1
|
Volovitz I, Melzer S, Amar S, Bocsi J, Bloch M, Efroni S, Ram Z, Tárnok A. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools. Int Rev Immunol 2016; 35:116-35. [DOI: 10.3109/08830185.2015.1096935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Wlodkowic D, Cooper JM. Microfluidic cell arrays in tumor analysis: new prospects for integrated cytomics. Expert Rev Mol Diagn 2014; 10:521-30. [DOI: 10.1586/erm.10.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Recent advances in morphological cell image analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:101536. [PMID: 22272215 PMCID: PMC3261466 DOI: 10.1155/2012/101536] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022]
Abstract
This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed.
Collapse
|
4
|
Wlodkowic D, Darzynkiewicz Z. Microfluidics: Emerging prospects for anti-cancer drug screening. World J Clin Oncol 2010; 1:18-23. [PMID: 21603306 PMCID: PMC3095457 DOI: 10.5306/wjco.v1.i1.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 02/06/2023] Open
Abstract
Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity. Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature. To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy, new analytical screening technologies are needed. The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics, opening new avenues for systems oncology and high-throughput real-time drug screening routines. The up-and-coming microfluidic Lab-on-a-Chip (LOC) technology and micro-total analysis systems (μTAS) are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level. The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample. Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and, as such, they enable next generation high-throughput and high-content screening of anti-cancer drugs on patient-derived specimens. Herein we highlight the selected advancements in this emerging field of bioengineering, and provide a snapshot of developments with relevance to anti-cancer drug screening routines.
Collapse
Affiliation(s)
- Donald Wlodkowic
- Donald Wlodkowic, Auckland Microfabrication Facility, Department of Chemistry, University of Auckland, 1142 Auckland, New Zealand
| | | |
Collapse
|
5
|
Wlodkowic D, Cooper JM. Microfabricated analytical systems for integrated cancer cytomics. Anal Bioanal Chem 2010; 398:193-209. [DOI: 10.1007/s00216-010-3722-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/29/2010] [Accepted: 04/03/2010] [Indexed: 01/09/2023]
|
6
|
|
7
|
Pierzchalski A, Robitzki A, Mittag A, Emmrich F, Sack U, O'Connor JE, Bocsi J, Tárnok A. Cytomics and nanobioengineering. CYTOMETRY PART B-CLINICAL CYTOMETRY 2008; 74:416-26. [PMID: 18814265 DOI: 10.1002/cyto.b.20453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The finding that an individual's genome differs as much as by many million variants from that of the human reference assembly diminished the great enthusiasm that every disease could be predicted based on nucleotide polymorphisms. Even individual cells of an organ may be specifically equipped to perform specific tasks and that the information of individual cells in a cell system is key information to understand function or dysfunction. Therefore, cytomics received great attention during the last years as it allows to quantitatively and qualitatively analyzing great number of individual cells, cell constituents, and of their intracellular and functional interactions in a cellular system and also giving the concept of analysis of these data.Exhaustive data extraction from multiparametric assays and multiple tests are the prerequisite for prediction of drug toxicity. Cytomics, as novel approach for unsupervised data analysis give a chance to find the most predictive parameters, which describe best the toxicity of a chemical. Cytomics is intrinsically connected to drug development and drug discovery.Focused on small structures, nanobioengineering is the ideal partner of cytomics, the systems biological discipline for cell population analysis. Realizing the idea "from the molecule to the patient" develops and offers chemical compounds, proteins, and other biomolecules, cells as well as tissues as instruments and products for a wide variety of biotechnological and biomedical applications.The integrative nanobioengineering combining different disciplines of nanotechnology will promote the development of innovative therapies and diagnostic methods. It can improve the precision of the measurements with focus on single cell analysis. By nanobioengineering and whole body imaging techniques, cytomics covers the field from molecules through bacterial cells, eukaryotic tissues, and organs to small animal live analysis. Toxicological testing and medical drug development are currently strongly broadening. It harbors the promise to substantially impact on various fields of biomedicine, drug discovery, and predictive medicine.As the number of scientific data is rising exponentially, new data analysis tools and strategies like cytomics and nanobioengineering take a lead and get closer to application. Bionanoengineering may strongly support the quantitative data supply, thus strengthening the rational for cytomics approach.
