1
|
Wang J, Xing L. Therapeutic targeting of cGAS-STING pathway in lung cancer. Cell Biol Int 2024. [PMID: 39648304 DOI: 10.1002/cbin.12263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 12/10/2024]
Abstract
The presence of DNA in the cytosol triggers a protective response from the innate immune system. Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) is an essential cytosolic DNA sensor that triggers a potent innate immune response. As a result of this signaling cascade reaction, type I interferon and other immune mediators activate an immune response. The cGAS-STING pathway has great anticancer immunity-boosting potential since it produces type I interferons. The detection of double-stranded DNA (dsDNA) in response to various stimuli initiates a protective host's cGAS-STING signals. So, it is clear that a substantial relationship is expected between cancer biotherapy and the functioning of the cGAS-STING pathway. Several STING agonists with promising outcomes have been created for preclinical cancer therapy research. Notably, immunotherapy has dramatically extended patient survival and radically altered the course of lung cancer treatment, particularly in more advanced instances. However, this method is still ineffective for a large number of lung cancer patients. cGAS-STING can overcome resistance and boost anticancer immunity by stimulating the activity of many pro-inflammatory mediators, augmenting dendritic cell cross-presentation, and initiating a tumor-specific CD8+ T cell response. This review aims to present the most recent results on the functionality of the cGAS-STING pathway in cancer progression and its potential as an immunotherapy target, with a focus on lung cancer.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Lumin Xing
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Xiong Z, Wang Y, Li Z, Li C, Tu C, Li Z. A review on the crosstalk between non-coding RNAs and the cGAS-STING signaling pathway. Int J Biol Macromol 2024; 283:137748. [PMID: 39566795 DOI: 10.1016/j.ijbiomac.2024.137748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
In the innate immune system, the cyclic GMP-AMP synthase (cGAS)-interferon gene stimulator (STING) pathway activates the type I interferon (IFN) response and the NF-κB pathway by recognizing double-stranded DNAs, the imbalance of which plays a pivotal role in human diseases, including cancer, autoimmune and inflammatory diseases. Non-coding RNAs (ncRNAs) are a diverse group of transcripts that do not code for proteins but regulate various targets and signaling pathways in physiological and pathological processes. Recently, there has been increasing interest in investigating the interplay between the cGAS-STING pathway and ncRNAs. In this review, we provide a concise overview of the cGAS-STING pathway and ncRNAs. Then, we specifically delve into the regulation of the cGAS-STING pathway by long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), the three major classes of ncRNAs, and the influence of the cGAS-STING pathway on the expression of ncRNAs. Furthermore, we introduce the therapeutic applications targeting the cGAS-STING pathway and ncRNA therapy, and propose the utilization of drug delivery systems to deliver ncRNAs that influence the cGAS-STING pathway. Overall, this review highlights the emerging understanding of the intricate relationship between the cGAS-STING pathway and ncRNAs, shedding light on their potential as therapeutic targets in various diseases.
Collapse
Affiliation(s)
- Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yu Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Ge X, Shen Z, Yin Y. Comprehensive review of LncRNA-mediated therapeutic resistance in non-small cell lung cancer. Cancer Cell Int 2024; 24:369. [PMID: 39522033 PMCID: PMC11549762 DOI: 10.1186/s12935-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression through diverse mechanisms, including regulation of protein localization, sequestration of miRNAs, recruitment of chromatin modifiers, and modulation of signaling pathways. Accumulating evidence highlights their pivotal roles in tumor initiation, progression, and the development of therapeutic resistance. In this review, we comprehensively summarized the existing literature to identify lncRNAs associated with treatment responses in non-small cell lung cancer (NSCLC). Specifically, we categorized these lncRNAs based on their mechanisms of action in mediating resistance to chemotherapy, targeted therapy, and radiotherapy. Our analysis revealed that aberrant expression of various lncRNAs contributes to the development, metastasis, and therapeutic resistance in NSCLC, ultimately leading to poor clinical outcomes. By elucidating the intricate mechanisms through which lncRNAs modulate therapeutic responses, this review aims to provide mechanistic insights into the heterogeneous treatment outcomes observed in NSCLC patients and unveil potential therapeutic targets for overcoming drug resistance.
