1
|
Koike Y. Abnormal Splicing Events due to Loss of Nuclear Function of TDP-43: Pathophysiology and Perspectives. JMA J 2024; 7:313-318. [PMID: 39114608 PMCID: PMC11301021 DOI: 10.31662/jmaj.2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 08/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with a progressive and fatal course. They are often comorbid and share the same molecular spectrum. Their key pathological features are the formation of the aggregation of TDP-43, an RNA-binding protein, in the cytoplasm and its depletion from the nucleus in the central nervous system. In the nucleus, TDP-43 regulates several aspects of RNA metabolism, ranging from RNA transcription and alternative splicing to RNA transport. Suppressing the aberrant splicing events during RNA processing is one of the significant functions of TDP-43. This function is impaired when TDP-43 becomes depleted from the nucleus. Several critical cryptic splicing targets of TDP-43 have recently emerged, such as STMN2, UNC13A, and others. UNC13A is an important ALS/FTD risk gene, and the genetic variations, single nucleotide polymorphisms, cause disease via the increased susceptibility for cryptic exon inclusion under the TDP-43 dysfunction. Moreover, TDP-43 has an autoregulatory mechanism that regulates the splicing of its mRNA (TARDBP mRNA) in the healthy state. This study provides recent findings on the splicing regulatory function of TDP-43 and discusses the prospects of using these aberrant splicing events as efficient biomarkers.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Neuroscience, Mayo Clinic Florida, Florida, USA
| |
Collapse
|
2
|
Koike Y. Molecular mechanisms linking loss of TDP-43 function to amyotrophic lateral sclerosis/frontotemporal dementia-related genes. Neurosci Res 2024:S0168-0102(24)00063-4. [PMID: 38723906 DOI: 10.1016/j.neures.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 plays a key role in regulating the splicing of numerous genes, including TARDBP. This review aims to delineate two aspects of ALS/FTD pathogenesis associated with TDP-43 function. First, we provide novel mechanistic insights into the splicing of UNC13A, a TDP-43 target gene. Single nucleotide polymorphisms (SNPs) in UNC13A are the most common risk factors for ALS/FTD. We found that TDP-43 represses "cryptic exon" inclusion during UNC13A RNA splicing. A risk-associated SNP in this exon results in increased RNA levels of UNC13A retaining the cryptic exon. Second, we described the perturbation of the TDP-43 autoregulatory mechanism caused by age-related DNA demethylation. Aging is a major risk factor for sporadic ALS/FTD. Typically, TDP-43 levels are regulated via alternative splicing of TARDBP mRNA. We hypothesized that TARDBP methylation is altered by aging, thereby disrupting TDP-43 autoregulation. We found that demethylation reduces the efficiency of alternative splicing and increases TARDBP mRNA levels. Moreover, we demonstrated that, with aging, this region is demethylated in the human motor cortex and is associated with the early onset of ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Japan.
| |
Collapse
|
3
|
Zibold J, Lessard LER, Picard F, da Silva LG, Zadorozhna Y, Streichenberger N, Belotti E, Osseni A, Emerit A, Errazuriz-Cerda E, Michel-Calemard L, Menassa R, Coudert L, Wiessner M, Stucka R, Klopstock T, Simonetti F, Hutten S, Nonaka T, Hasegawa M, Strom TM, Bernard E, Ollagnon E, Urtizberea A, Dormann D, Petiot P, Schaeffer L, Senderek J, Leblanc P. The new missense G376V-TDP-43 variant induces late-onset distal myopathy but not amyotrophic lateral sclerosis. Brain 2024; 147:1768-1783. [PMID: 38079474 PMCID: PMC11068115 DOI: 10.1093/brain/awad410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 05/04/2024] Open
Abstract
TAR DNA binding protein of 43 kDa (TDP-43)-positive inclusions in neurons are a hallmark of several neurodegenerative diseases including familial amyotrophic lateral sclerosis (fALS) caused by pathogenic TARDBP variants as well as more common non-Mendelian sporadic ALS (sALS). Here we report a G376V-TDP-43 missense variant in the C-terminal prion-like domain of the protein in two French families affected by an autosomal dominant myopathy but not fulfilling diagnostic criteria for ALS. Patients from both families presented with progressive weakness and atrophy of distal muscles, starting in their fifth to seventh decade. Muscle biopsies revealed a degenerative myopathy characterized by accumulation of rimmed (autophagic) vacuoles, disruption of sarcomere integrity and severe myofibrillar disorganization. The G376V variant altered a highly conserved amino acid residue and was absent in databases on human genome variation. Variant pathogenicity was supported by in silico analyses and functional studies. The G376V mutant increased the formation of cytoplasmic TDP-43 condensates in cell culture models, promoted assembly into high molecular weight oligomers and aggregates in vitro, and altered morphology of TDP-43 condensates arising from phase separation. Moreover, the variant led to the formation of cytoplasmic TDP-43 condensates in patient-derived myoblasts and induced abnormal mRNA splicing in patient muscle tissue. The identification of individuals with TDP-43-related myopathy, but not ALS, implies that TARDBP missense variants may have more pleiotropic effects than previously anticipated and support a primary role for TDP-43 in skeletal muscle pathophysiology. We propose to include TARDBP screening in the genetic work-up of patients with late-onset distal myopathy. Further research is warranted to examine the precise pathogenic mechanisms of TARDBP variants causing either a neurodegenerative or myopathic phenotype.
