1
|
Guo Y, Wang H, Liu S, Zhang X, Zhu X, Huang L, Zhong W, Guan L, Chen Y, Xiao M, Ou L, Yang J, Chen X, Huang AC, Mitchell T, Amaravadi R, Karakousis G, Miura J, Schuchter L, Flowers A, Zheng Q, Mou H, Gimotty P, Herlyn M, Guo W, Xu X. Engineered extracellular vesicles with DR5 agonistic scFvs simultaneously target tumor and immunosuppressive stromal cells. SCIENCE ADVANCES 2025; 11:eadp9009. [PMID: 39813334 PMCID: PMC11734719 DOI: 10.1126/sciadv.adp9009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells. PDGFR transmembrane domain delivers DR5-scFvs to the surface of sEVs. DR5-scFv sEVs rapidly induce apoptosis of different types of DR5+ cancer cells, myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs). DR5-scFv sEVs migrate specifically to DR5+ tumors in vitro and in vivo. Systemic delivery of DR5-scFv sEVs significantly inhibits the growth of DR5+ melanoma, liver cancer, and breast cancer and prolongs mouse life span without significant toxicity. DR5-scFv sEVs are significantly more efficacious than DR5 antibodies in vivo. In organotypic patient-derived melanoma slice cultures, DR5-scFv sEVs effectively inhibit melanoma cells and MDSCs and activate CD8+ T cells. Our studies demonstrate that DR5-scFv sEVs can inhibit tumor growth by targeting tumor cells and immunosuppressive stromal cells in the TME.
Collapse
Affiliation(s)
- Yeye Guo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 41000, China
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaogang Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xingyue Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqun Zhong
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lei Guan
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yeqing Chen
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingbo Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 41000, China
| | - Alexander C. Huang
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara Mitchell
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos Karakousis
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Miura
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn Schuchter
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahron Flowers
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiuxian Zheng
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Haiwei Mou
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Phyllis Gimotty
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Yu N, Xu Y, Sun Q, Ge Y, Guo Y, Chen M, Shan H, Zheng M, Chen Z, Zhao S, Chen X. Size-specific clonidine-loaded liposomes: Advancing melanoma microenvironment suppression with safety and precision. J Control Release 2025; 379:120-134. [PMID: 39756687 DOI: 10.1016/j.jconrel.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The immunosuppressive tumor microenvironment (TME) plays a crucial role in the progression and treatment resistance of melanoma. Modulating the TME is thus a key strategy for enhancing therapeutic outcomes. Previousstudies have identified clonidine (CLD), an α2-adrenergic receptor agonist, as a promising agent that enhances T lymphocyte infiltration and reduces myeloid-derived suppressor cells within the TME, thereby promoting antitumor immune responses. In this study, we discovered that CLD reshaped the melanoma immune microenvironment, facilitating T-cell activation and exerting antitumor effects. However, the high doses of CLD required for effective TME modulation pose significant toxicity concerns, limiting its clinical applicability. To address this, we employed the controllable cavitation-on-a-chip (CCC) platform to formulate CLD-loaded liposomes and optimize their size. This approach aimed to enhance the precision and efficacy of drug delivery while reducing systemic side effects. Our results demonstrated that size-specific CLD liposomes, particularly those at 50 nm, significantly improved tumor growth inhibition and immune cell infiltration within the TME. Moreover, these optimized liposomes mitigate adverse effects associated with high-dose CLD treatment. This study indicates the potential of CCC-optimized CLD liposomes as a safer and more effective melanoma therapy, highlighting the critical interplay between liposome size control and therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Nianzhou Yu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yantao Xu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Sun
- Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China; School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yi Ge
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yeye Guo
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Maike Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Han Shan
- Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China; School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Mingde Zheng
- Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China; School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zeyu Chen
- Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China; School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory (Precision Medicine), Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
3
|
Wang T, Ma W, Zou Z, Zhong J, Lin X, Liu W, Sun W, Hu T, Xu Y, Chen Y. PD-1 blockade treatment in melanoma: Mechanism of response and tumor-intrinsic resistance. Cancer Sci 2024. [PMID: 39601129 DOI: 10.1111/cas.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Malignant melanoma is characterized by high immunogenicity, genetic heterogeneity, and diverse pathological manifestations, affecting both skin and mucosa over the body. Pembrolizumab and nivolumab, both anti-PD-1 monoclonal antibodies, were approved by the US FDA for unresectable or metastatic melanoma in 2011 and 2014, respectively, with enduring and transformative outcomes. Despite marked clinical achievements, only a subset of patients manifested a complete response. Approximately 55% of melanoma patients exhibited primary resistance to PD-1 antibodies, with nearly 25% developing secondary resistance within 2 years of treatment. Thus, there is a critical need to comprehensively elucidate the mechanisms underlying the efficacy and resistance to PD-1 blockade. This review discusses the fundamental mechanisms of PD-1 blockade, encompassing insights from T cells and B cells, and presents resistance to anti-PD-1 with a particular focus on tumoral-intrinsic mechanisms in melanoma.
