1
|
Vitale G, Mattiaccio A, Conti A, Berardi S, Vero V, Turco L, Seri M, Morelli MC. Molecular and Clinical Links between Drug-Induced Cholestasis and Familial Intrahepatic Cholestasis. Int J Mol Sci 2023; 24:ijms24065823. [PMID: 36982896 PMCID: PMC10057459 DOI: 10.3390/ijms24065823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Idiosyncratic Drug-Induced Liver Injury (iDILI) represents an actual health challenge, accounting for more than 40% of hepatitis cases in adults over 50 years and more than 50% of acute fulminant hepatic failure cases. In addition, approximately 30% of iDILI are cholestatic (drug-induced cholestasis (DIC)). The liver's metabolism and clearance of lipophilic drugs depend on their emission into the bile. Therefore, many medications cause cholestasis through their interaction with hepatic transporters. The main canalicular efflux transport proteins include: 1. the bile salt export pump (BSEP) protein (ABCB11); 2. the multidrug resistance protein-2 (MRP2, ABCC2) regulating the bile salts' independent flow by excretion of glutathione; 3. the multidrug resistance-1 protein (MDR1, ABCB1) that transports organic cations; 4. the multidrug resistance-3 protein (MDR3, ABCB4). Two of the most known proteins involved in bile acids' (BAs) metabolism and transport are BSEP and MDR3. BSEP inhibition by drugs leads to reduced BAs' secretion and their retention within hepatocytes, exiting in cholestasis, while mutations in the ABCB4 gene expose the biliary epithelium to the injurious detergent actions of BAs, thus increasing susceptibility to DIC. Herein, we review the leading molecular pathways behind the DIC, the links with the other clinical forms of familial intrahepatic cholestasis, and, finally, the main cholestasis-inducing drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sonia Berardi
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Vittoria Vero
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| |
Collapse
|
2
|
Ashino T, Nakamura Y, Ohtaki H, Iwakura Y, Numazawa S. Interleukin-6 regulates the expression of hepatic canalicular efflux drug transporters after cecal ligation and puncture-induced sepsis: A comparison with lipopolysaccharide treatment. Toxicol Lett 2023; 374:40-47. [PMID: 36526125 DOI: 10.1016/j.toxlet.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hepatic multidrug transporters expressed on the canalicular membrane play a role in the hepatobiliary excretion of xenobiotics and endogenous substrates. The aim of this study was to elucidate the role of pro-inflammatory cytokines in the regulation of hepatic drug transporter expression after cecal ligation and puncture (CLP), a valuable tool for studying polymicrobial sepsis, and to compare CLP with lipopolysaccharide (LPS) treatment. CLP reduced the expression of Mdr2/Abcb4, Mrp2/Abcc2, Bsep/Abcb11, Bcrp/Abcg2, and Mate1/Slc47a1 mRNAs in wild-type (WT) mouse livers in a time-dependent manner up to 48 h postoperation. LPS also reduced the expression of all transporters in WT mouse livers 24 h posttreatment; thereafter, expression levels tended to return to normal by 48 h posttreatment. IL-6-/- mice exhibited inhibited downregulation of drug transporters following CLP, although IL-1-/- and TNFα-/- mice exhibited the reduced expression of all transporters in a manner similar to that found in WT mice. Compared with CLP, LPS treatment reduced the expression of all transporters in all cytokine-deficient mouse livers, except for the expression of Mrp2/Abcc2 in IL-6-/- mice. Overall, these findings suggest that IL-6 is major factor in the downregulation of hepatic multidrug transporters following the onset of polymicrobial sepsis but not after LPS treatment.
