1
|
Neila-Montero M, Alvarez M, Riesco MF, Montes-Garrido R, Palacin-Martinez C, Silva-Rodríguez A, Martín-Cano FE, Peña FJ, de Paz P, Anel L, Anel-Lopez L. Ovine fertility by artificial insemination in the breeding season could be affected by intraseasonal variations in ram sperm proteomic profile. Theriogenology 2023; 208:28-42. [PMID: 37290145 DOI: 10.1016/j.theriogenology.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
It is important to note that seasonality could affect ram reproductive parameters, and therefore, fertility results after artificial insemination. In this work, 1) we assessed fertility rates after cervical artificial insemination of 11,805 ewes at the beginning (June 21st to July 20th) and at the end (November 20th to December 21st) of the reproductive season in the Assaf breed for the last four years, and 2) we aimed to identify male factors influencing the different reproductive success obtained depending on the time at the mating season in which ovine artificial insemination was performed. For this purpose, we evaluated certain ram reproductive and ultrasonographical parameters as well as we performed a multiparametric and proteomic sperm analysis of 6-19 rams at two very distant points in the mating season (July as Early Breeding Season -EBS- and November as Late Breeding Season -LBS-). Rutinary assessments carried out in the ovine reproduction centers (testicular volume, libido, sperm production and mass motility) showed non-significant differences (P ≥ 0.05) between both studied times, as well as the ram ultrasonographic evaluation (Resistive and Pulsatility Index as Doppler parameters; and pixels mean gray level, and hypoechoic areas percentage and density as echotexture parameters). However, at level of sperm functionality, although sperm quality appeared non-significantly lower (P ≥ 0.05) in the EBS, we identified a significantly different (P < 0.05) sperm proteomic profile between the seasonality points. The following proteins were identified with the lowest abundance in the EBS with a fold change > 4, a P = 2.40e-07, and a q = 2.23e-06: Fibrous Sheath-Interacting Protein 2, Disintegrin and Metalloproteinase Domain-Containing Protein 20-like, Phosphoinositide-Specific Phospholipase C, Tektin 5, Armadillo Repeat-Containing Protein 12 Isoform X3, Solute Carrier Family 9B1, Radial Spoke Head Protein 3 Homolog, Pro-Interleukin-16, NADH Dehydrogenase [Ubiquinone] 1 Alpha Subcomplex Subunit 8, Testis, Prostate and Placenta-Expressed Protein, and Acyl Carrier Protein Mitochondrial. In conclusion, while our basic analyses on male and sperm quality showed similar results between the beginning and the end of the breeding season, on a proteomic level we detected a lower expression of sperm proteins linked to the energy metabolism, sperm-oocyte interactions, and flagellum structure in the EBS. Probably, this different protein expression could be related to the lower fertility rate of Assaf ewes after cervical artificial insemination at this time. More importantly, sperm proteins can be used as highly effective molecular markers in predicting sperm fertilization ability related to intraseasonal variations.
Collapse
Affiliation(s)
- Marta Neila-Montero
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Mercedes Alvarez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Marta F Riesco
- Itra-ULE, INDEGSAL, University of León, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, León, Spain.
| | - Rafael Montes-Garrido
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Cristina Palacin-Martinez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Paulino de Paz
- Itra-ULE, INDEGSAL, University of León, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, León, Spain
| | - Luis Anel
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Luis Anel-Lopez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| |
Collapse
|
2
|
Lund M, Heaton R, Hargreaves IP, Gregersen N, Olsen RKJ. Odd- and even-numbered medium-chained fatty acids protect against glutathione depletion in very long-chain acyl-CoA dehydrogenase deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159248. [PMID: 36356723 DOI: 10.1016/j.bbalip.2022.159248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Recent trials have reported the ability of triheptanoin to improve clinical outcomes for the severe symptoms associated with long-chain fatty acid oxidation disorders, including very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. However, the milder myopathic symptoms are still challenging to treat satisfactorily. Myopathic pathogenesis is multifactorial, but oxidative stress is an important component. We have previously shown that metabolic stress increases the oxidative burden in VLCAD-deficient cell lines and can deplete the antioxidant glutathione (GSH). We investigated whether medium-chain fatty acids provide protection against GSH depletion during metabolic stress in VLCAD-deficient fibroblasts. To investigate the effect of differences in anaplerotic capacity, we included both even-(octanoate) and odd-numbered (heptanoate) medium-chain fatty acids. Overall, we show that modulation of the concentration of medium-chain fatty acids in culture media affects levels of GSH retained during metabolic stress in VLCAD-deficient cell lines but not in controls. Lowered glutamine concentration in the culture media during metabolic stress led to GSH depletion and decreased viability in VLCAD deficient cells, which could be rescued by both heptanoate and octanoate in a dose-dependent manner. Unlike GSH levels, the levels of total thiols increased after metabolic stress exposure, the size of this increase was not affected by differences in cell culture medium concentrations of glutamine, heptanoate or octanoate. Addition of a PPAR agonist further exacerbated stress-related GSH-depletion and viability loss, requiring higher concentrations of fatty acids to restore GSH levels and cell viability. Both odd- and even-numbered medium-chain fatty acids efficiently protect VLCADdeficient cells against metabolic stress-induced antioxidant depletion.