Collapse
Affiliation(s)
- Tong Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Wenjie Ma
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Zijian Zou
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Jingqin Zhong
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Xinyi Lin
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Wanlin Liu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Wei Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Yu Xu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| |
Collapse
|
4
|
Goncalves B, Liu S, Zhang X, Fan A, Ou L, Xu X. Unveiling Therapeutic Opportunities with Melanoma Patient-derived Organoid Models. J Vis Exp 2024:10.3791/66509. [PMID: 39311587 PMCID: PMC11539850 DOI: 10.3791/66509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
With the development of immunotherapy, there is an ongoing need to develop models that can recapitulate the tumor microenvironment of native tumors. While traditional two- and three-dimensional models can offer insights into cancer development and progression, these lack crucial aspects that hinder a faithful mimic of native tumors. An alternative model that has gained a lot of attention is the patient-derived organoid. The development of these organoids recapitulates the complex intercellular communication, tumor microenvironment, and histoarchitecture of tumors. This paper describes the protocol for establishing melanoma patient-derived organoid (MPDO) models. To validate these models, we assessed the immune cell composition, including the expression levels of T-cell activation markers, to confirm the cellular heterogeneity of the organoids. Additionally, to describe the potential utility of MPDOs in cellular therapies, we evaluated the cytotoxic capabilities of treating the organoids with γδ T-cells. In conclusion, the MPDO models offer promising avenues for understanding tumor complexity, validating therapeutic strategies, and potentially advancing personalized treatment.
Collapse
Affiliation(s)
- Beatriz Goncalves
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Xiaogang Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Andrew Fan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|
5
|
Chen D, Xu L, Xuan M, Chu Q, Xue C. Unveiling the functional roles of patient-derived tumour organoids in assessing the tumour microenvironment and immunotherapy. Clin Transl Med 2024; 14:e1802. [PMID: 39245957 PMCID: PMC11381553 DOI: 10.1002/ctm2.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Recent studies have established the pivotal roles of patient-derived tumour organoids (PDTOs), innovative three-dimensional (3D) culture systems, in various biological and medical applications. PDTOs, as promising tools, have been established and extensively used for drug screening, prediction of immune response and assessment of immunotherapeutic effectiveness in various cancer types, including glioma, ovarian cancer and so on. The overarching goal is to facilitate the translation of new therapeutic modalities to guide personalised immunotherapy. Notably, there has been a recent surge of interest in the co-culture of PDTOs with immune cells to investigate the dynamic interactions between tumour cells and immune microenvironment. A comprehensive and in-depth investigation is necessary to enhance our understanding of PDTOs as promising testing platforms for cancer immunotherapy. This review mainly focuses on the latest updates on the applications and challenges of PDTO-based methods in anti-cancer immune responses. We strive to provide a comprehensive understanding of the potential and prospects of PDTO-based technologies as next-generation strategies for advancing immunotherapy approaches.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfei Chu
- Department of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Chen M, Chen F, Gao Z, Li X, Hu L, Yang S, Zhao S, Song Z. CAFs and T cells interplay: The emergence of a new arena in cancer combat. Biomed Pharmacother 2024; 177:117045. [PMID: 38955088 DOI: 10.1016/j.biopha.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuying Yang