Collapse
Affiliation(s)
- Takashi Ashino
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Yuki Nakamura
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Center for Pharmaceutical Education, Faculty of Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama, Kanagawa 245-0066, Japan
| | - Hirokazu Ohtaki
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Deng J, Zhang X, Chen Z, Luo Y, Lu Y, Liu T, Wu Z, Jin Y, Zhao W, Lin B. A cell lines derived microfluidic liver model for investigation of hepatotoxicity induced by drug-drug interaction. BIOMICROFLUIDICS 2019; 13:024101. [PMID: 31040885 PMCID: PMC6456354 DOI: 10.1063/1.5070088] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/18/2023]
Abstract
The poor metabolic ability of cell lines fails to meet the requirements of an in vitro model for drug interaction testing which is crucial for the development or clinical application of drugs. Herein, we describe a liver sinusoid-on-a-chip device composed of four kinds of transformed cell lines (HepG2 cells, LX-2 cells, EAhy926 cells, and U937 cells) that were ordered in a physiological distribution with artificial liver blood flow and biliary efflux flowing in the opposite direction. This microfluidic device applied three-dimensional culturing of HepG2 cells with high density (107 ml-1), forming a tightly connected monolayer of EAhy926 cells and achieving the active transport of drugs in HepG2 cells. Results showed that the device maintained synthetic and secretory functions, preserved cytochrome P450 1A1/2 and uridine diphosphate glucuronyltransferase enzymatic activities, as well as sensitivity of drug metabolism. The cell lines derived device enables the investigation of a drug-drug interaction study. We used it to test the hepatotoxicity of acetaminophen and the following combinations: "acetaminophen + rifampicin," "acetaminophen + omeprazole," and "acetaminophen + ciprofloxacin." The variations in hepatotoxicity of the combinations compared to acetaminophen alone, which is not found in a 96-well plate model, in the device were -17.15%, 14.88%, and -19.74%. In addition, this result was similar to the one tested by the classical primary hepatocyte plate model (-13.22%, 13.51%, and -15.81%). Thus, this cell lines derived liver model provides an alternative to investigate drug hepatotoxicity, drug-drug interaction.
Collapse
Affiliation(s)
- Jiu Deng
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, Soochow 215123, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yao Lu
- Biotechnologhy Division, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bingcheng Lin
- Authors to whom correspondence should be addressed: ; ; and
| |
Collapse
|
4
|
Ramaiahgari SC, Waidyanatha S, Dixon D, DeVito MJ, Paules RS, Ferguson SS. From the Cover: Three-Dimensional (3D) HepaRG Spheroid Model With Physiologically Relevant Xenobiotic Metabolism Competence and Hepatocyte Functionality for Liver Toxicity Screening. Toxicol Sci 2018. [PMID: 28633424 DOI: 10.1093/toxsci/kfx122] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Effective prediction of human responses to chemical and drug exposure is of critical importance in environmental toxicology research and drug development. While significant progress has been made to address this challenge using invitro liver models, these approaches often fail due to inadequate tissue model functionality. Herein, we describe the development, optimization, and characterization of a novel three-dimensional (3D) spheroid model using differentiated HepaRG cells that achieve and maintain physiologically relevant levels of xenobiotic metabolism (CYP1A2, CYP2B6, and CYP3A4/5). This invitro model maintains a stable phenotype over multiple weeks in both 96- and 384-well formats, supports highly reproducible tissue-like architectures and models pharmacologically- and environmentally important hepatic receptor pathways (ie AhR, CAR, and PXR) analogous to primary human hepatocyte cultures. HepaRG spheroid cultures use 50-100× fewer cells than conventional two dimensional cultures, and enable the identification of metabolically activated toxicants. Spheroid size, time in culture and culture media composition were important factors affecting basal levels of xenobiotic metabolism and liver enzyme inducibility with activators of hepatic receptors AhR, CAR and PXR. Repeated exposure studies showed higher sensitivity than traditional 2D cultures in identifying compounds that cause liver injury and metabolism-dependent toxicity. This platform combines the well-documented impact of 3D culture configuration for improved tissue functionality and longevity with the requisite throughput and repeatability needed for year-over-year toxicology screening.