Collapse
Affiliation(s)
- Xin Ge
- Peking University First Hospital, Beijing, 100034, China
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichu Shen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
4
|
Thangavelu L, Goyal A, Afzal M, Moglad E, Rawat S, Kazmi I, Alzarea SI, Almalki WH, Rani R, Madhubabu P, Rajput P, Bansal P. Pyroptosis in lung cancer: The emerging role of non-coding RNAs. Pathol Res Pract 2024; 263:155619. [PMID: 39357188 DOI: 10.1016/j.prp.2024.155619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Lung cancer remains an intractable malignancy worldwide, prompting novel therapeutic modalities. Pyroptosis, a lethal form of programmed cell death featured by inflammation, has been involved in cancer progression and treatment response. Simultaneously, non-coding RNA has been shown to have important roles in coordinating pattern formation and oncogenic pathways, including long non-coding RNA (lncRNAs), microRNA (miRNAs), circular RNA (circRNAs), and small interfering RNA (siRNAs). Recent studies have revealed that ncRNAs can promote or inhibit pyroptosis by interacting with key molecular players such as NLRP3, GSDMD, and various transcription factors. This dual role of ncRNAs offers a unique therapeutic potential to manipulate pyroptosis pathways, providing opportunities for innovative cancer treatments. In this review, we integrate current research findings to propose novel strategies for leveraging ncRNA-mediated pyroptosis as a therapeutic intervention in lung cancer. We explore the potential of ncRNAs as biomarkers for predicting patient response to treatment and as targets for overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | | | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Pooja Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| |
Collapse
|
5
|
Huang M, Wang J, Zhou H, Lv Z, Li T, Liu M, Lv Y, Wu A, Xia J, Xu H, Chen W, Liu P. (-) - Epicatechin regulates LOC107986454 by targeting the miR-143-3p/EZH2 axis to enhance the radiosensitivity of non-small cell lung cancer. Am J Med Sci 2024; 368:503-517. [PMID: 38944201 DOI: 10.1016/j.amjms.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Non-small cell lung cancer (NSCLC) is a pernicious tumor with high incidence and mortality rates. The incidence rate of NSCLC increases with age and poses a serious danger to human health. The aim of this study was to determine the mechanism by which (-)-epicatechin (EC) alleviates NSCLC. METHODS Twenty-four pairs of NSCLC tissues and cancer-adjacent tissues were collected, and A549 and H460 radiotherapy-resistant strains were generated by repeatedly irradiating A549 and H460 cells with dose-gradient X-rays. Radiotherapy-resistant H460 cells were successfully injected subcutaneously into the left dorsal side of nude mice at a dose of 1 × 105 to establish an NSCLC animal model. The levels of interrelated genes and proteins were detected by RT‒qPCR and Western blotting, and cell proliferation and apoptosis were evaluated by CCK‒8 assay, Transwell assay, flow cytometry, and TUNEL staining. RESULTS LOC107986454 was highly expressed in NSCLC patients, while miR-143-3p was expressed at low levels and was negatively correlated with LOC107986454. Functionally, EC promoted autophagy and apoptosis induced by radiotherapy, restrained cell proliferation and migration, and ultimately enhanced the radiosensitivity of NSCLC cells. A downstream mechanistic study showed that EC facilitated miR-143-3p expression by inhibiting LOC107986454 and then restraining the expression of EZH2, which ultimately facilitated autophagy and apoptosis in cancer cells, inhibited proliferation and migration, and enhanced the radiosensitivity of NSCLC cells. CONCLUSION EC can enhance the radiosensitivity of NSCLC cells by regulating the LOC107986454/miR-143-3p/EZH2 axis.
Collapse
Affiliation(s)
- Meifang Huang
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Junfeng Wang
- Department of Thoracic Surgery, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Huahua Zhou
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Zengbo Lv
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Tianqian Li
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Meiyan Liu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Yaqing Lv
- Department of Clinical Pharmacy, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Anao Wu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Jie Xia
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Hongying Xu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Weiwen Chen
- Department of Endocrinology, Qujing Second People's Hospital of Yunnan Province, Qujing, Yunnan, 655000, China.
| | - Peiwan Liu
- Department of Hepatobiliary Surgery, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China.
| |
Collapse
|
6
|
Wu X, Wu Z, Xie Z, Huang H, Wang Y, Lv K, Yang H, Liu X. The role of EMG1 in lung adenocarcinoma progression: Implications for prognosis and immune cell infiltration. Int Immunopharmacol 2024; 138:112553. [PMID: 38943975 DOI: 10.1016/j.intimp.2024.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND AIMS Lung adenocarcinoma (LUAD) is the most common and aggressive cancer with a high incidence. N1-specific pseudouridine methyltransferase (EMG1), a highly conserved nucleolus protein, plays an important role in the biological development of ribosomes. However, the role of EMG1 in the progression of LUAD is still unclear. METHODS The expression of EMG1 in LUAD cells, and LUAD tissues, and adjacent noncancerous tissues was quantified using real-time polymerase chain reaction (PCR) and western blotting. The roles of EMG1 in LUAD cell proliferation, migration, invasion and tumorigenicity were explored in vitro and in vivo. Western blot analysis to underlying molecular mechanism of EMG1 regulating the biological function of LUAD. EMG1 expression and its impact on tumor prognosis were analyzed using a range of databases including GEPIA, UALCAN, cBioPortal, LinkedOmics, and Kaplan-Meier Plotter. RESULTS EMG1 expression was elevated in LUAD patients compared to normal tissues, and EMG1 expression was strongly correlated with prognosis in LUAD patients. EMG1 expression correlated with age, gender, N stage, T stage, and pathologic stage. EMG1 