- Department of intensive medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
7
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
8
|
Viegas J, Sarmento B. Bridging the gap between testing and clinics exploring alternative pre-clinical models in melanoma research. Adv Drug Deliv Rev 2024; 208:115295. [PMID: 38527625 DOI: 10.1016/j.addr.2024.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Melanoma, the deadliest form of skin cancer, poses a significant clinical challenge for the development of effective treatments. Conventional in vivo animal studies have shown limited translational relevance to humans, raising strength to pre-clinical models for melanoma research. This review provides an in-depth analysis of alternative pre-clinical models including in vitro and ex vivo platforms such as reconstructed skin, spheroids, organoids, organotypic models, skin-on-a-chip, and bioprinting. Through a comprehensive analysis, the specific attributes, advantages, and limitations of each model are elucidated. It discusses the points related to the uniqueness advantages, from capturing complex interactions between melanoma cells and their microenvironment to enabling high-throughput drug screening and personalized medicine approaches. This review is structured covering firstly the roadmap to identify the co-occurrence of discovering new melanoma treatments and the development of its models, secondly it covers a comparative between the most used models followed by a section discussing each of them: the in vitro and ex vivo models. It intends to serve as an asset for researchers of melanoma field and clinicians involved in melanoma therapy, offering insights into the diverse preclinical models available for optimizing their integration into the translational pipeline.
Collapse
Affiliation(s)
- Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
9
|
Wei XY, Tan YQ, Zhou G. γδ T cells in oral diseases. Inflamm Res 2024; 73:867-876. [PMID: 38563967 DOI: 10.1007/s00011-024-01870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE γδ T cells are a distinct subset of unconventional T cells, which link innate and adaptive immunity by secreting cytokines and interacting with other immune cells, thereby modulating immune responses. As the first line of host defense, γδ T cells are essential for mucosal homeostasis and immune surveillance. When abnormally activated or impaired, γδ T cells can contribute to pathogenic processes. Accumulating evidence has revealed substantial impacts of γδ T cells on the pathogenesis of cancers, infections, and immune-inflammatory diseases. γδ T cells exhibit dual roles in cancers, promoting or inhibiting tumor growth, depending on their phenotypes and the clinical stage of cancers. During infections, γδ T cells exert high cytotoxic activity in infectious diseases, which is essential for combating bacterial and viral infections by recognizing foreign antigens and activating other immune cells. γδ T cells are also implicated in the onset and progression of immune-inflammatory diseases. However, the specific involvement and underlying mechanisms of γδ T cells in oral diseases have not been systematically discussed. METHODS We conducted a systematic literature review using the PubMed/MEDLINE databases to identify and analyze relevant literature on the roles of γδ T cells in oral diseases. RESULTS The literature review revealed that γδ T cells play a pivotal role in maintaining oral mucosal homeostasis and are involved in the pathogenesis of oral cancers, periodontal diseases, graft-versus-host disease (GVHD), oral lichen planus (OLP), and oral candidiasis. γδ T cells mainly influence various pathophysiological processes, such as anti-tumor activity, eradication of infection, and immune response regulation. CONCLUSION This review focuses on the involvement of γδ T cells in oral diseases, with a particular emphasis on the main functions and underlying mechanisms by which γδ T cells influence the pathogenesis and progression of these conditions. This review underscores the potential of γδ T cells as therapeutic targets in managing oral health issues.