Collapse
Affiliation(s)
- Sreenivasa C Ramaiahgari
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Darlene Dixon
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Michael J DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Stephen S Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| |
Collapse
|
5
|
Zhang Y, Zhang Y, Li J, Chen Y, Han L, He Q, Chu J, Liu K. The role of hepatic antioxidant capacity and hepatobiliary transporter in liver injury induced by isopsoralen in zebrafish larvae. Hum Exp Toxicol 2018; 38:36-44. [DOI: 10.1177/0960327118774873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Isopsoralen is the main component of the Chinese medicine psoralen, which has antitumour activity and can be used for the treatment of osteoporosis. However, the mechanism behind its hepatotoxicity has not yet been elucidated. In this study, the hepatotoxicity of isopsoralen was investigated using zebrafish. Isopsoralen treatment groups of 25, 50 and 100 μM were established. The mortality, liver morphology changes, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology and mRNA levels of liver injury–related genes in zebrafish larvae were measured. The results showed that isopsoralen resulted in the development of malformed zebrafish, dose-dependent increases in ALT and AST, decreased liver fluorescence and weakened fluorescence intensity. Histopathological examination showed that high-dose isopsoralen caused a large number of vacuolated structures in the larvae liver. The polymerase chain reaction results showed a significant decrease in the mRNA levels of genes related to antioxidant capacity ( lfabp, gstp2 and sod1) and drug transport ( mdr1, mrp1 and mrp2), indicating that isopsoralen significantly inhibited liver antioxidant capacity and drug efflux capacity in zebrafish larvae. Isopsoralen is hepatotoxic to zebrafish larvae via inhibition of drug transporter expression resulting in the accumulation of isopsoralen in the body and decreased antioxidant capacity, leading to liver injury.
Collapse
Affiliation(s)
- Y Zhang
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - Y Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - J Li
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
- Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Y Chen
- Shandong Normal University, Jinan, People’s Republic of China
| | - L Han
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - Q He
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - J Chu
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| | - K Liu
- Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China
| |
Collapse
|
6
|
Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300 m. Biomed Pharmacother 2017; 89:1078-1085. [DOI: 10.1016/j.biopha.2017.02.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 02/07/2023] Open
|
7
|
Zhou L, Pang X, Jiang J, Zhong D, Chen X. Nimesulide and 4′-Hydroxynimesulide as Bile Acid Transporters Inhibitors Are Contributory Factors for Drug-Induced Cholestasis. Drug Metab Dispos 2017; 45:441-448. [DOI: 10.1124/dmd.116.074104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/08/2017] [Indexed: 11/22/2022] Open
|
8
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
9
|
Abstract
Drugs can induce liver injury when taken as an over-dose, or even at therapeutic doses in susceptible individuals. Although severe drug-induced liver injury (DILI) is a relatively uncommon clinical event, it is a potentially life threatening adverse drug reaction and is the most common indication for the drug withdrawal. Areas covered: However, the diagnosis of DILI remains a significant challenge, because the establishment of causality is very difficult, and the histopathologic findings of DILI may be indistinguishable from those of other hepatic disorders, such as viral and alcoholic hepatitis. In this review, we provide an overview of recent advances in identification of serologic markers of diagnosis and prognosis, etiologic factors for susceptibility and diagnostic evaluation of DILI, with a focus on its pathogenic mechanisms and the role of liver biopsy. Expert commentary: Further studies of divergent research platforms, using a systems biology approach such as genomics and transcriptomics, may provide a deeper understanding of human drug metabolism and the causes, risk factors, and pathogenesis of DILI.
Collapse
Affiliation(s)
- Sun-Jae Lee
- a Department of Pathology, School of Medicine , Catholic University of Daegu , Daegu , Republic of Korea
| | - Youn Ju Lee
- b Department of Pharmacology, School of Medicine , Catholic University of Daegu , Daegu , Republic of Korea
| | - Kwan-Kyu Park
- a Department of Pathology, School of Medicine , Catholic University of Daegu , Daegu , Republic of Korea
| |
Collapse
|
10
|
