1
|
The Role of Bromodomain and Extraterminal (BET) Proteins in Controlling the Phagocytic Activity of Microglia In Vitro: Relevance to Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010013. [PMID: 36613460 PMCID: PMC9820364 DOI: 10.3390/ijms24010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The correct phagocytic activity of microglia is a prerequisite for maintaining homeostasis in the brain. In the analysis of mechanisms regulating microglial phagocytosis, we focused on the bromodomain and extraterminal domain (BET) proteins: Brd2, Brd3, and Brd4, the acetylation code readers that control gene expression in cooperation with transcription factors. We used pharmacological (JQ1) and genetic (siRNA) inhibition of BET proteins in murine microglial cell line BV2. Inhibition of BET proteins reduced the phagocytic activity of BV2, as determined by using a fluorescent microspheres-based assay and fluorescently labelled amyloid-beta peptides. Gene silencing experiments demonstrated that all brain-existing BET isoforms control phagocytosis in microglia. From a set of 84 phagocytosis-related genes, we have found the attenuation of the expression of 14: Siglec1, Sirpb1a, Cd36, Clec7a, Itgam, Tlr3, Fcgr1, Cd14, Marco, Pld1, Fcgr2b, Anxa1, Tnf, Nod1, upon BET inhibition. Further analysis of the mRNA level of other phagocytosis-related genes which were involved in the pathomechanism of Alzheimer's disease demonstrated that JQ1 significantly reduced the expression of Cd33, Trem2, and Zyx. Our results indicate the important role of BET proteins in controlling microglial phagocytosis; therefore, targeting BET may be the efficient method of modulating microglial activity.
Collapse
|
2
|
Maguire E, Connor-Robson N, Shaw B, O’Donoghue R, Stöberl N, Hall-Roberts H. Assaying Microglia Functions In Vitro. Cells 2022; 11:3414. [PMID: 36359810 PMCID: PMC9654693 DOI: 10.3390/cells11213414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Microglia, the main immune modulators of the central nervous system, have key roles in both the developing and adult brain. These functions include shaping healthy neuronal networks, carrying out immune surveillance, mediating inflammatory responses, and disposing of unwanted material. A wide variety of pathological conditions present with microglia dysregulation, highlighting the importance of these cells in both normal brain function and disease. Studies into microglial function in the context of both health and disease thus have the potential to provide tremendous insight across a broad range of research areas. In vitro culture of microglia, using primary cells, cell lines, or induced pluripotent stem cell derived microglia, allows researchers to generate reproducible, robust, and quantifiable data regarding microglia function. A broad range of assays have been successfully developed and optimised for characterizing microglial morphology, mediation of inflammation, endocytosis, phagocytosis, chemotaxis and random motility, and mediation of immunometabolism. This review describes the main functions of microglia, compares existing protocols for measuring these functions in vitro, and highlights common pitfalls and future areas for development. We aim to provide a comprehensive methodological guide for researchers planning to characterise microglial functions within a range of contexts and in vitro models.
Collapse
Affiliation(s)
- Emily Maguire
- UK Dementia Research Institute (UK DRI), School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | |
Collapse
|
3
|
Rios-Doria J, Favata M, Lasky K, Feldman P, Lo Y, Yang G, Stevens C, Wen X, Sehra S, Katiyar K, Liu K, Wynn R, Harris JJ, Ye M, Spitz S, Wang X, He C, Li YL, Yao W, Covington M, Scherle P, Koblish H. A Potent and Selective Dual Inhibitor of AXL and MERTK Possesses Both Immunomodulatory and Tumor-Targeted Activity. Front Oncol 2020; 10:598477. [PMID: 33425754 PMCID: PMC7793849 DOI: 10.3389/fonc.2020.598477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
TYRO3, AXL, and MERTK constitute the TAM family of receptor tyrosine kinases, which play important roles in tumor growth, survival, cell adhesion, as well as innate immunity, phagocytosis, and immune-suppressive activity. Therefore, targeting both AXL and MERTK kinases may directly impact tumor growth and relieve immunosuppression. We describe here the discovery of INCB081776, a potent and selective dual inhibitor of AXL and MERTK that is currently in phase 1 clinical trials. In cellular assays, INCB081776 effectively blocked autophosphorylation of AXL or MERTK with low nanomolar half maximal inhibitory concentration values in tumor cells and Ba/F3 cells transfected with constitutively active AXL or MERTK. INCB081776 inhibited activation of MERTK in primary human macrophages and partially reversed M2 macrophage–mediated suppression of T-cell proliferation, which was associated with increased interferon-γ production. In vivo, the antitumor activity of INCB081776 was enhanced in combination with checkpoint blockade in syngeneic models, and resulted in increased proliferation of intratumoral CD4+ and CD8+ T cells. Finally, antitumor activity of INCB081776 was observed in a subset of sarcoma patient–derived xenograft models, which was linked with inhibition of phospho-AKT. These data support the potential therapeutic utility of INCB081776 as an immunotherapeutic agent capable of both enhancing tumor immune surveillance and blocking tumor cell survival mechanisms.