Collapse
Affiliation(s)
- Xin-Yi Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Pu J, Liu T, Wang X, Sharma A, Schmidt-Wolf IGH, Jiang L, Hou J. Exploring the role of histone deacetylase and histone deacetylase inhibitors in the context of multiple myeloma: mechanisms, therapeutic implications, and future perspectives. Exp Hematol Oncol 2024; 13:45. [PMID: 38654286 DOI: 10.1186/s40164-024-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a significant category of pharmaceuticals that have developed in the past two decades to treat multiple myeloma. Four drugs in this category have received approval from the U.S. Food and Drug Administration (FDA) for use: Panobinonstat (though canceled by the FDA in 2022), Vorinostat, Belinostat and Romidepsin. The efficacy of this group of drugs is attributed to the disruption of many processes involved in tumor growth through the inhibition of histone deacetylase, and this mode of action leads to significant anti-multiple myeloma (MM) activity. In MM, inhibition of histone deacetylase has many downstream consequences, including suppression of NF-κB signaling and HSP90, upregulation of cell cycle regulators (p21, p53), and downregulation of antiapoptotic proteins including Bcl-2. Furthermore, HDACis have a variety of direct and indirect oxidative effects on cellular DNA. HDAC inhibitors enhance normal immune function, thereby decreasing the proliferation of malignant plasma cells and promoting autophagy. The various biological effects of inhibiting histone deacetylase have a combined or additional impact when used alongside other chemotherapeutic and targeted drugs for multiple myeloma. This helps to decrease resistance to treatment. Combination treatment regimens that include HDACis have become an essential part of the therapy for multiple myeloma. These regimens incorporate drugs from other important classes of anti-myeloma agents, such as immunomodulatory drugs (IMiDs), conventional chemotherapy, monoclonal antibodies, and proteasome inhibitors. This review provides a comprehensive evaluation of the clinical efficacy and safety data pertaining to the currently approved histone deacetylase inhibitors, as well as an explanation of the crucial function of histone deacetylase in multiple myeloma and the characteristics of the different histone deacetylase inhibitors. Moreover, it provides a concise overview of the most recent developments in the use of histone deacetylase inhibitors for treating multiple myeloma, as well as potential future uses in treatment.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Xuzhen Wang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
11
|
Revesz IA, Joyce P, Ebert LM, Prestidge CA. Effective γδ T-cell clinical therapies: current limitations and future perspectives for cancer immunotherapy. Clin Transl Immunology 2024; 13:e1492. [PMID: 38375329 PMCID: PMC10875631 DOI: 10.1002/cti2.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
γδ T cells are a unique subset of T lymphocytes, exhibiting features of both innate and adaptive immune cells and are involved with cancer immunosurveillance. They present an attractive alternative to conventional T cell-based immunotherapy due, in large part, to their lack of major histocompatibility (MHC) restriction and ability to secrete high levels of cytokines with well-known anti-tumour functions. To date, clinical trials using γδ T cell-based immunotherapy for a range of haematological and solid cancers have yielded limited success compared with in vitro studies. This inability to translate the efficacy of γδ T-cell therapies from preclinical to clinical trials is attributed to a combination of several factors, e.g. γδ T-cell agonists that are commonly used to stimulate populations of these cells have limited cellular uptake yet rely on intracellular mechanisms; administered γδ T cells display low levels of tumour-infiltration; and there is a gap in the understanding of γδ T-cell inhibitory receptors. This review explores the discrepancy between γδ T-cell clinical and preclinical performance and offers viable avenues to overcome these obstacles. Using more direct γδ T-cell agonists, encapsulating these agonists into lipid nanocarriers to improve their pharmacokinetic and pharmacodynamic profiles and the use of combination therapies to overcome checkpoint inhibition and T-cell exhaustion are ways to bridge the gap between preclinical and clinical success. Given the ability to overcome these limitations, the development of a more targeted γδ T-cell agonist-checkpoint blockade combination therapy has the potential for success in clinical trials which has to date remained elusive.