Collapse
Affiliation(s)
- Julia Zibold
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Lola E R Lessard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service d’Electroneuromyographie et de pathologies neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France
| | - Flavien Picard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Lara Gruijs da Silva
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU BioCenter, Department Biology II Neurobiology, 82152 Planegg-Martinsried, Germany
- Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yelyzaveta Zadorozhna
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- International PhD Programme (IPP) of the Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nathalie Streichenberger
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Département d’Anatomo-Pathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Edwige Belotti
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Alexis Osseni
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Andréa Emerit
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | | | - Laurence Michel-Calemard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service Biochimie et Biologie Moléculaire, Centre de biologie et pathologie Est, Hospices civils de Lyon, 69677 Bron, France
| | - Rita Menassa
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service Biochimie et Biologie Moléculaire, Centre de biologie et pathologie Est, Hospices civils de Lyon, 69677 Bron, France
| | - Laurent Coudert
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Manuela Wiessner
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rolf Stucka
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Thomas Klopstock
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich Site, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Francesca Simonetti
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU BioCenter, Department Biology II Neurobiology, 82152 Planegg-Martinsried, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich Site, 81377 Munich, Germany
| | - Saskia Hutten
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Emilien Bernard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service d’Electroneuromyographie et de pathologies neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France
| | - Elisabeth Ollagnon
- Service de Génétique, Neurogénétique et Médecine Prédictive, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| | - Andoni Urtizberea
- Centre de Référence Neuromusculaire, Hôpital Marin—APHP, 64701 Hendaye, France
| | - Dorothee Dormann
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Laurent Schaeffer
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Jan Senderek
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Pascal Leblanc
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| |
Collapse
|
4
|
Xiao C, Gu X, Feng Y, Shen J. Two-sample Mendelian randomization analysis of 91 circulating inflammatory protein levels and amyotrophic lateral sclerosis. Front Aging Neurosci 2024; 16:1367106. [PMID: 38601850 PMCID: PMC11004327 DOI: 10.3389/fnagi.2024.1367106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with poorly understood pathophysiology. Recent studies have highlighted systemic inflammation, especially the role of circulating inflammatory proteins, in ALS. Methods This study investigates the potential causal link between these proteins and ALS. We employed a two-sample Mendelian Randomization(MR) approach, analyzing data from large-scale genome-wide association studies to explore the relationship between 91 circulating inflammatory proteins and ALS. This included various MR methods like MR Egger, weighted median, and inverse-variance weighted, complemented by sensitivity analyses for robust results. Results Significant associations were observed between levels of inflammatory proteins, including Adenosine Deaminase, Interleukin-17C, Oncostatin-M, Leukemia Inhibitory Factor Receptor, and Osteoprotegerin, and ALS risk. Consistencies were noted across different P-value thresholds. Bidirectional MR suggested that ALS risk might influence levels of certain inflammatory proteins. Discussion Our findings, via MR analysis, indicate a potential causal relationship between circulating inflammatory proteins and ALS. This sheds new light on ALS pathophysiology and suggests possible therapeutic targets. Further research is required to confirm these results and understand the specific roles of these proteins in ALS.
Collapse
Affiliation(s)
- Chenxu Xiao
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaochu Gu
- Medical Laboratory, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yu Feng
- The University of New South Wales, Kensington, NSW, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Jing Shen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
5
|
Spence H, Waldron FM, Saleeb RS, Brown AL, Rifai OM, Gilodi M, Read F, Roberts K, Milne G, Wilkinson D, O'Shaughnessy J, Pastore A, Fratta P, Shneider N, Tartaglia GG, Zacco E, Horrocks MH, Gregory JM. RNA aptamer reveals nuclear TDP-43 pathology is an early aggregation event that coincides with STMN-2 cryptic splicing and precedes clinical manifestation in ALS. Acta Neuropathol 2024; 147:50. [PMID: 38443601 PMCID: PMC10914926 DOI: 10.1007/s00401-024-02705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known. To address these outstanding questions, we used a novel RNA aptamer, TDP-43APT, to detect TDP-43 pathology and used single molecule in situ hybridization to sensitively reveal TDP-43 loss-of-function and applied these in a deeply phenotyped human post-mortem tissue cohort. We demonstrate that TDP-43APT identifies pathological TDP-43, detecting aggregation events that cannot be detected by classical antibody stains. We show that nuclear TDP-43 pathology is an early event, occurring prior to cytoplasmic accumulation and is associated with loss-of-function measured by coincident STMN-2 cryptic splicing pathology. Crucially, we show that these pathological features of TDP-43 loss-of-function precede the clinical inflection point and are not required for region specific clinical manifestation. Furthermore, we demonstrate that gain-of-function in the form of extensive cytoplasmic accumulation, but not loss-of-function, is the primary molecular correlate of clinical manifestation. Taken together, our findings demonstrate implications for early diagnostics as the presence of STMN-2 cryptic exons and early TDP-43 aggregation events could be detected prior to symptom onset, holding promise for early intervention in ALS.