Collapse
Affiliation(s)
| | | | - Kerri Lasky
- Incyte Research Institute, Wilmington, DE, United States
| | | | - Yvonne Lo
- Incyte Research Institute, Wilmington, DE, United States
| | - Gengjie Yang
- Incyte Research Institute, Wilmington, DE, United States
| | | | - Xiaoming Wen
- Incyte Research Institute, Wilmington, DE, United States
| | - Sarita Sehra
- Incyte Research Institute, Wilmington, DE, United States
| | - Kamna Katiyar
- Incyte Research Institute, Wilmington, DE, United States
| | - Ke Liu
- Incyte Research Institute, Wilmington, DE, United States
| | - Richard Wynn
- Incyte Research Institute, Wilmington, DE, United States
| | | | - Min Ye
- Incyte Research Institute, Wilmington, DE, United States
| | - Susan Spitz
- Incyte Research Institute, Wilmington, DE, United States
| | - Xiaozhao Wang
- Incyte Research Institute, Wilmington, DE, United States
| | - Chunhong He
- Incyte Research Institute, Wilmington, DE, United States
| | - Yun-Long Li
- Incyte Research Institute, Wilmington, DE, United States
| | - Wenqing Yao
- Incyte Research Institute, Wilmington, DE, United States
| | | | - Peggy Scherle
- Incyte Research Institute, Wilmington, DE, United States
| | - Holly Koblish
- Incyte Research Institute, Wilmington, DE, United States
| |
Collapse
|
4
|
Agbayani G, Jia Y, Akache B, Chandan V, Iqbal U, Stark FC, Deschatelets L, Lam E, Hemraz UD, Régnier S, Krishnan L, McCluskie MJ. Mechanistic insight into the induction of cellular immune responses by encapsulated and admixed archaeosome-based vaccine formulations. Hum Vaccin Immunother 2020; 16:2183-2195. [PMID: 32755430 PMCID: PMC7553676 DOI: 10.1080/21645515.2020.1788300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Archaeosomes are liposomes formulated using total polar lipids (TPLs) or semi-synthetic glycolipids derived from archaea. Conventional archaeosomes with entrapped antigen exhibit robust adjuvant activity as demonstrated by increased antigen-specific humoral and cell-mediated responses and enhanced protective immunity in various murine infection and cancer models. However, antigen entrapment efficiency can vary greatly resulting in antigen loss during formulation and variable antigen:lipid ratios. In order to circumvent this, we recently developed an admixed archaeosome formulation composed of a single semi-synthetic archaeal lipid (SLA, sulfated lactosylarchaeol) which can induce similarly robust adjuvant activity as an encapsulated formulation. Herein, we evaluate and compare the mechanisms involved in the induction of early innate and antigen-specific responses by both admixed (Adm) and encapsulated (Enc) SLA archaeosomes. We demonstrate that both archaeosome formulations result in increased immune cell infiltration, enhanced antigen retention at injection site and increased antigen uptake by antigen-presenting cells and other immune cell types, including neutrophils and monocytes following intramuscular injection to mice using ovalbumin as a model antigen. In vitro studies demonstrate SLA in either formulation is preferentially taken up by macrophages. Although the encapsulated formulation was better able to induce antigen-specific CD8+ T cell activation by dendritic cells in vitro, both encapsulated and admixed formulations gave equivalently enhanced protection from tumor challenge when tested in vivo using a B16-OVA melanoma model. Despite some differences in the immunostimulatory profile relative to the SLA (Enc) formulation, SLA (Adm) induces strong in vivo immunogenicity and efficacy, while offering an ease of formulation.