Collapse
Affiliation(s)
- Isabella A Revesz
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Paul Joyce
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Lisa M Ebert
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- School of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Clive A Prestidge
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
12
|
Zeng S, Wang Q, Zhou R, Wang D. KIF4A functions as a diagnostic and prognostic biomarker and regulates tumor immune microenvironment in skin cutaneous melanoma. Pathol Res Pract 2024; 254:155166. [PMID: 38286055 DOI: 10.1016/j.prp.2024.155166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND KIF4A is upregulated in various malignancies and serves as an independent risk factor. However, its function in skin cutaneous melanoma (SKCM) and the regulation of the immunological environment remains unknown. METHODS We first explored the mRNA and protein levels of KIF4A in SKCM through public databases. Then, the co-expressed genes with KIF4A in SKCM and their functional enrichment analysis were performed. Moreover, the clinical value, relationship with immune infiltration and tumor microenvironment (TME), as well as the correlation between KIF4A and immunomodulators were evaluated. In addition, we validated the function of KIF4A by in vitro experiments such as CCK-8 assay, clone formation and wound healing assay. RESULTS Our data reveal that the mRNA and protein levels of KIF4A are highly expressed in SKCM. Moreover, functional enrichment analysis of the top 50 co-expressed genes with KIF4A showed significant association with organelle fission, tubulin binding and immune processes. KIF4A can distinguish SKCM from normal tissue and predict a poorer prognosis. A negative association was observed between KIF4A and TME, and KIF4A exhibited a negative correlation with most immunomodulators. Additionally, the knockdown of KIF4A inhibited the proliferation and migration ability of A375 cells. CONCLUSIONS Our findings suggest that KIF4A promotes the progression of SKCM and is negatively associated with immune infiltration and immunomodulators, which indicates a poor prognosis.
Collapse
Affiliation(s)
- Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| |
Collapse
|
13
|
Deng S, Jiang Y, Luo L, Tang H, Hu X, Wu C, Tang J, Ge H, Gong X, Cai R, Wang G, Li X, Feng J. C5a enhances inflammation and chemotaxis of γδ T cells in malignant pleural effusion. Int Immunopharmacol 2024; 127:111332. [PMID: 38071913 DOI: 10.1016/j.intimp.2023.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The inhibitory effect of γδT17 cells on the formation of murine malignant pleural effusions (MPE) has been established. However, there is limited understanding regarding the phenotypic characterization of γδ T cells in MPE patients and their recruitment to the pleural cavity. METHODS We quantified γδ T cell prevalence in pleural effusions and corresponding peripheral blood from malignant and benign patients using immunohistochemistry and flow cytometry. The expression of effector memory phenotype, stimulatory/inhibitory/chemokine receptors and cytokines on γδ T cells in MPE was analyzed using multicolor flow cytometry. The infiltration of γδ T cells in MPE was assessed through immunofluorescence, ELISA, flow cytometry and transwell migration assay. RESULTS We observed a significant infiltration of γδ T cells in MPE, surpassing the levels found in blood and benign pleural effusion. γδ T cells in MPE exhibited heightened expression of CD56 and an effector memory phenotype, while displaying lower levels of PD-1. Furthermore, γδ T cells in MPE showed higher levels of cytokines (IFN-γ, IL-17A and IL-22) and chemokine receptors (CCR2, CCR5 and CCR6). CCR2 expression was notably higher in the Vδ2 subtype compared to Vδ1 cells. Moreover, the complement C5a enhanced cytokine release by γδ T cells, upregulated CCR2 expression in Vδ2 subsets, and stimulated the production of chemokines (CCL2, CCL7 and CCL20) in MPE. In vitro utilizing CCR2 neutralising and C5aR antagonist significantly reduced the recruitment of γδ T cells. CONCLUSIONS γδ T cells infiltrate MPE by overexpressing CCR2 and exhibit hightened inflammation, which is further augmented by C5a.
Collapse
Affiliation(s)
- Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Jiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Gong
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runjin Cai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo Wang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Papadakos SP, Arvanitakis K, Stergiou IE, Koutsompina ML, Germanidis G, Theocharis S. γδ T Cells: A Game Changer in the Future of Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2024; 25:1381. [PMID: 38338658 PMCID: PMC10855397 DOI: 10.3390/ijms25031381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge with limited treatment options and a poor prognosis for advanced-stage patients. Recent advancements in cancer immunotherapy have generated significant interest in exploring novel approaches to combat HCC. One such approach involves the unique and versatile subset of T cells known as γδ T cells. γδ T cells represent a distinct subset of T lymphocytes that differ from conventional αβ T cells in terms of antigen recognition and effector functions. They play a crucial role in immunosurveillance against various malignancies, including HCC. Recent studies have demonstrated that γδ T cells can directly recognize and target HCC cells, making them an attractive candidate for immunotherapy. In this article, we aimed to explore the role exerted by γδ T cells in the context of HCC. We investigate strategies designed to maximize the therapeutic effectiveness of these cells and examine the challenges and opportunities inherent in applying these research findings to clinical practice. The potential to bring about a revolutionary shift in HCC immunotherapy by capitalizing on the unique attributes of γδ T cells offers considerable promise for enhancing patient outcomes, warranting further investigation.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.)
