1
|
Tang H, Niu J, Jin H, Lin S, Cui D. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. MICROSYSTEMS & NANOENGINEERING 2022; 8:62. [PMID: 35685963 PMCID: PMC9170746 DOI: 10.1038/s41378-022-00386-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 05/05/2023]
Abstract
Passive and label-free microfluidic devices have no complex external accessories or detection-interfering label particles. These devices are now widely used in medical and bioresearch applications, including cell focusing and cell separation. Geometric structure plays the most essential role when designing a passive and label-free microfluidic chip. An exquisitely designed geometric structure can change particle trajectories and improve chip performance. However, the geometric design principles of passive and label-free microfluidics have not been comprehensively acknowledged. Here, we review the geometric innovations of several microfluidic schemes, including deterministic lateral displacement (DLD), inertial microfluidics (IMF), and viscoelastic microfluidics (VEM), and summarize the most creative innovations and design principles of passive and label-free microfluidics. We aim to provide a guideline for researchers who have an interest in geometric innovations of passive label-free microfluidics.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| |
Collapse
|
2
|
Wang C, Ma Y, Chen Z, Wu Y, Song F, Qiu J, Shi M, Wu X. Sheathless microflow cytometer utilizing two bulk standing acoustic waves. Cytometry A 2021; 99:987-998. [PMID: 33956400 DOI: 10.1002/cyto.a.24362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
In recent years, microflow cytometry has become a popular research field because of its potential to provide low-cost and disposable chips for complex cell analyses. Herein, we demonstrate a sheathless microflow cytometer which integrates a bulk standing acoustic wave based microchip capable of three dimensional cell focusing. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of 2.16% with standard calibration beads. The sensitivities calibrated by rainbow beads are 518 MEFL in fluorescein Isothiocyanate (FITC) channel and 264 MEPE in P-phycoerythrin (PE) channels, respectively. The linearities are more than 99% in both channels. The capability of the proposed microflow cytometer is further demonstrated by immunologically labeled leukocytes differentiation in blood. This acoustic-based microflow cytometer did not require any sheath flows or complex structures and can be mass produced. Because of the simple fluid channel, the chip can be easily made pipeless, disposable for applications requiring no cross contamination. Moreover, with the gentle and bio-compatible acoustic waves used, this technique is expected to maintain the viability of cells and other bioparticles.
Collapse
Affiliation(s)
- Ce Wang
- School of Biomedical Engineering(Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhongxiang Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yunliang Wu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jianping Qiu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mengdie Shi
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaodong Wu
- School of Biomedical Engineering(Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Hydrophoresis — A Microfluidic Principle for Directed Particle Migration in Flow. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4107-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Adams TNG, Jiang AYL, Mendoza NS, Ro CC, Lee DH, Lee AP, Flanagan LA. Label-free enrichment of fate-biased human neural stem and progenitor cells. Biosens Bioelectron 2020; 152:111982. [PMID: 32056730 PMCID: PMC8860404 DOI: 10.1016/j.bios.2019.111982] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Human neural stem and progenitor cells (hNSPCs) have therapeutic potential to treat neural diseases and injuries since they provide neuroprotection and differentiate into astrocytes, neurons, and oligodendrocytes. However, cultures of hNSPCs are heterogeneous, containing cells linked to distinct differentiated cell fates. HNSPCs that differentiate into astrocytes are of interest for specific neurological diseases, creating a need for approaches that can detect and isolate these cells. Astrocyte-biased hNSPCs differ from other cell types in electrophysiological properties, namely membrane capacitance, and we hypothesized that this could be used to enrich these cells using dielectrophoresis (DEP). We implemented a two-step DEP sorting scheme, consisting of analysis to define the optimal sorting frequency followed by separation of cells at that frequency, to test whether astrocyte-biased cells could be separated from the other cell types present in hNSPC cultures. We developed a novel device that increased sorting reproducibility and provided both enriched and depleted cell populations in a single sort. Astrocyte-biased cells were successfully enriched from hNSPC cultures by DEP sorting, making this the first study to use electrophysiological properties for label-free enrichment of human astrocyte-biased cells. Enriched astrocyte-biased human cells enable future experiments to determine the specific properties of these important cells and test their therapeutic efficacy in animal models of neurological diseases.
Collapse
Affiliation(s)
- Tayloria N G Adams
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, 92697-2580, USA; Department of Neurology, University of California, Irvine, Irvine, CA, 92697-6750, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697-1705, USA.
| | - Alan Y L Jiang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2627, USA; Department of Neurology, University of California, Irvine, Irvine, CA, 92697-6750, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697-1705, USA
| | - Nicolo S Mendoza
- Department of Neurology, University of California, Irvine, Irvine, CA, 92697-6750, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697-1705, USA
| | - Clarissa C Ro
- Department of Neurology, University of California, Irvine, Irvine, CA, 92697-6750, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697-1705, USA
| | - Do-Hyun Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2627, USA
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2627, USA
| | - Lisa A Flanagan
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2627, USA; Department of Neurology, University of California, Irvine, Irvine, CA, 92697-6750, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697-1705, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697-4291, USA.