Collapse
Affiliation(s)
- Arkadiusz Pierzchalski
- Department of Pediatric Cardiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Sack U, Gerling F, Tárnok A. Age-Related Lymphocyte Subset Changes in the Peripheral Blood of Healthy Children – a Meta-Study. Transfus Med Hemother 2007. [DOI: 10.1159/000101357] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
10
|
Barten MJ, Gummert JF. Biomarkers in Transplantation Medicine: Prediction of Pharmacodynamic Drug Effects. Transfus Med Hemother 2007. [DOI: 10.1159/000101372] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
11
|
Tárnok A, Bocsi J, Lenz D, Janousek J. Protein Losing Enteropathy after Fontan Surgery – Clinical and Diagnostical Aspects. Transfus Med Hemother 2007. [DOI: 10.1159/000101373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Gille C, Orlikowsky TW. Flow Cytometric Methods in the Detection of Neonatal Infection. Transfus Med Hemother 2007. [DOI: 10.1159/000101519] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Gordon A, Colman-Lerner A, Chin TE, Benjamin KR, Yu RC, Brent R. Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nat Methods 2007; 4:175-81. [PMID: 17237792 DOI: 10.1038/nmeth1008] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 12/20/2006] [Indexed: 11/09/2022]
Abstract
Microscope-based cytometry provides a powerful means to study cells in high throughput. Here we present a set of refined methods for making sensitive measurements of large numbers of individual Saccharomyces cerevisiae cells over time. The set consists of relatively simple 'wet' methods, microscope procedures, open-source software tools and statistical routines. This combination is very sensitive, allowing detection and measurement of fewer than 350 fluorescent protein molecules per living yeast cell. These methods enabled new protocols, including 'snapshot' protocols to calculate rates of maturation and degradation of molecular species, including a GFP derivative and a native mRNA, in unperturbed, exponentially growing yeast cells. Owing to their sensitivity, accuracy and ability to track changes in individual cells over time, these microscope methods may complement flow-cytometric measurements for studies of the quantitative physiology of cellular systems.
Collapse
Affiliation(s)
- Andrew Gordon
- The Molecular Sciences Institute, 2168 Shattuck Avenue, Berkeley, California 94704, USA
| | | | | | | | | | | |
Collapse
|
14
|
Tárnok A, Bocsi J, Brockhoff G. Cytomics - importance of multimodal analysis of cell function and proliferation in oncology. Cell Prolif 2007; 39:495-505. [PMID: 17109634 PMCID: PMC6496464 DOI: 10.1111/j.1365-2184.2006.00407.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer is a highly complex and heterogeneous disease involving a succession of genetic changes (frequently caused or accompanied by exogenous trauma), and resulting in a molecular phenotype that in turn results in a malignant specification. The development of malignancy has been described as a multistep process involving self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and finally tissue invasion and metastasis. The quantitative analysis of networking molecules within the cells might be applied to understand native-state tissue signalling biology, complex drug actions and dysfunctional signalling in transformed cells, that is, in cancer cells. High-content and high-throughput single-cell analysis can lead to systems biology and cytomics. The application of cytomics in cancer research and diagnostics is very broad, ranging from the better understanding of the tumour cell biology to the identification of residual tumour cells after treatment, to drug discovery. The ultimate goal is to pinpoint in detail these processes on the molecular, cellular and tissue level. A comprehensive knowledge of these will require tissue analysis, which is multiplex and functional; thus, vast amounts of data are being collected from current genomic and proteomic platforms for integration and interpretation as well as for new varieties of updated cytomics technology. This overview will briefly highlight the most important aspects of this continuously developing field.
Collapse
Affiliation(s)
- A Tárnok
- Department of Paediatric Cardiology, Cardiac Centre Leipzig GmbH, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
15
|
Tárnok A. Cytomics and translational medicine: Preface to the abstracts of the 12th Leipziger Workshop incorporating the 5th International Workshop on Slide Based Cytometry. Cytometry A 2007. [DOI: 10.1002/cyto.a.20420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Bold A, Wurth R, Keller T, Trahorsch U, Voigt P, Schubert S, Sack U. Low-cost enumeration of CD4+ T cells using a density-based negative selection method (RosetteSep™) for the monitoring of HIV-infected individuals in non-OECD countries. Cytometry A 2007; 73:28-35. [DOI: 10.1002/cyto.a.20494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Affiliation(s)
- A Tárnok
- Department of Paediatric Cardiology, Cardiac Centre, University of Leipzig, Germany.
| | | |
Collapse
|
18
|
Abstract
In the postgenomic era, to gain the most detailed quantitative data from biological specimens has become increasingly important in the emerging new fields of high-content and high-throughput single-cell analysis for systems biology and cytomics. Areas of research and diagnosis with the demand to virtually measure "anything" in the cell include immunophenotyping, rare cell detection and characterization in the case of stem cells and residual tumor cells, tissue analysis, and drug discovery. Systemic analysis is also a prerequisite for predictive medicine by genomics, proteomics, and cytomics. This issue of Cytometry Part A is dedicated to innovative concepts of system wide single cells analysis and manipulation, new technologies, data analysis and display, and, finally, quality assessment. The manuscripts to these chapters are provided by cutting edge experts in the fields. This overview will briefly highlight the most important aspects of this continuously developing field.
Collapse
Affiliation(s)
- Attila Tárnok
- Department of Pediatric Cardiology, Cardiac Center Leipzig GmbH, University of Leipzig, Germany.
| |
Collapse
|