Collapse
Affiliation(s)
- Martin Lund
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| | - Robert Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Iain P Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| |
Collapse
|
3
|
Cao W, Gu M, Wang S, Huang C, Xie Y, Cao Y. Effects of epigallocatechin gallate on the stability, dissolution and toxicology of ZnO nanoparticles. Food Chem 2022; 371:131383. [PMID: 34808776 DOI: 10.1016/j.foodchem.2021.131383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 01/17/2023]
Abstract
Previously we reported the cytoprotective effects of polyphenols rich in hydroxyl groups against ZnO nanoparticles (NPs). This study used RNA-sequencing to evaluate the toxicity of ZnO NPs and epigallocatechin gallate (EGCG) to 3D Caco-2 spheroids. EGCG altered the colloidal stability of ZnO NPs, shown as the changes of atomic force microscopic height, solubility in cell culture medium, and hydrodynamic sizes. EGCG almost completely reversed ZnO NP-induced cytotoxicity, and consistently, alleviated ZnO NP-induced gene ontology (GO) terms and genes related with apoptosis. EGCG also modestly decreased intracellular Zn ions and changed GO terms and genes related with endocytosis/exocytosis in ZnO NP-exposed spheroids. Meanwhile, EGCG changed ZnO NP-induced alteration of GO terms and genes related with the functions of mitochondria, endoplasmic reticulum and lysosomes. We concluded that EGCG alleviated the cytotoxicity of ZnO NPs to 3D Caco-2 spheroids by altering NPs' colloidal properties and the pathways related with internalization and organelle dysfunction.
Collapse
Affiliation(s)
- Wandi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Manyu Gu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuyi Wang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Li S, Yan D, Huang C, Yang F, Cao Y. TiO 2 nanosheets promote the transformation of vascular smooth muscle cells into foam cells in vitro and in vivo through the up-regulation of nuclear factor kappa B subunit 2. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127704. [PMID: 34799167 DOI: 10.1016/j.jhazmat.2021.127704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 05/15/2023]
Abstract
Titanium dioxide (TiO2) nanomaterials have been shown to promote atherosclerosis through endothelial dysfunction. This study investigated the toxicity of TiO2 nanosheets (NSs) to vascular smooth muscle cells (VSMCs), one of the pivotal cells involved in all stages of atherosclerosis. Only a high concentration of TiO2 NSs (128 μg/mL) modestly induced cytotoxicity by decreasing thiols. RNA-sequencing data revealed that 64 μg/mL TiO2 NSs significantly down-regulated 94 genes and up-regulated 174 genes, respectively. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to SMC function and lipid metabolism were altered. TiO2 NSs increased nuclear factor kappa B subunit 2 (NFKB2), which led to a decrease in VSMC marker actin alpha 2, smooth muscle (ACTA2). On the other hand, macrophage marker CD36 and fatty acid synthase (FASN) proteins were increased. Additionally, TiO2 NSs induced inflammatory cytokines and lipid accumulation, and these effects were curtailed by NFKB inhibitor - triptolide. Furthermore, repeated TiO2 NS injection (5 mg/kg BW, once a day for 5 continuous days) into ICR mice led to increased NFKB2, CD36 and FASN, with a decreased ACTA2. Our results suggested that TiO2 NSs promoted the transformation of VSMCs into foam cells through the up-regulation of NFKB2.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Dejian Yan
- Institute of Advanced Materials, North China Electric Power University, Beijing 102206, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
5
|