| | - Maria-Loukia Koutsompina
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
15
|
Rassomakhina NV, Ryazanova AY, Likhov AR, Bruskin SA, Maloshenok LG, Zherdeva VV. Tumor Organoids: The Era of Personalized Medicine. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S127-S147. [PMID: 38621748 DOI: 10.1134/s0006297924140086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 04/17/2024]
Abstract
The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.
Collapse
Affiliation(s)
- Natalia V Rassomakhina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Astemir R Likhov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
16
|
ZENG SHUANGSHUANG, CHEN XI, YI QIAOLI, THAKUR ABHIMANYU, YANG HUI, YAN YUANLIANG, LIU SHAO. CRABP2 regulates infiltration of cancer-associated fibroblasts and immune response in melanoma. Oncol Res 2023; 32:261-272. [PMID: 38186580 PMCID: PMC10765133 DOI: 10.32604/or.2023.042345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 01/09/2024] Open
Abstract
Finding biomarkers for immunotherapy is an urgent issue in cancer treatment. Cellular retinoic acid-binding protein 2 (CRABP2) is a controversial factor in the occurrence and development of human tumors. However, there is limited research on the relationship between CRABP2 and immunotherapy response. This study found that negative correlations of CRABP2 and immune checkpoint markers (PD-1, PD-L1, and CTLA-4) were observed in breast invasive carcinoma (BRCA), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD) and testicular germ cell tumors (TGCT). In particular, in SKCM patients who were treated with PD-1 inhibitors, high levels of CRABP2 predicted poor prognosis. Additionally, CRABP2 expression was elevated in cancer-associated fibroblasts (CAFs) at the single-cell level. The expression of CRABP2 was positively correlated with markers of CAFs, such as MFAP5, PDPN, ITGA11, PDGFRα/β and THY1 in SKCM. To validate the tumor-promoting effect of CRABP2 in vivo, SKCM xenograft mice models with CRABP2 overexpression have been constructed. These models showed an increase in tumor weight and volume. Enrichment analysis indicated that CRABP2 may be involved in immune-related pathways of SKCM, such as extracellular matrix (ECM) receptor interaction and epithelial-mesenchymal transition (EMT). The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs. In conclusion, this study provides new insights into the role of CRABP2 in immunotherapy response. The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients. Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.
Collapse
Affiliation(s)
- SHUANGSHUANG ZENG
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - XI CHEN
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - QIAOLI YI
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - ABHIMANYU THAKUR
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - HUI YANG
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - YUANLIANG YAN
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - SHAO LIU
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
17
|
Pu J, Sharma A, Hou J, Schmidt-Wolf IG. Histone deacetylase 6: at the interface of cancer and neurodegeneration. Epigenomics 2023; 15:1195-1203. [PMID: 38059314 DOI: 10.2217/epi-2023-0373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
With the recognition in the early 1960s that histones can be post-translationally modified, the list of different post-translational modifications of histones and their biological consequences has continued to expand. In addition, the idea of the 'histone code' hypothesis, later introduced by David Allis and colleagues, further broaden the horizon of chromatin biology. Currently, there is a wealth of knowledge about the transition between the active and the repressive state of chromatin, and modifications of histones remains at the center of chromatin biology. Histone deacetylases (HDACs) in particular are of great importance for the therapeutic success of cancer treatment. Focusing primarily on HDAC6, herein we have briefly highlighted its unique involvement in cancer and also apparently in neurodegeneration.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Jian Hou
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ingo Gh Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Jenkins E, Whitehead T, Fellermeyer M, Davis SJ, Sharma S. The current state and future of T-cell exhaustion research. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad006. [PMID: 37554723 PMCID: PMC10352049 DOI: 10.1093/oxfimm/iqad006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023] Open
Abstract