expression was strongly positively correlated with MRPL51, PHB2, SNRPG, ATP5MD, and TPI1, and strongly negatively correlated with MACF1, DOCK9, RAPGEF2, SYNJ1, and KIDINS220, the major enrichment pathways for EMG1 and related genes include Cell cycle, DNA Replication and Pathways in cancer signaling pathways. EMG1 expression level was significantly increased in LUAD cell lines and tissues. Knockdown of EMG1 could inhibit LUAD cell proliferation, migration, invasion, and tumorigenicity. Besides, EMG1 overexpression could promote LUAD cell proliferation, migration, and invasion. High expression of EMG1 predicts poor prognosis in LUAD patients, and EMG1 may play an oncogenic role in the tumor microenvironment by participating in the infiltration of LUAD immune cells. CONCLUSIONS EMG1 regulated various functions in LUAD by directly mediating Akt/mTOR/p70s6k signaling pathways activation. The results suggest that EMG1 may be a novel biomarker for assessing prognosis and immune cell infiltration in LUAD.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zhenguo Wu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zehang Xie
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yingying Wang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Department of Nuclear Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Kun Lv
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui 241001, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Xiaocen Liu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Department of Nuclear Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
7
|
Wei X, Li Z, Zheng H, Li X, Lin Y, Yang H, Shen Y. Long non-coding RNA MAGEA4-AS1 binding to p53 enhances MK2 signaling pathway and promotes the proliferation and metastasis of oral squamous cell carcinoma. Funct Integr Genomics 2024; 24:158. [PMID: 39249547 PMCID: PMC11384635 DOI: 10.1007/s10142-024-01436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) regulate the occurrence, development and progression of oral squamous cell carcinoma (OSCC). We elucidated the expression features of MAGEA4-AS1 in patients with OSCC and its activity as an OSCC biomarker. Furthermore, the impact of up-regulation of MAGEA4-AS1 on the cellular behaviors (proliferation, migration and invasion) of OSCC cells and intrinsic signal mechanisms were evaluated. Firstly, we analyzed MAGEA4-AS1 expression data in The Cancer Genome Atlas (TCGA) OSCC using a bioinformatics approach and in 45 pairs of OSCC tissues using qPCR. Then CCK-8, ethynyl deoxyuridine, colony formation, transwell and wound healing assays were conducted to assess changes in the cell proliferation, migration and invasion protential of shMAGEA4-AS1 HSC3 and CAL27 cells. The RNA sequence of MAGEA4-AS1 was identified using the rapid amplification of cDNA ends (RACE) assay. And whole-transcriptome sequencing was used to identify MAGEA4-AS1 affected genes. Additionally, dual-luciferase reporter system, RNA-binding protein immunoprecipitation (RIP), and rescue experiments were performed to clarify the role of the MAGEA4-AS1-p53-MK2 signaling pathway. As results, we found MAGEA4-AS1 was up-regulated in OSCC tissues. We identified a 418 nucleotides length of the MAGEA4-AS1 transcript and it primarily located in the cell nucleus. MAGEA4-AS1 stable knockdown weakened the proliferation, migration and invasion abilities of OSCC cells. Mechanistically, p53 protein was capable to activate MK2 gene transcription. RIP assay revealed an interaction between p53 and MAGEA4-AS1. MK2 up-regulation in MAGEA4-AS1 down-regulated OSCC cells restored MK2 and epithelial-to-mesenchymal transition related proteins' expression levels. In conclusion, MAGEA4-AS1-p53 complexes bind to MK2 promoter, enhancing the transcription of MK2 and activating the downstream signaling pathways, consequently promoting the proliferation and metastasis of OSCC cells. MAGEA4-AS1 may serve as a diagnostic marker and therapeutic target for OSCC patients.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Heng Zheng
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Hongyu Yang
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| | - Yuehong Shen
- Peking University Shenzhen Hospital Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
8
|
Zhang YT, Zhao LJ, Zhou T, Zhao JY, Geng YP, Zhang QR, Sun PC, Chen WC. The lncRNA CADM2-AS1 promotes gastric cancer metastasis by binding with miR-5047 and activating NOTCH4 translation. Front Pharmacol 2024; 15:1439497. [PMID: 39309008 PMCID: PMC11412803 DOI: 10.3389/fphar.2024.1439497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background Multi-organ metastasis has been the main cause of death in patients with Gastric cancer (GC). The prognosis for patients with metastasized GC is still very poor. Long noncoding RNAs (lncRNAs) always been reported to be closely related to cancer metastasis. Methods In this paper, the aberrantly expressed lncRNA CADM2-AS1 was identified by lncRNA-sequencing in clinical lymph node metastatic GC tissues. Besides, the role of lncRNA CADM2-AS1 in cancer metastasis was detected by Transwell, Wound healing, Western Blot or other assays in vitro and in vivo. Further mechanism study was performed by RNA FISH, Dual-luciferase reporter assay and RT-qPCR. Finally, the relationship among lncRNA CADM2-AS1, miR-5047 and NOTCH4 in patient tissues was detected by RT-qPCR. Results In this paper, the aberrantly expressed lncRNA CADM2-AS1 was identified by lncRNA-sequencing in clinical lymph node metastatic GC tissues. Besides, the role of lncRNA CADM2-AS1 in cancer metastasis was detected in vitro and in vivo. The results shown that overexpression of the lncRNA CADM2-AS1 promoted GC metastasis, while knockdown inhibited it. Further mechanism study proved that lncRNA CADM2-AS1 could sponge and silence miR-5047, which targeting mRNA was NOTCH4. Elevated expression of lncRNA CADM2-AS1 facilitate GC metastasis by up-regulating NOTCH4 mRNA level consequently. What's more, the relationship among lncRNA CADM2-AS1, miR-5047 and NOTCH4 was further detected and verified in metastatic GC patient tissues. Conclusions LncRNA CADM2-AS1 promoted metastasis in GC by targeting the miR-5047/NOTCH4 signaling axis, which may be a potential target for GC metastasis.