Collapse
Affiliation(s)
- Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Yimei Jia
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Umar Iqbal
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| |
Collapse
|
5
|
Jiao H, Downie LE, Huang X, Wu M, Oberrauch S, Keenan RJ, Jacobson LH, Chinnery HR. Novel alterations in corneal neuroimmune phenotypes in mice with central nervous system tauopathy. J Neuroinflammation 2020; 17:136. [PMID: 32345316 PMCID: PMC7189727 DOI: 10.1186/s12974-020-01803-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. METHODS Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. RESULTS Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86+ and CD45+ CD11b+CD11c+) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes. CONCLUSIONS Corneal sensory nerves and epithelial dendritic cells were altered in the rTg4510 mouse model of tauopathy, with temporal changes observed with aging. The activation of corneal dendritic cells prior to the gradual loss of neighboring sensory nerves suggests an early involvement of corneal immune cells in tau-associated pathology originating in the CNS.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Xin Huang
- Innate Phagocytosis Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Sara Oberrauch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ryan J Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia. .,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
6
|
Chu CC, Pinney JJ, Whitehead HE, Rivera-Escalera F, VanDerMeid KR, Zent CS, Elliott MR. High-resolution quantification of discrete phagocytic events by live cell time-lapse high-content microscopy imaging. J Cell Sci 2020; 133:jcs237883. [PMID: 32005699 PMCID: PMC7075070 DOI: 10.1242/jcs.237883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Phagocytosis is a dynamic process central to immunity and tissue homeostasis. Current methods for quantification of phagocytosis largely rely on indirect or static measurements, such as target clearance or dye uptake, and thus provide limited information about engulfment rates or target processing. Improved kinetic measurements of phagocytosis could provide useful, basic insights in many areas. We present a live-cell, time-lapse and high-content microscopy imaging method based on the detection and quantification of fluorescent dye 'voids' within phagocytes that result from target internalization to quantify phagocytic events with high temporal resolution. Using this method, we measure target cell densities and antibody concentrations needed for optimal antibody-dependent cellular phagocytosis. We compare void formation and dye uptake methods for phagocytosis detection, and examine the connection between target cell engulfment and phagolysosomal processing. We demonstrate how this approach can be used to measure distinct forms of phagocytosis, and changes in macrophage morphology during phagocytosis related to both engulfment and target degradation. Our results provide a high-resolution method for quantifying phagocytosis that provides opportunities to better understand the cellular and molecular regulation of this fundamental biological process.