'Exhaustion' is a term used to describe a state of native and redirected T-cell hypo-responsiveness resulting from persistent antigen exposure during chronic viral infections or cancer. Although a well-established phenotype across mice and humans, exhaustion at the molecular level remains poorly defined and inconsistent across the literature. This is, in part, due to an overreliance on surface receptors to define these cells and explain exhaustive behaviours, an incomplete understanding of how exhaustion arises, and a lack of clarity over whether exhaustion is the same across contexts, e.g. chronic viral infections versus cancer. With the development of systems-based genetic approaches such as single-cell RNA-seq and CRISPR screens applied to in vivo data, we are moving closer to a consensus view of exhaustion, although understanding how it arises remains challenging given the difficulty in manipulating the in vivo setting. Accordingly, producing and studying exhausted T-cells ex vivo are burgeoning, allowing experiments to be conducted at scale up and with high throughput. Here, we first review what is currently known about T-cell exhaustion and how it's being studied. We then discuss how improvements in their method of isolation/production and examining the impact of different microenvironmental signals and cell interactions have now become an active area of research. Finally, we discuss what the future holds for the analysis of this physiological condition and, given the diversity of ways in which exhausted cells are now being generated, propose the adoption of a unified approach to clearly defining exhaustion using a set of metabolic-, epigenetic-, transcriptional-, and activation-based phenotypic markers, that we call 'M.E.T.A'.
Collapse
Affiliation(s)
- Edward Jenkins
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Toby Whitehead
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Martin Fellermeyer
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Simon J Davis
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sumana Sharma
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
19
|
Gao Z, Bai Y, Lin A, Jiang A, Zhou C, Cheng Q, Liu Z, Chen X, Zhang J, Luo P. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Mol Cancer 2023; 22:31. [PMID: 36793048 PMCID: PMC9930367 DOI: 10.1186/s12943-023-01722-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
As a nontraditional T-cell subgroup, γδT cells have gained popularity in the field of immunotherapy in recent years. They have extraordinary antitumor potential and prospects for clinical application. Immune checkpoint inhibitors (ICIs), which are efficacious in tumor patients, have become pioneer drugs in the field of tumor immunotherapy since they were incorporated into clinical practice. In addition, γδT cells that have infiltrated into tumor tissues are found to be in a state of exhaustion or anergy, and there is upregulation of many immune checkpoints (ICs) on their surface, suggesting that γδT cells have a similar ability to respond to ICIs as traditional effector T cells. Studies have shown that targeting ICs can reverse the dysfunctional state of γδT cells in the tumor microenvironment (TME) and exert antitumor effects by improving γδT-cell proliferation and activation and enhancing cytotoxicity. Clarification of the functional state of γδT cells in the TME and the mechanisms underlying their interaction with ICs will solidify ICIs combined with γδT cells as a good treatment option.
Collapse
Affiliation(s)
- Zhifei Gao
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Yifeng Bai
- grid.54549.390000 0004 0369 4060The Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Anqi Lin
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China
| | - Aimin Jiang
- grid.73113.370000 0004 0369 1660The Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chaozheng Zhou
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- grid.216417.70000 0001 0379 7164The Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- grid.412633.10000 0004 1799 0733The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xin Chen
- The Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
20
|
Zhou S, Lu J, Liu S, Shao J, Liu Z, Li J, Xiao W. Role of the tumor microenvironment in malignant melanoma organoids during the development and metastasis of tumors. Front Cell Dev Biol 2023; 11:1166916. [PMID: 37152280 PMCID: PMC10154581 DOI: 10.3389/fcell.2023.1166916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Malignant melanoma (MM) is the most metastatic and aggressive form of skin cancer, and carries a high risk of death. Immune-checkpoint inhibitor therapy and molecular-targeted therapy can prolong the survival of patients with advanced MM significantly. However, the low response rate and inevitable drug resistance prevent further improvements in efficacy, which is closely related to the tumor microenvironment (TME). The TME refers to the tumor stroma, including fibroblasts, keratinocytes, immune cells, soluble molecules, and extracellular matrix (ECM). The dynamic interaction between the TME and tumor cells is very important for the growth, local invasion, and metastatic spread of tumor cells. A patient-derived organoid (PDO) model involves isolation of tumor tissue from patients with MM and culturing it in vitro in a three-dimensional pattern. Compared with traditional cultivation methods, the PDO model preserves the heterogeneity of the tissue structure of MM and demonstrates the interaction between MM cells and the TME. It can reproduce the characteristics of proliferation, migration, and invasion of MM cells, and better simulate the structural function of MM in vivo. This review explores the role of each TME component in development of the PDO model. This review will provide a reference for research on the drug screening and targeted treatment using PDOs, particularly for the immunotherapy of MM.