Singh DP, Awasthi H, Luqman S, Singh S, Mani D. Hepatoprotective Effect of A Polyherbal Extract Containing Andrographis Paniculata, Tinospora Cordifolia and Solanum Nigrum Against Paracetamol Induced Hepatotoxicity. Pharmacogn Mag 2016; 11:S375-9. [PMID: 26929570 PMCID: PMC4745206 DOI: 10.4103/0973-1296.168945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Traditionally, a number of medicinal plants are used to treat various types of hepatic disorders but few of them were pharmacologically evaluated for their safety and efficacy. The combination of Andrographis paniculata (Kalmegha), Tinospora cordifolia (Guduchi), and Solanum nigrum (Kakmachi) was traditionally used in Indian System of Medicine (Ayurveda) for the treatment of various liver-related disorders. Objective: In the present study, an attempt was made to substantiate the ethnopharmacological use of a traditional formulation in hepatoprotection against paracetamol-induced hepatotoxicity. Subjects and Methods: Swiss albino mice (weight 20–25 g) were used for this study. Intraperitoneal injection of paracetamol (500 mg/kg body weight) was used to induce hepatotoxicity. Serum levels of alanine transaminase, aspartate aminotransferase, bilirubin, alkaline phosphatase, were used as indices of liver injury. In addition total cholesterol, triglyceride, low-density lipoprotein, high-density lipoprotein and creatinine were also assayed using the standard procedure. Results: Among the two different doses, pretreatment with Polyherbal extract at 500 mg/kg body weight exhibited a significant (P < 0.05) hepatoprotective activity as compared to paracetamol group. Conclusion: The polyherbal extract exhibits a significant hepatoprotective effect in vivo. The study contributes to its use in traditional Ayurveda system for the management of liver diseases. SUMMARY Traditionally, a number of medicinal plants are used to treat various types of liver disorders but few of them were pharmacologically evaluated for their safety and efficacy. Combination of Andrographis paniculata (Kalmegha), Tinospora cordifolia (Guduchi), and Solanum nigrum (Kakmachi) was traditionally used in Ayurveda for the treatment of various liver related disorders. In the present study an attempt was made to validate the ethnopharmacological use of a traditional formulation in hepatoprotection against paracetamol induced hepatotoxicity. Swiss albino mice (weight 20-25 g) were used for this study. Intraperitoneal injection (IP) of paracetamol (500 mg/kg body weight) was used to induce hepatotoxicity. Serum levels of Alanine transaminase (ALT), Aspartate Aminotransferase (AST), Bilirubin, Alkaline phosphatase (ALP),. were used as indices of liver injury. In addition total cholesterol, triglyceride, Low density lipoprotein (LDL), High density lipoprotein (HDL) and creatinine were also assayed using standard procedure. Among the two different doses, pre-treatment with Polyherbal extract at 500 mg/kg body weight exhibited a significant (P < 0.05) hepatoprotective activity as compared to paracetamol group. The polyherbal extract exhibits significant hepatoprotective effect in vivo. The study contributes to its use in traditional Ayurveda system for the management of liver diseases.
Collapse
Affiliation(s)
- Dewasya Pratap Singh
- Department of Herbal Medicinal Products, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow - 226 015, Uttar Pradesh, India
| | - Harshika Awasthi
- Department of Herbal Medicinal Products, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow - 226 015, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow - 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow - 226 015, Uttar Pradesh, India
| | - Saudan Singh
- Agrotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow - 226 015, Uttar Pradesh, India
| | - Dayanandan Mani
- Department of Herbal Medicinal Products, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow - 226 015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow - 226 015, Uttar Pradesh, India
| |
Collapse
|
11
|
Li AP. Evaluation of Adverse Drug Properties with Cryopreserved Human Hepatocytes and the Integrated Discrete Multiple Organ Co-culture (IdMOC(TM)) System. Toxicol Res 2015; 31:137-49. [PMID: 26191380 PMCID: PMC4505344 DOI: 10.5487/tr.2015.31.2.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/26/2022] Open
Abstract
Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent the gold standard for in vitro evaluation of drug metabolism, drug-drug interactions, and hepatotoxicity. Successful cryopreservation of human hepatocytes enables this experimental system to be used routinely. The use of human hepatocytes to evaluate two major adverse drug properties: drug-drug interactions and hepatotoxicity, are summarized in this review. The application of human hepatocytes in metabolism-based drug-drug interaction includes metabolite profiling, pathway identification, P450 inhibition, P450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. A novel system, the Integrated Discrete Multiple Organ Co-culture (IdMOC) which allows the evaluation of nonhepatic toxicity in the presence of hepatic metabolism, is described.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories LLC, 9221 Rumsey Road Suite 8, Columbia, MD 21045
| |