Collapse
Affiliation(s)
- Charles C Chu
- Department of Medicine and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jonathan J Pinney
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hannah E Whitehead
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fatima Rivera-Escalera
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Karl R VanDerMeid
- Department of Medicine and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Clive S Zent
- Department of Medicine and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R Elliott
- Center for Vaccine Biology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Kana IH, Singh SK, Garcia-Senosiain A, Dodoo D, Singh S, Adu B, Theisen M. Breadth of Functional Antibodies Is Associated With Plasmodium falciparum Merozoite Phagocytosis and Protection Against Febrile Malaria. J Infect Dis 2020; 220:275-284. [PMID: 30820557 DOI: 10.1093/infdis/jiz088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The specific targets of functional antibodies against Plasmodium falciparum merozoites remain largely unexplored and, more importantly, their relevance to naturally acquired immunity in longitudinal cohort studies (LCSs) is yet to be tested. METHODS Functionality of immunoglobulin G (IgG) antibodies against 24 merozoite antigens was determined at the baseline of an LCS in Ghana using a bead-based opsonic phagocytosis assay (BPA). Antigen-specific IgG3 subclass antibodies were quantified in the same samples by the Luminex multiplex system. RESULTS A wide range of BPA activity was observed across the different antigens. High BPA responses of nMSP3K1, GLURP-R2, MSP23D7, MSP119k, and PfRh2-2030 coupled beads were significantly associated with a higher probability of children not experiencing febrile malaria. Children with high breadth of functional antibodies against these antigens together with cMSP33D7 had a significantly reduced risk of febrile malaria (adjusted hazard ratio, 0.36 [95% confidence interval, .18-.72]; P = .004). Five of the 6 BPA activities significantly (likelihood ratio rest, P ≤ .05) contributed to the protective immunity observed with the IgG3 antibodies. CONCLUSIONS The development of BPA allowed profiling of functional antibodies in an LCS. Identification of targets of opsonic phagocytosis may have implications in the development of a subunit malaria vaccine.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon
| | | | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Chu TH, Crowley AR, Backes I, Chang C, Tay M, Broge T, Tuyishime M, Ferrari G, Seaman MS, Richardson SI, Tomaras GD, Alter G, Leib D, Ackerman ME. Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies. PLoS Pathog 2020; 16:e1008083. [PMID: 32092122 PMCID: PMC7058349 DOI: 10.1371/journal.ppat.1008083] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 03/05/2020] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Andrew R. Crowley
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Iara Backes
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Cheryl Chang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Matthew Tay
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas Broge
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Marina Tuyishime
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Simone I. Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - David Leib
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
9
|
Skarratt KK, Gu BJ, Lovelace MD, Milligan CJ, Stokes L, Glover R, Petrou S, Wiley JS, Fuller SJ. A P2RX7 single nucleotide polymorphism haplotype promotes exon 7 and 8 skipping and disrupts receptor function. FASEB J 2020; 34:3884-3901. [PMID: 32003498 DOI: 10.1096/fj.201901198rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
P2X7 is an ATP-gated membrane ion channel that is expressed by multiple cell types. Brief exposure to ATP induces the opening of a nonselective cation channel; while repeated or prolonged exposure induces formation of a transmembrane pore. This process may be partially regulated by alternative splicing of full-length P2RX7A pre-mRNA, producing isoforms that delete or retain functional domains. Here, we report cloning and expression of a novel P2RX7 splice variant, P2RX7L, that is, characterized by skipping of exons 7 and 8. In HEK 293 cells, expression of P2RX7L produces a protein isoform, P2X7L, that forms a heteromer with P2X7A. A haplotype defined by six single nucleotide polymorphisms (SNPs) (rs208307, rs208306, rs36144485, rs208308, rs208309, and rs373655596) promotes allele-specific alternative splicing, increasing mRNA levels of P2RX7L and another isoform, P2RX7E, which in addition has a truncated C-terminus. Skipping of exons 7 and 8 is predicted to delete critical amino acids in the ATP-binding site. P2X7L-transfected HEK 293 cells have phagocytic but not channel, pore, or membrane-blebbing function, and double-transfected P2X7L and P2X7A cells have reduced pore function. Heteromeric receptor complexes of P2X7A and P2X7L are predicted to have reduced numbers of ATP-binding sites, which potentially alters receptor function compared to homomeric P2X7A complexes.
