoantibodies recognizing proteins present in normal aortic tissue have been reported in patients with AAA. Molecular mimicry, defined as the sharing of antigenic epitopes between microorganisms (bacteria, viruses) and self antigens, maybe is responsible for T-cell responses and antibody production in AAA. Also, the frequency and the suppressor activity of CD4 + CD25 + FOXP3+ Tregs and the expression of FOXP3 transcripts and protein have been reported to be significantly impaired in AAA patients vs normal donors.
Collapse
Affiliation(s)
- Song Lu
- Mon Health Medical Center, Department of Pathology, Morgantown, WV, USA
| | - John V White
- Department of Surgery, Advocate Lutheran General Hospital & University of Illinois School of Medicine, Park Ridge, IL, USA
| | - Ifeyinwa Nwaneshiudu
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Adaobi Nwaneshiudu
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA; Cutis Wellness Dermatology and Dermatopathology PLLC, Laredo, TX, USA
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charalambos C Solomides
- Department of Pathology & Laboratory Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Emilia L Oleszak
- Department of Biological Sciences and Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Chris D Platsoucas
- Department of Biological Sciences and Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
13
|
Hu J, Jiang Y, Wu X, Wu Z, Qin J, Zhao Z, Li B, Xu Z, Lu X, Wang X, Liu X. Exosomal miR-17-5p from adipose-derived mesenchymal stem cells inhibits abdominal aortic aneurysm by suppressing TXNIP-NLRP3 inflammasome. Stem Cell Res Ther 2022; 13:349. [PMID: 35883151 PMCID: PMC9327292 DOI: 10.1186/s13287-022-03037-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background Preclinical studies have suggested that adipose-derived mesenchymal stem cells (ADSCs) transplantation can suppress abdominal aortic inflammation and aneurysm expansion through paracrine factors. Yet, the mechanism of action is not fully understood. In the present study, we further examined the function and mechanism of ADSC-derived exosomes (ADSC-exos) and their microRNA-17-5p (miR-17-5p) on the abdominal aortic aneurysm (AAA) progression. Methods ADSC-exos were isolated and identified. DiR and PKH67 staining were used to trace ADSC-exo in vivo and in vitro. Raw264.7 cells were applied to perform in vitro experiments, while a murine AAA model induced using angiotensin II (Ang II) was used for in vivo testing. The expression level of miR-17-5p in macrophages and Ang II-treated macrophages after ADSC-exos treatment was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The target relation between miR-17-5p and thioredoxin-interacting protein (TXNIP) was identified by a dual-luciferase reporter gene assay. Artificial activation and block of experiments of miR-17-5p and TXNIP were conducted to clarify their functions in inflammation during AAA progression. The severity of AAA between groups was assessed by maximal aorta diameter, AAA incidence, survival rate, and histological stainings. Besides, inflammasome-related proteins and macrophage pyroptosis were further evaluated using western blot, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA). Results The ADSC-exos were isolated and identified. In vivo testing showed that ADSC-exos were mainly distributed in the liver. Meanwhile, in vitro experiments suggested that ADSC-derived exosomes were taken up by macrophages, while inside, ADSC-exos miR-17-5p decreased a TXNIP induced by Ang II by directly binding to its 3′-untranslated region (3’UTR). Furthermore, overexpression of miR-17-5p enhanced the therapeutic function of ADSC-exos on inflammation during AAA expansion in vivo, while its inhibition reversed this process. Finally, overexpressed TXNIP triggered macrophage pyroptosis and was alleviated by ADSC-derived exosomes in vitro. Conclusion ADSC-exos miR-17-5p regulated AAA progression and inflammation via the TXNIP-NLRP3 signaling pathway, thus providing a novel insight in AAA treatment.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| | - Xin Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|