Collapse
|
21
|
Rodolfo M, Huber V, Cossa M, Gallino G, Leone BE, Vallacchi V, Rivoltini L, Vergani E. 3D tumor explant as a novel platform to investigate therapeutic pathways and predictive biomarkers in cancer patients. Front Immunol 2022; 13:1068091. [PMID: 36591316 PMCID: PMC9794575 DOI: 10.3389/fimmu.2022.1068091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors can induce durable clinical responses in different human malignancies but the number of responding patients remains globally modest. The limited therapeutic efficacy of ICI depends on multiple factors, among which the immune suppressive features of the tumor microenvironment play a key role. For this reason, experimental models that enable dissection of the immune-hostile tumor milieu components are required to unravel how to overcome resistance and obtain full-fledged anti-tumor immunity. Recent evidence supports the usefulness of 3D ex vivo systems in retaining features of tumor microenvironment to elucidate molecular and immunologic mechanisms of response and resistance to immune checkpoint blockade. In this perspective article we discuss the recent advances in patient-derived 3D tumor models and their potential in support of treatment decision making in clinical setting. We will also share our experience with dynamic bioreactor tumor explant culture of samples from melanoma and sarcoma patients as a reliable and promising platform to unravel immune responses to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Monica Rodolfo
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy,*Correspondence: Monica Rodolfo,
| | - Veronica Huber
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Cossa
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianfrancesco Gallino
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio E. Leone
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Viviana Vallacchi
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
22
|
Liu Y, An L, Huang R, Xiong J, Yang H, Wang X, Zhang X. Strategies to enhance CAR-T persistence. Biomark Res 2022; 10:86. [PMID: 36419115 PMCID: PMC9685914 DOI: 10.1186/s40364-022-00434-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has significantly improved the life expectancy for patients with refractory or relapse B cell lymphoma. As for B cell acute lymphoblastic leukemia (B-ALL), although the primary response rate is promising, the high incidence of early relapse has caused modest long-term survival with CAR-T cell alone. One of the main challenges is the limited persistence of CAR-T cells. To further optimize the clinical effects of CAR-T cells, many studies have focused on modifying the CAR structure and regulating CAR-T cell differentiation. In this review, we focus on CAR-T cell persistence and summarize the latest progress and strategies adopted during the in vitro culture stage to optimize CAR-T immunotherapy by improving long-term persistence. Such strategies include choosing a suitable cell source, improving culture conditions, combining CAR-T cells with conventional drugs, and applying genetic manipulations, all of which may improve the survival of patients with hematologic malignancies by reducing the probability of recurrence after CAR-T cell infusion and provide clues for solid tumor CAR-T cell therapy development.
Collapse
Affiliation(s)
- Yue Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Haoyu Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China. .,Jinfeng Laboratory, 401329, Chongqing, China.
| |
Collapse
|
23
|
Huber V, Vallacchi V, Daveri E, Vergani E. 3D models for melanoma γδ T cell-based immunotherapy. Clin Transl Med 2022; 12:e926. [PMID: 35696610 PMCID: PMC9191865 DOI: 10.1002/ctm2.926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Veronica Huber
- Department of ResearchUnit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Viviana Vallacchi
- Department of ResearchUnit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Elena Daveri
- Department of ResearchUnit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Elisabetta Vergani
- Department of ResearchUnit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| |
Collapse
|