Collapse
Affiliation(s)
- Kristen K Skarratt
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael D Lovelace
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Carol J Milligan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Leanne Stokes
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Rachel Glover
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Fuller
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| |
Collapse
|
10
|
Ciaglia E, Montella F, Trucillo P, Ciardulli M, Di Pietro P, Amodio G, Remondelli P, Vecchione C, Reverchon E, Maffulli N, Puca A, Della Porta G. A bioavailability study on microbeads and nanoliposomes fabricated by dense carbon dioxide technologies using human-primary monocytes and flow cytometry assay. Int J Pharm 2019; 570:118686. [DOI: 10.1016/j.ijpharm.2019.118686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022]
|
11
|
Manufacture of Chimeric Antigen Receptor T Cells from Mobilized Cyropreserved Peripheral Blood Stem Cell Units Depends on Monocyte Depletion. Biol Blood Marrow Transplant 2019; 25:223-232. [DOI: 10.1016/j.bbmt.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022]
|
12
|
Naghizadeh M, Wattrang E, Kjærup RB, Bakke M, Shih S, Dalgaard TS. In vitro phagocytosis of opsonized latex beads by HD11 cells as a method to assess the general opsonization potential of chicken serum. Avian Pathol 2018; 47:479-488. [PMID: 29920114 DOI: 10.1080/03079457.2018.1490006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Opsonins, an important arm of the innate immune system, are various soluble proteins, which play a critical role in destruction of invading pathogens directly or via engulfment of pathogens through the intermediate of phagocytosis. The diversity of opsonin profiles is under genetic influence and may be associated with variation in disease resistance. The aim of this study was to set up an assay to determine serum opsonophagocytic potential (OPp) for chicken sera by flow cytometry and to evaluate the assay using samples from different chicken lines. Two chicken lines selected for high and low concentrations of mannose-binding lectin, a known opsonin, in serum were used to establish the method. Furthermore, the presumed "robust" Hellevad chickens and two other commercial chicken lines (Hisex and Bovans) were tested to evaluate OPp as a parameter reflecting general immune competence. The results showed that Hellevad and Bovans chickens had higher OPp than Hisex chickens. There were no correlations between concentrations of total IgY or mannose-binding lectin and OPp. However, a strong positive correlation was observed between vaccine-induced infectious bronchitis virus titres and OPp. Moreover, inverse relationships were observed between concentrations of total serum IgM as well as natural antibody levels, and OPp. In conclusion, in vitro opsonophagocytosis assessment and determination of OPp may be of relevance when addressing general innate immunocompetence. RESEARCH HIGHLIGHTS A flow cytometry method was developed to assess poultry serum opsonophagocytosis potential. This method is based on serum-opsonin-coated polystyrene beads and HD11 cell phagocytosis. Serum samples from different commercial chicken lines were compared. Opsonophagocytic potential may be included in assay panels for general immune competence of poultry.
Collapse
Affiliation(s)
- Mohammed Naghizadeh
- a Department of Poultry Science , Tarbiat Modares University , Tehran , Iran.,b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Eva Wattrang
- c Department of Microbiology , National Veterinary Institute , Uppsala , Sweden
| | - Rikke B Kjærup
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Maja Bakke
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Sandra Shih
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| | - Tina S Dalgaard
- b Department of Animal Science , Aarhus University , Tjele , Denmark
| |
Collapse
|
13
|
Ou A, Gu BJ, Wiley JS. The scavenger activity of the human P2X7 receptor differs from P2X7 pore function by insensitivity to antagonists, genetic variation and sodium concentration: Relevance to inflammatory brain diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1051-1059. [PMID: 29329985 DOI: 10.1016/j.bbadis.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
Abstract
Activation of P2X7 receptors is widely recognised to initiate proinflammatory responses. However P2X7 also has a dual function as a scavenger receptor which is active in the absence of ATP and plasma proteins and may be important in central nervous system (CNS) diseases. Here, we investigated both P2X7 pore formation and its phagocytic function in fresh human monocytes (as a model of microglia) by measuring ATP-induced ethidium dye uptake and fluorescent bead uptake respectively. This was studied in monocytes expressing various polymorphic variants as well as in the presence of different P2X7 antagonists and ionic media. P2X7-mediated phagocytosis was found to account for about half of Latrunculin (or Cytochalasin D)-sensitive bead engulfment by fresh human monocytes. Monocytes harbouring P2X7 Ala348Thr or Glu496Ala polymorphic variants showed increase or loss of ethidium uptake respectively, but these changes in pore formation did not always correspond to the changes in phagocytosis of YG beads. Unlike pore function, P2X7-mediated phagocytosis was not affected by three potent selective P2X7 antagonists and remained identical in Na+ and K+ media. Taken together, our results show that P2X7 is a scavenger receptor with important function in the CNS but its phagocytic function has features distinct from its pore function. Both P2X7 pore formation and P2X7-mediated phagocytosis should be considered in the design of new P2X7 antagonists for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Amber Ou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Gu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James S Wiley
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Zhang Y, Du W, Smuda K, Georgieva R, Bäumler H, Gao C. Inflammatory activation of human serum albumin- or ovalbumin-modified chitosan particles to macrophages and their immune response in human whole blood. J Mater Chem B 2018; 6:3096-3106. [DOI: 10.1039/c7tb03096g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan particles modified with different albumins cause immune response in human whole blood via platelet activation and phagocytosis.