Collapse
Affiliation(s)
- Holly Spence
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Fergal M Waldron
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Rebecca S Saleeb
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Olivia M Rifai
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Martina Gilodi
- RNA System Biology Lab, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Fiona Read
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kristine Roberts
- Department of Pathology, NHS Grampian Tissue Biorepository, Aberdeen, UK
| | - Gillian Milne
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Debbie Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Judi O'Shaughnessy
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Neil Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | | | - Elsa Zacco
- RNA System Biology Lab, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Jenna M Gregory
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- Department of Pathology, NHS Grampian Tissue Biorepository, Aberdeen, UK.
| |
Collapse
|
6
|
Zeng Y, Lovchykova A, Akiyama T, Liu C, Guo C, Jawahar VM, Sianto O, Calliari A, Prudencio M, Dickson DW, Petrucelli L, Gitler AD. TDP-43 nuclear loss in FTD/ALS causes widespread alternative polyadenylation changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.575730. [PMID: 38328059 PMCID: PMC10849503 DOI: 10.1101/2024.01.22.575730] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In frontotemporal dementia and amyotrophic lateral sclerosis, the RNA-binding protein TDP-43 is depleted from the nucleus. TDP-43 loss leads to cryptic exon inclusion but a role in other RNA processing events remains unresolved. Here, we show that loss of TDP-43 causes widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tetsuya Akiyama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chang Liu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Caiwei Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vidhya Maheswari Jawahar
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Odilia Sianto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna Calliari
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
McMackin R, Bede P, Ingre C, Malaspina A, Hardiman O. Biomarkers in amyotrophic lateral sclerosis: current status and future prospects. Nat Rev Neurol 2023; 19:754-768. [PMID: 37949994 DOI: 10.1038/s41582-023-00891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Disease heterogeneity in amyotrophic lateral sclerosis poses a substantial challenge in drug development. Categorization based on clinical features alone can help us predict the disease course and survival, but quantitative measures are also needed that can enhance the sensitivity of the clinical categorization. In this Review, we describe the emerging landscape of diagnostic, categorical and pharmacodynamic biomarkers in amyotrophic lateral sclerosis and their place in the rapidly evolving landscape of new therapeutics. Fluid-based markers from cerebrospinal fluid, blood and urine are emerging as useful diagnostic, pharmacodynamic and predictive biomarkers. Combinations of imaging measures have the potential to provide important diagnostic and prognostic information, and neurophysiological methods, including various electromyography-based measures and quantitative EEG-magnetoencephalography-evoked responses and corticomuscular coherence, are generating useful diagnostic, categorical and prognostic markers. Although none of these biomarker technologies has been fully incorporated into clinical practice or clinical trials as a primary outcome measure, strong evidence is accumulating to support their clinical utility.
Collapse
Affiliation(s)
- Roisin McMackin
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Peter Bede
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Caroline Ingre
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Malaspina
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Orla Hardiman
- Academic Unit of Neurology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
- Department of Neurology, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
8
|
Gittings LM, Alsop EB, Antone J, Singer M, Whitsett TG, Sattler R, Van Keuren-Jensen K. Cryptic exon detection and transcriptomic changes revealed in single-nuclei RNA sequencing of C9ORF72 patients spanning the ALS-FTD spectrum. Acta Neuropathol 2023; 146:433-450. [PMID: 37466726 PMCID: PMC10412668 DOI: 10.1007/s00401-023-02599-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023]
Abstract
The C9ORF72-linked diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by the nuclear depletion and cytoplasmic accumulation of TAR DNA-binding protein 43 (TDP-43). Recent studies have shown that the loss of TDP-43 function leads to the inclusion of cryptic exons (CE) in several RNA transcript targets of TDP-43. Here, we show for the first time the detection of CEs in a single-nuclei RNA sequencing (snRNA-seq) dataset obtained from frontal and occipital cortices of C9ORF72 patients that phenotypically span the ALS-FTD disease spectrum. We assessed each cellular cluster for detection of recently described TDP-43-induced CEs. Transcripts containing CEs in the genes STMN2 and KALRN were detected in the frontal cortex of all C9ORF72 disease groups with the highest frequency in excitatory neurons in the C9ORF72-FTD group. Within the excitatory neurons, the cluster with the highest proportion of cells containing a CE had transcriptomic similarities to von Economo neurons, which are known to be vulnerable to TDP-43 pathology and selectively lost in C9ORF72-FTD. Differential gene expression and pathway analysis of CE-containing neurons revealed multiple dysregulated metabolic processes. Our findings reveal novel insights into the transcriptomic changes of neurons vulnerable to TDP-43 pathology.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Eric B Alsop
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Jerry Antone
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Mo Singer
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Timothy G Whitsett
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA.