Collapse
Affiliation(s)
- Yu-Tong Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li-Juan Zhao
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Teng Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yin-Ping Geng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiu-Rong Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei-Chun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen-Chao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
10
|
Nie H, Yu Y, Zhou S, Xu Y, Chen X, Qin X, Liu Z, Huang J, Zhang H, Yao J, Jiang Q, Wei B, Qin X. TCF3 as a multidimensional biomarker: oncogenicity, genomic alterations, and immune landscape in pan-cancer analysis. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39205642 DOI: 10.3724/abbs.2024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Transcription factor 3 (TCF3), a pivotal member of the TCF/LEF family, plays a critical role in tumorigenesis. Nonetheless, its impact on the tumor microenvironment (TME) and cancer phenotypes remains elusive. We perform an exhaustive analysis of TCF3 expression, DNA variation profiles, prognostic implications, and associations with the TME and immunological aspects. This study is based on a large-scale pan-cancer cohort, encompassing over 17,000 cancer patients from multiple independent datasets, validated by in vitro assays. Our results show that TCF3/4/7 exhibits differential expression patterns between normal and tumor tissues across pan-cancer analyses. Mutational analysis of TCF3 across diverse cancer types reveals the highest alteration rates in biliary tract cancer. Additionally, mutations and single nucleotide variants in TCF3/4/7 are found to exert varied effects on patient prognosis. Importantly, TCF3 emerges as a robust predictor of survival across all cancer cohorts and among patients receiving immune checkpoint inhibitors. Elevated TCF3 expression is correlated with more aggressive cancer subtypes, as validated by immunohistochemistry and diverse cohort data. Furthermore, TCF3 expression is positively correlated with intratumoral heterogeneity and angiogenesis. In vitro investigations demonstrate that TCF3 is involved in epithelial-mesenchymal transition, migration, invasion, and angiogenesis. These effects are likely mediated through the interaction of TCF3 with the NF-κB/MMP2 pathway, which is modulated by IL-17A in human uveal melanoma MUM2B cells. This study elucidates, for the first time, the significant associations of TCF3 with DNA variation profiles, prognostic outcomes, and the TME in multiple cancer contexts. TCF3 holds promise as a molecular marker for diagnosis and as a potential target for novel therapeutic strategies, particularly in uveal melanoma.
Collapse
Affiliation(s)
- Huiling Nie
- The Affiliated Eye Hospital and the Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210004, China
| | - Yang Yu
- The Affiliated Eye Hospital and the Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210004, China
| | - Siqi Zhou
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yue Xu
- Department of Ophthalmology, the Fourth Affiliated Hospital of Soochow University, Suzhou 215002, China
| | - Xi Chen
- The Affiliated Eye Hospital and the Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210004, China
| | - Xun Qin
- The Affiliated Eye Hospital and the Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210004, China
| | - Zhangyu Liu
- The Affiliated Eye Hospital and the Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210004, China
| | - Jiayu Huang
- The Affiliated Eye Hospital and the Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210004, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jin Yao
- The Affiliated Eye Hospital and the Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210004, China
| | - Qin Jiang
- The Affiliated Eye Hospital and the Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210004, China
| | - Bingbing Wei
- Department of Urology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Xiaojian Qin
- Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Melnikov N, Pittala S, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Mitochondrial VDAC1 Silencing in Urethane-Induced Lung Cancer Inhibits Tumor Growth and Alters Cancer Oncogenic Properties. Cancers (Basel) 2024; 16:2970. [PMID: 39272828 PMCID: PMC11393979 DOI: 10.3390/cancers16172970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Alterations in cellular metabolism are vital for cancer cell growth and motility. Here, we focused on metabolic reprogramming and changes in tumor hallmarks in lung cancer by silencing the expression of the mitochondrial gatekeeper VDAC1. To better mimic the clinical situation of lung cancer, we induced lung cancer in A/J mice using the carcinogen urethane and examined the effectiveness of si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles. si-m/hVDAC1-B, given intravenously, induced metabolism reprogramming and inhibited tumor growth as monitored using MRI. Mice treated with non-targeted (NT) PLGA-PEI-si-NT showed many large size tumors in the lungs, while in PLGA-PEI-si-m/hVDAC-B-treated mice, lung tumor number and area were markedly decreased. Immunofluorescence staining showed decreased expression of VDAC1 and metabolism-related proteins and altered expression of cancer stem cell markers. Morphological analysis showed two types of tumors differing in their morphology; cell size and organization within the tumor. Based on specific markers, the two tumor types were identified as small cell (SCLC) and non-small cell (NSCLC) lung cancer. These two types of tumors were found only in control tumors, suggesting that PLGA-PEI-si-m/hVDAC1-B also targeted SCLC. Indeed, using a xenograft mouse model of human-derived SCLC H69 cells, si-m/hVDAC1-B inhibited tumor growth and reduced the expression of VDAC1 and energy- and metabolism-related enzymes, and of cancer stem cells in the established xenograft. Additionally, intravenous treatment of urethane-induced lung cancer mice with the VDAC1-based peptide, Retro-Tf-D-LP4, showed inhibition of tumor growth, and decreased expression levels of metabolism- and cancer stem cells-related proteins. Thus, silencing VDAC1 targeting both NSCLC and SCLC points to si-VDAC1 as a possible therapeutic tool to treat these lung cancer types. This is important as target NSCLC tumors undergo transformation to SCLC.