Collapse
|
12
|
Liao W, Li B, Li L, Yan L, Wang Z, An X, Zhao J. Erk1/2, CDK8, Src and Ck1e Mediate <i>Evodia rutaecarpa</i> Induced Hepatotoxicity in Mice. Chin Med 2015. [DOI: 10.4236/cm.2015.62011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Hunt CM, Yuen NA, Stirnadel-Farrant HA, Suzuki A. Age-related differences in reporting of drug-associated liver injury: data-mining of WHO Safety Report Database. Regul Toxicol Pharmacol 2014; 70:519-26. [PMID: 25236535 DOI: 10.1016/j.yrtph.2014.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/18/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Age-differences in the frequency and manifestations of drug-induced liver injury are not fully characterized. Data-mining analyses were performed to assess the impact of age on liver event reporting frequency with different phenotypes and agents. METHODS 236 drugs associated with hepatotoxicity were evaluated using the Empirical Bayes Geometric Mean (EBGM) of the relative reporting ratio with 90% confidence interval (EB05 and EB95) calculated for the age groups: 0-17, 18-64, and⩾65years (or elderly), for overall, serious (acute liver failure), hepatocellular, and cholestatic liver injury, using the WHO Safety Report Database. RESULTS Overall, cases of age 0-17, 18-64, and 65years or older comprised 6%, 62%, and 32% of liver event reports. Acute liver failure and hepatocellular injury were more frequently reported among children compared to adults and the elderly while reports with cholestatic injury were more frequent among the elderly (p<0.00001). A potential to cause mitochondrial dysfunction was more prevalent among the drugs with increased pediatric reporting frequency while high lipophilicity and biliary excretion were more common among the drugs associated with higher reporting frequency in the elderly. CONCLUSION Age-specific phenotypes and potential drug properties associated with age-specific hepatotoxicity were identified in reported liver events; further analyses are warranted.
Collapse
Affiliation(s)
- Christine M Hunt
- Division of Gastroenterology, Duke University Medical Center, Durham, NC, United States; Durham Veterans Administration Medical Center, Durham, NC, United States.
| | - Nancy A Yuen
- Global Clinical Safety and Pharmacovigilance, GlaxoSmithKline, Research Triangle Park, NC, United States
| | | | - Ayako Suzuki
- Division of Gastroenterology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Division of Gastroenterology, Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
| |
Collapse
|
14
|
Bale SS, Vernetti L, Senutovitch N, Jindal R, Hegde M, Gough A, McCarty WJ, Bakan A, Bhushan A, Shun TY, Golberg I, DeBiasio R, Usta BO, Taylor DL, Yarmush ML. In vitro platforms for evaluating liver toxicity. Exp Biol Med (Maywood) 2014; 239:1180-1191. [PMID: 24764241 DOI: 10.1177/1535370214531872] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The liver is a heterogeneous organ with many vital functions, including metabolism of pharmaceutical drugs and is highly susceptible to injury from these substances. The etiology of drug-induced liver disease is still debated although generally regarded as a continuum between an activated immune response and hepatocyte metabolic dysfunction, most often resulting from an intermediate reactive metabolite. This debate stems from the fact that current animal and in vitro models provide limited physiologically relevant information, and their shortcomings have resulted in "silent" hepatotoxic drugs being introduced into clinical trials, garnering huge financial losses for drug companies through withdrawals and late stage clinical failures. As we advance our understanding into the molecular processes leading to liver injury, it is increasingly clear that (a) the pathologic lesion is not only due to liver parenchyma but is also due to the interactions between the hepatocytes and the resident liver immune cells, stellate cells, and endothelial cells; and (b) animal models do not reflect the human cell interactions. Therefore, a predictive human, in vitro model must address the interactions between the major human liver cell types and measure key determinants of injury such as the dosage and metabolism of the drug, the stress response, cholestatic effect, and the immune and fibrotic response. In this mini-review, we first discuss the current state of macro-scale in vitro liver culture systems with examples that have been commercialized. We then introduce the paradigm of microfluidic culture systems that aim to mimic the liver with physiologically relevant dimensions, cellular structure, perfusion, and mass transport by taking advantage of micro and nanofabrication technologies. We review the most prominent liver-on-a-chip platforms in terms of their physiological relevance and drug response. We conclude with a commentary on other critical advances such as the deployment of fluorescence-based biosensors to identify relevant toxicity pathways, as well as computational models to create a predictive tool.