| |
Collapse
|
9
|
de Majo M, Koontz M, Marsan E, Salinas N, Ramsey A, Kuo YM, Seo K, Li H, Dräger N, Leng K, Gonzales SL, Kurnellas M, Miyaoka Y, Klim JR, Kampmann M, Ward ME, Huang EJ, Ullian EM. Granulin loss of function in human mature brain organoids implicates astrocytes in TDP-43 pathology. Stem Cell Reports 2023; 18:706-719. [PMID: 36827976 PMCID: PMC10031303 DOI: 10.1016/j.stemcr.2023.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Loss of function (LoF) of TAR-DNA binding protein 43 (TDP-43) and mis-localization, together with TDP-43-positive and hyperphosphorylated inclusions, are found in post-mortem tissue of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those carrying LoF variants in the progranulin gene (GRN). Modeling TDP-43 pathology has been challenging in vivo and in vitro. We present a three-dimensional induced pluripotent stem cell (iPSC)-derived paradigm-mature brain organoids (mbOrg)-composed of cortical-like-astrocytes (iA) and neurons. When devoid of GRN, mbOrgs spontaneously recapitulate TDP-43 mis-localization, hyperphosphorylation, and LoF phenotypes. Mixing and matching genotypes in mbOrgs showed that GRN-/- iA are drivers for TDP-43 pathology. Finally, we rescued TDP-43 LoF by adding exogenous progranulin, demonstrating a link between TDP-43 LoF and progranulin expression. In conclusion, we present an iPSC-derived platform that shows striking features of human TDP-43 proteinopathy and provides a tool for the mechanistic modeling of TDP-43 pathology and patient-tailored therapeutic screening for FTD and ALS.
Collapse
Affiliation(s)
- Martina de Majo
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Synapticure Inc, Chicago, IL 60612, USA.
| | - Mark Koontz
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Synapticure Inc, Chicago, IL 60612, USA
| | - Elise Marsan
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nir Salinas
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Arren Ramsey
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kyounghee Seo
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Huinan Li
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nina Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Santiago L Gonzales
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Yuichiro Miyaoka
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer's disease. Sci Rep 2022; 12:10994. [PMID: 35768560 PMCID: PMC9243110 DOI: 10.1038/s41598-022-15299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The risk of Alzheimer’s disease (AD) has a strong genetic component, also in the case of late-onset AD (LOAD). Attempts to sequence whole genome in large populations of subjects have identified only a few mutations common to most of the patients with AD. Targeting smaller well-characterized groups of subjects where specific genetic variations in selected genes could be related to precisely defined psychological traits typical of dementia is needed to better understand the heritability of AD. More than one thousand participants, categorized according to cognitive deficits, were assessed using 14 psychometric tests evaluating performance in five cognitive domains (attention/working memory, memory, language, executive functions, visuospatial functions). CD36 was selected as a gene previously shown to be implicated in the etiology of AD. A total of 174 polymorphisms were tested for associations with cognition-related traits and other AD-relevant data using the next generation sequencing. Several associations between single nucleotide polymorphisms (SNP’s) and the cognitive deficits have been found (rs12667404 with language performance, rs3211827 and rs41272372 with executive functions, rs137984792 with visuospatial performance). The most prominent association was found between a group of genotypes in six genetically linked and the age at which the AD patients presented with, or developed, a full-blown dementia. The identified alleles appear to be associated with a delay in the onset of LOAD. In silico studies suggested that the SNP’s alter the expression of CD36 thus potentially affecting CD36-related neuroinflammation and other molecular and cellular mechanisms known to be involved in the neuronal loss leading to AD. The main outcome of the study is an identification of a set of six new mutations apparently conferring a distinct protection against AD and delaying the onset by about 8 years. Additional mutations in CD36 associated with certain traits characteristic of the cognitive decline in AD have also been found.
Collapse
|