Collapse
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
| | - Wang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
| | - Kathrin Smuda
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Radostina Georgieva
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Hans Bäumler
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine
| |
Collapse
|
15
|
Fröhlich E. Toxicity of orally inhaled drug formulations at the alveolar barrier: parameters for initial biological screening. Drug Deliv 2017; 24:891-905. [PMID: 28574335 PMCID: PMC8241192 DOI: 10.1080/10717544.2017.1333172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oral delivery is the most common mode of systemic drug application. Inhalation is mainly used for local therapy of lung diseases but may also be a promising route for systemic delivery of drugs that have poor oral bioavailability. The thin alveolar barrier enables fast and efficient uptake of many molecules and could deliver small molecules and proteins, which are susceptible to degradation and show poor absorption by oral application. The low rate of biotransformation and proteolytic degradation increases bioavailability of drugs but accumulation of not absorbed material may impair normal lung function. This limitation is more relevant for compounds that should be systematically active because higher doses have to be applied to the lung. The review describes processes that determine absorption of orally inhaled formulations, namely dissolution in the lung lining fluid and uptake and degradation by alveolar epithelial cells and macrophages. Dissolution testing in simulated lung fluid, screening for cytotoxicity and pro-inflammatory action in respiratory cells and study of macrophage morphology, and phagocytosis can help to identify adverse effects of pulmonary formulations.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- a Center for Medical Research, Medical University of Graz , Graz , Austria.,b Research Center Pharmaceutical Engineering GmbH , Graz , Austria
| |
Collapse
|
16
|
Sadovnick AD, Gu BJ, Traboulsee AL, Bernales CQ, Encarnacion M, Yee IM, Criscuoli MG, Huang X, Ou A, Milligan CJ, Petrou S, Wiley JS, Vilariño-Güell C. Purinergic receptors P2RX4 and P2RX7 in familial multiple sclerosis. Hum Mutat 2017; 38:736-744. [PMID: 28326637 PMCID: PMC5429140 DOI: 10.1002/humu.23218] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/08/2017] [Accepted: 03/16/2017] [Indexed: 12/11/2022]
Abstract
Genetic variants in the purinergic receptors P2RX4 and P2RX7 have been shown to affect susceptibility to multiple sclerosis (MS). In this study, we set out to evaluate whether rare coding variants of major effect could also be identified in these purinergic receptors. Sequencing analysis of P2RX4 and P2RX7 in 193 MS patients and 100 controls led to the identification of a rare three variant haplotype (P2RX7 rs140915863:C>T [p.T205M], P2RX7 rs201921967:A>G [p.N361S], and P2RX4 rs765866317:G>A [p.G135S]) segregating with disease in a multi-incident family with six family members diagnosed with MS (logarithm of odds = 3.07). Functional analysis of this haplotype in HEK293 cells revealed impaired P2X7 surface expression (P < 0.01), resulting in over 95% inhibition of adenosine triphosphate (ATP)-induced pore function (P < 0.001) and a marked reduction in phagocytic ability (P < 0.05). In addition, transfected cells showed 40% increased peak ATP-induced inward current (P < 0.01), and a greater Ca2+ response to the P2X4 135S variant compared with wild type (P < 0.0001). Our study nominates rare genetic variants in P2RX4 and P2RX7 as major genetic contributors to disease, further supporting a role for these purinergic receptors in MS and the disruption of transmembrane cation channels leading to impairment of phagocytosis as the pathological mechanisms of disease.