Collapse
Affiliation(s)
- Nataly Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Srinivas Pittala
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
12
|
Hushmandi K, Saadat SH, Mirilavasani S, Daneshi S, Aref AR, Nabavi N, Raesi R, Taheriazam A, Hashemi M. The multifaceted role of SOX2 in breast and lung cancer dynamics. Pathol Res Pract 2024; 260:155386. [PMID: 38861919 DOI: 10.1016/j.prp.2024.155386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Breast and lung cancers are leading causes of death among patients, with their global mortality and morbidity rates increasing. Conventional treatments often prove inadequate due to resistance development. The alteration of molecular interactions may accelerate cancer progression and treatment resistance. SOX2, known for its abnormal expression in various human cancers, can either accelerate or impede cancer progression. This review focuses on examining the role of SOX2 in breast and lung cancer development. An imbalance in SOX2 expression can promote the growth and dissemination of these cancers. SOX2 can also block programmed cell death, affecting autophagy and other cell death mechanisms. It plays a significant role in cancer metastasis, mainly by regulating the epithelial-to-mesenchymal transition (EMT). Additionally, an imbalanced SOX2 expression can cause resistance to chemotherapy and radiation therapy in these cancers. Genetic and epigenetic factors may affect SOX2 levels. Pharmacologically targeting SOX2 could improve the effectiveness of breast and lung cancer treatments.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Seyedalireza Mirilavasani
- Campus Venlo, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, The Netherlands
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University of Medical Sciences,Jiroft, the Islamic Republic of Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Rasoul Raesi
- Department of Health Services Management, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
13
|
陶 怀, 骆 金, 闻 志, 虞 亘, 苏 萧, 王 鑫, 关 翰, 陈 志. [High STING expression exacerbates renal ischemia-reperfusion injury in mice by regulating the TLR4/NF-κB/NLRP3 pathway and promoting inflammation and apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1345-1354. [PMID: 39051080 PMCID: PMC11270667 DOI: 10.12122/j.issn.1673-4254.2024.07.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate renal expression level of STING in mice with renal ischemia-reperfusion injury (IRI) and its regulatory role in IRI. METHODS C57BL/6 mice were divided into sham operation group, IRI (induced by clamping the renal artery) model group, IRI+DMSO treatment group, and IRI+SN-011 treatment group. Serum creatinine and blood urea nitrogen of the mice were analyzed, and pathological changes in the renal tissue were assessed with PAS staining. RT-qPCR, ELISA, Western blotting, and immunohistochemistry were used to detect the expression levels of STING, KIM-1, Bcl-2, Bax, caspase-3, TLR4, P65, NLRP3, caspase-1, CD68, MPO, IL-1β, IL-6, and TNF-α in the renal tissues. In the cell experiment, HK-2 cells exposed to hypoxia-reoxygenation (H/R) were treated with DMSO or SN-011, and cellular STING expression levels and cell apoptosis were analyzed using RT-qPCR, Western blotting or flow cytometry. RESULTS In C57BL/6 mice, renal IRI induced obvious renal tissue damage, elevation of serum creatinine and blood urea nitrogen levels and renal expression levels of KIM-1, STING, TLR4, P65, NLRP3, caspase-1, caspase-3, Bax, CD68, MPO, IL-1β, IL-6, and TNF-α, and reduction of Bcl-2 expression level. Treatment of the mouse models with SN-011 for inhibiting STING expression significantly alleviated these changes. In HK-2 cells, H/R exposure caused significant elevation of cellular STING expression and obviously increased cell apoptosis rate, which was significantly lowered by treatment with SN-011. CONCLUSION Renal STING expression is elevated in mice with renal IRI to exacerbate renal injury by regulating the TLR4/NF-κB/NLRP3 pathway and promoting inflammation and apoptosis in the renal tissues.