| |
Collapse
|
5
|
Lee E, Kim B, Choi S. An open-source programmable smart pipette for portable cell separation and counting. RSC Adv 2019; 9:41877-41885. [PMID: 35541629 PMCID: PMC9076630 DOI: 10.1039/c9ra08368e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Microfluidics offers great potential for biomedical applications, but the complexity, inconvenience, and low pumping equipment accessibility of operating microfluidic devices have limited their widespread use. Here we describe an open-source, programmable smart (OS) pipette as an easy-to-use, simple, handheld microfluidic pump that overcomes the major limitations of previous commercial- or research-level pumps for microfluidics. The OS pipette pumps fluid into a microfluidic device by precisely controlling the position of the plunger of a positive-displacement micropipette with stepper motor control. The intuitive pumping mechanism of the OS pipette enables the novel features of simple fabrication, straightforward device operation, and precise, predictable, and programmable flow-rate generation as an open-source pumping tool. Controlling the OS pipette using an open-source microcontroller board not only allows straightforward generation of constant flow rates with simple source code commands, but also permits varying flow rates to be programmed (including stepwise increase and decrease of the flow rate over time, and flow-rate pulse generation). We successfully validate the OS pipette's capabilities for portable microfluidic cell separation and counting. The OS pipette has promise as a rapidly evolving and potentially transformative pumping tool that freely allows unrestricted use, distribution, reproduction, and modification even by non-expert users, and further enables diverse usages, even beyond microfluidics.
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Biomedical Engineering, Kyung Hee University Yongin-si Gyeonggi-do 17104 Republic of Korea
| | - Byeongyeon Kim
- Department of Biomedical Engineering, Hanyang University Seoul 04763 Republic of Korea
| | - Sungyoung Choi
- Department of Biomedical Engineering, Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|
6
|
Handheld Microflow Cytometer Based on a Motorized Smart Pipette, a Microfluidic Cell Concentrator, and a Miniaturized Fluorescence Microscope. SENSORS 2019; 19:s19122761. [PMID: 31248214 PMCID: PMC6630933 DOI: 10.3390/s19122761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023]
Abstract
Miniaturizing flow cytometry requires a comprehensive approach to redesigning the conventional fluidic and optical systems to have a small footprint and simple usage and to enable rapid cell analysis. Microfluidic methods have addressed some challenges in limiting the realization of microflow cytometry, but most microfluidics-based flow cytometry techniques still rely on bulky equipment (e.g., high-precision syringe pumps and bench-top microscopes). Here, we describe a comprehensive approach that achieves high-throughput white blood cell (WBC) counting in a portable and handheld manner, thereby allowing the complete miniaturization of flow cytometry. Our approach integrates three major components: a motorized smart pipette for accurate volume metering and controllable liquid pumping, a microfluidic cell concentrator for target cell enrichment, and a miniaturized fluorescence microscope for portable flow cytometric analysis. We first validated the capability of each component by precisely metering various fluid samples and controlling flow rates in a range from 219.5 to 840.5 μL/min, achieving high sample-volume reduction via on-chip WBC enrichment, and successfully counting single WBCs flowing through a region of interrogation. We synergistically combined the three major components to create a handheld, integrated microflow cytometer and operated it with a simple protocol of drawing up a blood sample via pipetting and injecting the sample into the microfluidic concentrator by powering the motorized smart pipette. We then demonstrated the utility of the microflow cytometer as a quality control means for leukoreduced blood products, quantitatively analyzing residual WBCs (rWBCs) in blood samples present at concentrations as low as 0.1 rWBCs/μL. These portable, controllable, high-throughput, and quantitative microflow cytometric technologies provide promising ways of miniaturizing flow cytometry.
Collapse
|
7
|
Kim B, Oh S, Shin S, Yim SG, Yang SY, Hahn YK, Choi S. Pumpless Microflow Cytometry Enabled by Viscosity Modulation and Immunobead Labeling. Anal Chem 2018; 90:8254-8260. [PMID: 29874050 DOI: 10.1021/acs.analchem.8b01804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Major challenges of miniaturizing flow cytometry include obviating the need for bulky, expensive, and complex pump-based fluidic and laser-based optical systems while retaining the ability to detect target cells based on their unique surface receptors. We addressed these critical challenges by (i) using a viscous liquid additive to control flow rate passively, without external pumping equipment, and (ii) adopting an immunobead assay that can be quantified with a portable fluorescence cell counter based on a blue light-emitting diode. Such novel features enable pumpless microflow cytometry (pFC) analysis by simply dropping a sample solution onto the inlet reservoir of a disposable cell-counting chamber. With our pFC platform, we achieved reliable cell counting over a dynamic range of 9-298 cells/μL. We demonstrated the practical utility of the platform by identifying a type of cancer cell based on CD326, the epithelial cell adhesion molecule. This portable microflow cytometry platform can be applied generally to a range of cell types using immunobeads labeled with specific antibodies, thus making it valuable for cell-based and point-of-care diagnostics.
Collapse
Affiliation(s)
- Byeongyeon Kim
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Sein Oh
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Suyeon Shin
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Sang-Gu Yim
- Department of Biomaterials Science, Life and Industry Convergence Institute , Pusan National University , 1268-50 Samrangjin-ro , Miryang 50463 , Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute , Pusan National University , 1268-50 Samrangjin-ro , Miryang 50463 , Republic of Korea
| | - Young Ki Hahn
- Department of New Biology , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Sungyoung Choi
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| |
Collapse
|