Collapse
Affiliation(s)
- A Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony L Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Cecily Q Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Irene M Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Maria G Criscuoli
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Xin Huang
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Amber Ou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Carol J Milligan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
17
|
Gu BJ, Huang X, Ou A, Rembach A, Fowler C, Avula PK, Horton A, Doecke JD, Villemagne VL, Macaulay SL, Maruff P, Fletcher EL, Guymer R, Wiley JS, Masters CL. Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer's disease. Acta Neuropathol 2016; 132:377-89. [PMID: 27411339 DOI: 10.1007/s00401-016-1596-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
Abstract
Sporadic Alzheimer's disease (AD) is characterised by the deposition and accumulation of specific protein aggregates. Failure of clearance could underlie this process, and recent genetic association studies point towards involvement of the phagocytosis and autophagy pathways. We developed a real-time tri-color flow cytometry method to quantitate the phagocytic function of human peripheral blood monocyte subsets including non-classic CD14(dim)CD16(+), intermediate CD14(+)CD16(+) and classic CD14(+)CD16(-) monocytes. Using this method, we have measured the phagocytic ability of fresh monocytes in a study of preclinical, prodromal and clinical AD, matched with cognitively normal healthy control subjects. Basal levels of phagocytosis in all three subsets of monocytes were similar between healthy controls and AD patients, while a significant increase of basal phagocytosis was found in subjects with high Aβ-amyloid burden as assessed by PET scans. Pre-treating cells with Copaxone (CPX, to stimulate phagocytosis) or ATP (an inhibitor of P2X7-mediated phagocytosis) showed a differential response depending on clinical or Aβ-burden status, indicating a relative functional deficit. Overall the results are consistent with a perturbation of basal and stimulated innate phagocytosis in sporadic AD.
Collapse
Affiliation(s)
- Ben J Gu
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Xin Huang
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Amber Ou
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alan Rembach
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Pavan K Avula
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Adam Horton
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - James D Doecke
- CSIRO Health and Biosecurity/Australian E-Health Research Centre, Herston, QLD, 4029, Australia
| | - Victor L Villemagne
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, 3084, Australia
| | | | - Paul Maruff
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
- Cogstate Pty Ltd, Melbourne, VIC, 3000, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital, The University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - James S Wiley
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
18
|
Lambert C, Preijers FWMB, Yanikkaya Demirel G, Sack U. Monocytes and macrophages in flow: an ESCCA initiative on advanced analyses of monocyte lineage using flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 92:180-188. [DOI: 10.1002/cyto.b.21280] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/13/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Claude Lambert
- Immunology Laboratory, CNRS UMR5307 Labo Georges Friedel (LGF); Pole De Biologie-Pathologie, University Hospital; St Etienne France
| | - Frank W. M. B. Preijers
- Department of Laboratory Medicine Laboratory of Hematology; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty; Translational Centre for Regenerative Medicine (TRM), Universität Leipzig; Leipzig Germany
| |
Collapse
|
19
|
Melzer S, Ankri R, Fixler D, Tarnok A. Nanoparticle uptake by macrophages in vulnerable plaques for atherosclerosis diagnosis. JOURNAL OF BIOPHOTONICS 2015; 8:871-83. [PMID: 26110589 DOI: 10.1002/jbio.201500114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/11/2015] [Accepted: 06/03/2015] [Indexed: 05/11/2023]
Abstract
The composition of atherosclerotic (AS) plaques is crucial concerning rupture, thrombosis and clinical events. Two plaque types are distinguished: stable and vulnerable plaques. Vulnerable plaques are rich in inflammatory cells, mostly only M1 macrophages, and are highly susceptible to rupture. These plaques represent a high risk particularly with the standard invasive diagnosis by coronary angiography. So far there are no non-invasive low-risk clinical approaches available to detect and distinguish AS plaque types in vivo. The perspective review introduces a whole work-flow for a novel approach for non-invasive detection and classification of AS plaques using the diffusion reflection method with gold nanoparticle loaded macrophages in combination with flow and image cytometric analysis for quality assurance. Classical biophotonic methods for AS diagnosis are summarized. Phenotyping of monocytes and macrophages are discussed for specific subset labelling by nanomaterials, as well as existing studies and first experimental proofs of concept for the novel approach are shown. In vitro and in vivo detection of NP loaded macrophages (MΦ). Different ways of MΦ labelling include (1) in vitro labelling in suspension (whole blood or buffy coat) or (2) labelling of short-term MΦ cultures with re-injection of MΦ-NP into the animal to detect migration of the cells in the plaques and (3) in vivo injection of NP into the organism.