Collapse
|
14
|
Huang P, Wen F, Li Y, Li Q. The tale of SOX2: Focusing on lncRNA regulation in cancer progression and therapy. Life Sci 2024; 344:122576. [PMID: 38492918 DOI: 10.1016/j.lfs.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, which regulate gene function and expression via multiple mechanistic pathways. Therefore, it is essential to exploit the structures and interactions of lncRNAs to comprehend their mechanistic functions within cells. A growing body of evidence has revealed that deregulated lncRNAs are involved in multiple regulations of malignant events including cell proliferation, growth, invasion, and metabolism. SRY-related high mobility group box (SOX)2, a well-recognized member of the SOX family, is commonly overexpressed in various types of cancer, contributing to tumor progression and maintenance of stemness. Emerging studies have shown that lncRNAs interact with SOX2 to remarkably contribute to carcinogenesis and disease states. This review elaborates on the crosstalk between the intricate and complicated functions of lncRNAs and SOX2 in the context of malignant diseases. We elucidate distinct molecular mechanisms that contribute to the onset/advancement of cancer, indicating that lncRNAs/SOX2 axes hold immense promise for potential therapeutic targets. Furthermore, we delve into the modalities of emerging feasible treatment options for targeting lncRNAs, highlighting the limitations of such therapies and providing novel insights into further ameliorations of targeted strategies of lncRNAs to promote the clinical implications. Translating current discoveries into clinical applications could ultimately boost improved survival and prognosis of cancer patients.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - YiShan Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, West China School of Nursing, Chengdu, Sichuan 610041, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
15
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res 2024; 43:96. [PMID: 38561776 PMCID: PMC10985944 DOI: 10.1186/s13046-024-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.
Collapse
Affiliation(s)
- Fei Ren
- Department of Geriatrics, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Qian Fei
- Department of Oncology, Shengjing Hospital of China Medical University, Shen Yang, 110000, China
| | - Kun Qiu
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Yuanjie Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shen Yang, 110000, China.
| | - Lei Sun
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China.
| |
Collapse
|
16
|
Dong J, Lv Y, Meng D, Shi R, Li F, Guo R, Wang Y, Guo J, Zhang Y. LncRNA WFDC21P interacts with SEC63 to promote gastric cancer malignant behaviors by regulating calcium homeostasis signaling pathway. Cancer Cell Int 2024; 24:111. [PMID: 38528582 DOI: 10.1186/s12935-024-03297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Gastric cancer is currently estimated to be the fifth leading common cancer in the world, and responsible for about one million new cases and an estimated 769,000 cancer-related deaths each year. WFDC21P is long non-coding RNA and has been reported to play critical roles in serval types of cancer. Our research aims to investigate the biological effects and molecular mechanism of WFDC21P in gastric cancer. METHODS Datasets (GSE53137, GSE58828, and GSE109476) in GEO database were used to screen differential expressed lncRNAs in gastric cancer by online GEO2R analysis tool. Quantitative RT-PCR was used to verify the above prediction in ten pairs of gastric cancer and corresponding paracancerous tissues. Pan-cancer analysis was used to analyze the expression of WFDC21P in different types of cancer. Small interfering RNAs were used to WFDC21P knockdown. CCK-8 and colony formation assays were used to measure the proliferation and tumorigenesis abilities. Wound healing and Transwell assay were used to detect the migration and invasion abilities. Proteins that interact with WFDC21P were predicted by catRAPID database. RNA pull down and RNA Immunoprecipitation were used to confirm the interaction. Western blotting was used to detect the key proteins level in calcium homeostasis signaling pathway. Loss-of-function and rescue assays were used to evaluate the biological function of SEC63 at the background of WFDC21P silencing. RESULTS WFDC21P was upregulated in gastric cancer tissues and cell lines. WFDC21P downregulation suppressed proliferation, tumorigenesis, migration, invasion, and promoted apoptosis in gastric cancer. SEC63 protein had the capability to bind with WFDC21P and the expression of SEC63 was regulated by WFDC21P. SEC63 was also upregulated in gastric cancer and exerted effects during tumor growth and metastasis. CONCLUSIONS This study confirmed that lncRNA WFDC21P aggravated gastric cancer malignant behaviors by interacting with SEC63 to regulate the calcium homeostasis signaling pathway.
Collapse
Affiliation(s)
- Jinyao Dong
- Hepatobiliary Pancreatogastric Surgery, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University , Taiyuan, Shanxi, 030013, P. R. China
| | - Yongqiang Lv
- Scientific Research Department, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, P. R. China
| | - Debin Meng
- Hepatobiliary Pancreatogastric Surgery, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University , Taiyuan, Shanxi, 030013, P. R. China
| | - Ruyi Shi
- Department of Cell biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Feng Li
- Central Laboratory, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, P. R. China
| | - Rui Guo
- Hepatobiliary Pancreatogastric Surgery, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University , Taiyuan, Shanxi, 030013, P. R. China
| | - Yi Wang
- Hepatobiliary Pancreatogastric Surgery, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University , Taiyuan, Shanxi, 030013, P. R. China
| | - Jiansheng Guo
- Gastrointestinal Surgery Department, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China.
| | - Yanyan Zhang
- Hepatobiliary Pancreatic Surgery and Liver Transplantation Center, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China.
| |
Collapse
|
17
|
Jiang J, Wang Y, Sun M, Luo X, Zhang Z, Wang Y, Li S, Hu D, Zhang J, Wu Z, Chen X, Zhang B, Xu X, Wang S, Xu S, Huang W, Xia L. SOX on tumors, a comfort or a constraint? Cell Death Discov 2024; 10:67. [PMID: 38331879 PMCID: PMC10853543 DOI: 10.1038/s41420-024-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.