Collapse
Affiliation(s)
- Shyam Sundhar Bale
- Center for Engineering in Medicine (CEM) at Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston MA 02114
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh PA 15260.,University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh PA 15260
| | - Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, Pittsburgh PA 15260.,University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh PA 15260
| | - Rohit Jindal
- Center for Engineering in Medicine (CEM) at Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston MA 02114
| | - Manjunath Hegde
- Center for Engineering in Medicine (CEM) at Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston MA 02114
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh PA 15260.,University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh PA 15260
| | - William J McCarty
- Center for Engineering in Medicine (CEM) at Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston MA 02114
| | - Ahmet Bakan
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh PA 15260
| | - Abhinav Bhushan
- Center for Engineering in Medicine (CEM) at Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston MA 02114
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, Pittsburgh PA 15260
| | - Inna Golberg
- Center for Engineering in Medicine (CEM) at Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston MA 02114
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh PA 15260
| | - Berk Osman Usta
- Center for Engineering in Medicine (CEM) at Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston MA 02114
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh PA 15260.,University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh PA 15260
| | - Martin L Yarmush
- Center for Engineering in Medicine (CEM) at Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston MA 02114
| |
Collapse
|
15
|
Abstract
The accuracy of preclinical safety evaluation to predict human toxicity is hindered by species difference in drug metabolism and toxic mechanism between human and nonhuman animals. In vitro human-based experimental systems allowing the assessment of human-specific drug properties represent a logical and practical approach to provide human-specific information. An advantage of in vitro approaches is that they require only limited amounts of time and resources, and, most importantly, do not invoke harm to human patients. Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent a practical and useful experimental system to assess drug metabolism. The use of human hepatocytes to evaluate two major adverse drug properties, drug–drug interactions and hepatotoxicity, are reviewed. The application of human hepatocytes in metabolism-based drug–drug interactions includes metabolite profiling, pathway identification, CYP450 inhibition, CYP450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. Correlation of drug toxicity with proteomics and genomics data may allow the discovery of clinical biomarkers for early detection of liver toxicity.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories LLC, 9221 Rumsey Road Suite 8, Columbia, MD 21045, USA
| |
Collapse
|
16
|
Merrell MD, Nyagode BA, Clarke JD, Cherrington NJ, Morgan ET. Selective and cytokine-dependent regulation of hepatic transporters and bile acid homeostasis during infectious colitis in mice. Drug Metab Dispos 2013; 42:596-602. [PMID: 24378326 DOI: 10.1124/dmd.113.055525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Various disease models have been shown to alter hepatic drug-metabolizing enzyme (DME) and transporter expression and to induce cholestasis through altered enzyme and transporter expression. Previously, we detailed the regulation of hepatic DMEs during infectious colitis caused by Citrobacter rodentium infection. We hypothesized that this infection would also modulate hepatic drug transporter expression and key genes of bile acid (BA) synthesis and transport. Mice lacking Toll-like receptor 4 (TLR4), interleukin-6 (IL-6), or interferon-gamma (IFNγ) and appropriate wild-type animals were orally infected with C. rodentium and sacrificed 7 days later. In two wild-type strains, drug transporter mRNA expression was significantly decreased by infection for Slc22a4, Slco1a1, Slco1a4, Slco2b1, and Abcc6, whereas the downregulation of Abcc2, Abcc3, and Abcc4 were strain-dependent. In contrast, mRNA expressions of Slco3a1 and Abcb1b were increased in a strain-dependent manner. Expression of Abcb11, Slc10a1, the two major hepatic BA transporters, and Cyp7a1, the rate-limiting enzyme of BA synthesis, was also significantly decreased in infected animals. None of the above effects were caused by bacterial lipopolysaccharide, since they still occurred in the absence of functional TLR4. The downregulation of Slc22a4 and Cyp7a1 was absent in IFNγ-null mice, and the downregulation of Slco1a1 was abrogated in IL-6-null mice, indicating in vivo roles for these cytokines in transporter regulation. These data indicate that C. rodentium infection modulates hepatic drug processing through alteration of transporter expression as well as DMEs. Furthermore, this infection downregulates important genes of BA synthesis and transport and may increase the risk for cholestasis.
Collapse
Affiliation(s)
- Matthew D Merrell
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (M.D.M., B.A.N., E.T.M.); Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (J.D.C, N.J.C.)
| | | | | | | | | |
Collapse
|