Collapse
Affiliation(s)
- Susanne Melzer
- LIFE Leipziger Forschungszentrum für Zivilisationserkrankungen, Universität Leipzig, Leipzig, Germany
- Department of Pediatric Cardiology, Cardiac Center GmbH, University of Leipzig, Leipzig, Germany
| | - Rinat Ankri
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Attila Tarnok
- Department of Pediatric Cardiology, Cardiac Center GmbH, University of Leipzig, Leipzig, Germany.
- Translational Centre for Regenerative Medicine (TRM) Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
Gu BJ, Field J, Dutertre S, Ou A, Kilpatrick TJ, Lechner-Scott J, Scott R, Lea R, Taylor BV, Stankovich J, Butzkueven H, Gresle M, Laws SM, Petrou S, Hoffjan S, Akkad DA, Graham CA, Hawkins S, Glaser A, Bedri SK, Hillert J, Matute C, Antiguedad A, Wiley JS. A rare P2X7 variant Arg307Gln with absent pore formation function protects against neuroinflammation in multiple sclerosis. Hum Mol Genet 2015; 24:5644-54. [PMID: 26188005 DOI: 10.1093/hmg/ddv278] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic relapsing-remitting inflammatory disease of the central nervous system characterized by oligodendrocyte damage, demyelination and neuronal death. Genetic association studies have shown a 2-fold or greater prevalence of the HLA-DRB1*1501 allele in the MS population compared with normal Caucasians. In discovery cohorts of Australasian patients with MS (total 2941 patients and 3008 controls), we examined the associations of 12 functional polymorphisms of P2X7, a microglial/macrophage receptor with proinflammatory effects when activated by extracellular adenosine triphosphate (ATP). In discovery cohorts, rs28360457, coding for Arg307Gln was associated with MS and combined analysis showed a 2-fold lower minor allele frequency compared with controls (1.11% for MS and 2.15% for controls, P = 0.0000071). Replication analysis of four independent European MS case-control cohorts (total 2140 cases and 2634 controls) confirmed this association [odds ratio (OR) = 0.69, P = 0.026]. A meta-analysis of all Australasian and European cohorts indicated that Arg307Gln confers a 1.8-fold protective effect on MS risk (OR = 0.57, P = 0.0000024). Fresh human monocytes heterozygous for Arg307Gln have >85% loss of 'pore' function of the P2X7 receptor measured by ATP-induced ethidium uptake. Analysis shows Arg307Gln always occurred with 270His suggesting a single 307Gln-270His haplotype that confers dominant negative effects on P2X7 function and protection against MS. Modeling based on the homologous zP2X4 receptor showed Arg307 is located in a region rich in basic residues located only 12 Å from the ligand binding site. Our data show the protective effect against MS of a rare genetic variant of P2RX7 with heterozygotes showing near absent proinflammatory 'pore' function.
Collapse
Affiliation(s)
- Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Judith Field
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier 2-CNRS, Montpellier, France
| | - Amber Ou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Trevor J Kilpatrick
- Melbourne Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Rodney Scott
- Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Rodney Lea
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Bruce V Taylor
- Menzies Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Jim Stankovich
- Menzies Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Helmut Butzkueven
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Melissa Gresle
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Simon M Laws
- School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Denis A Akkad
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Colin A Graham
- Regional Genetics Laboratories, Belfast Health & Social Care Trust, Northern Ireland, UK
| | - Stanley Hawkins
- Department of Neurology, Belfast Health & Social Care Trust, Northern Ireland, UK
| | - Anna Glaser
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Sahl Khalid Bedri
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Matute
- CIBERNED, Achucarro Basque Center for Neuroscience, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain and
| | - Alfredo Antiguedad
- Servicio de Neurología, Hospital Universitario Basurto-Osakidetza, Bilbao, Spain
| | | | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia,
| |
Collapse
|