Collapse
Affiliation(s)
- Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
18
|
Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin JJ, Yan Y. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark Res 2024; 12:2. [PMID: 38185685 PMCID: PMC10773049 DOI: 10.1186/s40364-023-00551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yu Wen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, 410008, Changsha, Hunan, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
19
|
Guo J, Gong C, Wang H. PURPL Promotes M2 Macrophage Polarization in Lung Cancer by Regulating RBM4/xCT Signaling. Crit Rev Eukaryot Gene Expr 2024; 34:59-68. [PMID: 38842204 DOI: 10.1615/critreveukaryotgeneexpr.2024052788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Lung cancer is the most common malignancy worldwide. Long non-coding RNA (lncRNA) p53 upregulated regulator of P53 levels (PURPL) is abnormally in various cancers. However, the reports on its roles in lung cancer are limited. The purpose of present study is to investigate the potentials of lncRNA PURPL in lung cancer. PURPL and mRNA expression was determined using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). The location of PURPL was detected using RNA fluorescence in situ hybridization (FISH) assay. Protein expression was detected using western blot. Cellular functions were determined using flow cytometry. The interaction between PURPL and RNA-binding motif 4 (RBM4) was confirmed using RNA immunoprecipitation (RIP) assay. PURPL was overexpressed in lung cancer cells and patients. Overexpressed PURPL promoted M2 macrophage polarization and suppressed ferroptosis. Additionally, PURPL maintained the mRNA stability of cystine glutamate reverse transporter (xCT) via regulating RBM4. xCT knockdown antagonized the effects of overexpressed PURPL and inhibited M2 macrophage polarization via inducing macrophage ferroptosis. PURPL/RBM4/xCT axis promoted M2 macrophage polarization in lung cancer. Therefore, PURPL may be a potential target of lung cancer.
Collapse
Affiliation(s)
- Jipeng Guo
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Chongwen Gong
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hao Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
20
|
Dong Q, Qiu H, Piao C, Li Z, Cui X. LncRNA SNHG4 promotes prostate cancer cell survival and resistance to enzalutamide through a let-7a/RREB1 positive feedback loop and a ceRNA network. J Exp Clin Cancer Res 2023; 42:209. [PMID: 37596700 PMCID: PMC10436424 DOI: 10.1186/s13046-023-02774-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Prostate cancer threatens the health of men over sixty years old, and its incidence ranks first among all urinary tumors among men. Enzalutamide remains the first-line drug for castration-resistant prostate cancer, however, tumors inevitably become resistant to enzalutamide. Hence, it is of great importance to investigate the mechanisms that induce enzalutamide resistance in prostate cancer cells. METHODS Bioinformatic analyzing approaches were used to identified the over-expressed genes in prostate cancer tumor tissues from three GEO datasets. qRT-PCR, western blotting and immunochemistry/In situ hybridization staining assays were performed to assess the expression of SNHG4, RRM2, TK1, AURKA, EZH2 and RREB1. Cell cycle was measured by flow cytometry. CCK-8, plate colony formation and EdU assays were performed to assess the cell proliferation. Senescence-associated β-Gal assay was used to detect the cell senescence level. γ-H2AX staining assay was performed to assess the DNA damages of PCa cells. Luciferase reporter assay and RNA immunoprecipitation assay were performed to verify the RNA-RNA interactions. Chromatin immunoprecipitation assay was performed to assess the bindings between protein and genomic DNA. RESULTS We found that RRM2 and NUSAP1 are highly expressed in PCa tumors and significantly correlated with poor clinical outcomes in PCa patients. Bioinformatic analysis as well as experimental validation suggested that SNHG4 regulates RRM2 expression via a let-7 miRNA-mediated ceRNA network. In addition, SNHG4 or RRM2 knockdown significantly induced cell cycle arrest and cell senescence, and inhibited DNA damage repair and cell proliferation, and the effects can be partially reversed by let-7a knockdown or RRM2 reoverexpression. In vitro and in vivo experiments showed that SNHG4 overexpression markedly enhanced cell resistance to enzalutamide. RREB1 was demonstrated to transcriptionally regulate SNHG4, and RREB1 was also validated to be a target of let-7a and thereby regulated by the SNHG4/let-7a feedback loop. CONCLUSION Our study uncovered a novel molecular mechanism of lncRNA SNHG4 in driving prostate cancer progression and enzalutamide resistance, revealing the critical roles and therapeutic potential of RREB1, SNHG4, RRM2 and let-7 miRNAs in anticancer therapy.
Collapse
Affiliation(s)
- Qingzhuo Dong
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, Shenyang, 110001, China
| | - Hui Qiu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chiyuan Piao
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, Shenyang, 110001, China
| | - Zhengxiu Li
- Department of Dermatology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaolu Cui
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, Shenyang, 110001, China.
| |
Collapse
|
21
|
Yang Z, Cao S, Wang F, Du K, Hu F. Characterization and Prognosis of Biological Microenvironment in Lung Adenocarcinoma through a Disulfidptosis-Related lncRNAs Signature. Genet Res (Camb) 2023; 2023:6670514. [PMID: 37575978 PMCID: PMC10421709 DOI: 10.1155/2023/6670514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Background The role of disulfidptosis-related lncRNAs remains unclear in lung adenocarcinoma. Methods Analysis in R software was conducted using different R packages, which are based on the public data from The Cancer Genome Atlas (TCGA) database. The transwell assay was used to evaluate the invasion and migration abilities of lung cancer cells. Results In our study, we identified 1401 lncRNAs significantly correlated with disulfidptosis-related genes (|Cor| > 0.3 and P < 0.05). Then, we constructed a prognosis model consisting of 11 disulfidptosis-related lncRNAs, including AL133445.2, AL442125.1, AC091132.2, AC090948.1, AC020765.2, CASC8, AL606834.1, LINC00707, OGFRP1, U91328.1, and GASAL1. This prognosis model has satisfactory prediction performance. Also, the risk score and clinical information were combined to develop a nomogram. Analyses of biological enrichment and immune-related data were used to identify underlying differences between patients at high-risk and low-risk groups. Moreover, we noticed that the immunotherapy nonresponders have higher risk scores. Meanwhile, patients at a high risk responded more strongly to docetaxel, paclitaxel, and vinblastine. Furthermore, further analysis of the model lncRNA OGFRP1 was conducted, including clinical, immune infiltration, biological enrichment analysis, and a transwell assay. We discovered that by inhibiting OGFRP1, the invasion and migration abilities of lung cancer cells could be remarkably hindered. Conclusion The results of our study can provide directions for future research in the relevant areas. Moreover, the prognosis signature we identified has the potential for clinical application.
Collapse
Affiliation(s)
- Zhuo Yang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenglan Cao
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fangli Wang
- Department of Cardiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kangming Du
- Department of Cardiothoracic Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Hu
- Obstetric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
23
|
Gencel-Augusto J, Wu W, Bivona TG. Long Non-Coding RNAs as Emerging Targets in Lung Cancer. Cancers (Basel) 2023; 15:3135. [PMID: 37370745 DOI: 10.3390/cancers15123135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal cell physiology and organism development. Therefore, deregulation of their activities is involved in disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular mechanisms of cancer initiation, development, and progression, and could open up a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
24
|
Hashemi M, Zandieh MA, Talebi Y, Rahmanian P, Shafiee SS, Nejad MM, Babaei R, Sadi FH, Rajabi R, Abkenar ZO, Rezaei S, Ren J, Nabavi N, Khorrami R, Rashidi M, Hushmandi K, Entezari M, Taheriazam A. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023; 160:114392. [PMID: 36804123 DOI: 10.1016/j.biopha.2023.114392] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sareh Sadat Shafiee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Roghayeh Babaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
25
|
Lin Z, Liu Y, Lin P, Li J, Gan J. Clinical significance of STING expression and methylation in lung adenocarcinoma based on bioinformatics analysis. Sci Rep 2022; 12:13951. [PMID: 35978045 PMCID: PMC9385651 DOI: 10.1038/s41598-022-18278-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
The role of stimulator of interferon genes [STING, also known as transmembrane protein 173 (TMEM173)] in various human cancers has begun to emerge. However, the clinical value of STING in lung adenocarcinoma (LUAD) remains elusive. This study aims to elucidate the clinical significance of STING expression and methylation in LUAD. Here, through analyzing data from public resources, we found that both the mRNA and protein expression of STING were reduced in lung cancer. Moreover, lower expression of STING was associated with a worse prognosis in LUAD, but not lung squamous cell carcinoma (LUSC). Of note, higher methylation of STING was found in LUAD and had the potential to distinguish LUAD tissues from adjacent non-tumor lung tissues and correlated with unfavorable outcomes. Furthermore, the methylation of STING could serve as an independent prognostic indicator for both the overall survival (OS) and disease-free survival (DFS) of LUAD patients. Additionally, the constructed nomogram exhibited a favorable predictive accuracy in predicting the probability of 1- and 2-year OS. Our findings suggest that the mRNA expression, and especially the DNA methylation of STING, have the potential to be prognostic indicators for LUAD patients.
Collapse
Affiliation(s)
- Ze Lin
- Department of Biochemistry, Shantou University Medical College, Shantou, People's Republic of China
| | - Yu Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, People's Republic of China
| | - Peng Lin
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jinping Li
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, People's Republic of China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, People's Republic of China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|