Ortiz-Rodríguez JM, Martín-Cano FE, Gaitskell-Phillips GL, Silva A, Ortega-Ferrusola C, Gil MC, Peña FJ. Low glucose and high pyruvate reduce the production of 2-oxoaldehydes, improving mitochondrial efficiency, redox regulation, and stallion sperm function†. Biol Reprod 2021; 105:519-532. [PMID: 33864078 DOI: 10.1093/biolre/ioab073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Energy metabolism in spermatozoa is complex and involves the metabolism of carbohydrate fatty acids and amino acids. The ATP produced in the electron transport chain in the mitochondria appears to be crucial for both sperm motility and maintaining viability, whereas glycolytic enzymes in the flagella may contribute to ATP production to sustain motility and velocity. Stallion spermatozoa seemingly use diverse metabolic strategies, and in this regard, a study of the metabolic proteome showed that Gene Ontology terms and Reactome pathways related to pyruvate metabolism and the Krebs cycle were predominant. Following this, the hypothesis that low glucose concentrations can provide sufficient support for motility and velocity, and thus glucose concentration can be significantly reduced in the medium, was tested. Aliquots of stallion semen in four different media were stored for 48 h at 18°C; a commercial extender containing 67 mM glucose was used as a control. Stallion spermatozoa stored in media with low glucose (1 mM) and high pyruvate (10 mM) (LG-HP) sustained better motility and velocities than those stored in the commercial extender formulated with very high glucose (61.7 ± 1.2% in INRA 96 vs 76.2 ± 1.0% in LG-HP media after 48 h of incubation at 18°C; P < 0.0001). Moreover, mitochondrial activity was superior in LG-HP extenders (24.1 ± 1.8% in INRA 96 vs 51.1 ± 0.7% in LG-HP of spermatozoa with active mitochondria after 48 h of storage at 18°C; P < 0.0001). Low glucose concentrations may permit more efficient sperm metabolism and redox regulation when substrates for an efficient tricarboxylic acid cycle are provided. The improvement seen using low glucose extenders is due to reductions in the levels of glyoxal and methylglyoxal, 2-oxoaldehydes formed during glycolysis; these compounds are potent electrophiles able to react with proteins, lipids, and DNA, causing sperm damage.
Collapse
Affiliation(s)
- José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma L Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
6
|
Lund M, Andersen KG, Heaton R, Hargreaves IP, Gregersen N, Olsen RKJ. Bezafibrate activation of PPAR drives disturbances in mitochondrial redox bioenergetics and decreases the viability of cells from patients with VLCAD deficiency. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166100. [PMID: 33549744 DOI: 10.1016/j.bbadis.2021.166100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common inborn long-chain fatty acid oxidation (FAO) disorder. VLCAD deficiency is characterized by distinct phenotypes. The severe phenotypes are potentially life-threatening and affect the heart or liver, with a comparatively milder phenotype characterized by myopathic symptoms. There is an unmet clinical need for effective treatment options for the myopathic phenotype. The molecular mechanisms driving the gradual decrease in mitochondrial function and associated alterations of muscle fibers are unclear. The peroxisome proliferator-activated receptor (PPAR) pan-agonist bezafibrate is a potent modulator of FAO and multiple other mitochondrial functions and has been proposed as a potential medication for myopathic cases of long-chain FAO disorders. In vitro experiments have demonstrated the ability of bezafibrate to increase VLCAD expression and activity. However, the outcome of small-scale clinical trials has been controversial. We found VLCAD deficient patient fibroblasts to have an increased oxidative stress burden and deranged mitochondrial bioenergetic capacity, compared to controls. Applying heat stress under fasting conditions to bezafibrate pretreated patient cells, caused a marked further increase of mitochondrial superoxide levels. Patient cells failed to maintain levels of the essential thiol peptide antioxidant glutathione and experienced a decrease in cellular viability. Our findings indicate that chronic PPAR activation is a plausible initiator of long-term pathogenesis in VLCAD deficiency. Our findings further implicate disruption of redox homeostasis as a key pathogenic mechanism in VLCAD deficiency and support the notion that a deranged thiol metabolism might be an important pathogenic factor in VLCAD deficiency.
Collapse
Affiliation(s)
- Martin Lund
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Kathrine G Andersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Robert Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Iain P Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| |
Collapse
|
7
|
Ortiz-Rodriguez JM, Martín-Cano FE, Ortega-Ferrusola C, Masot J, Redondo E, Gázquez A, Gil MC, Aparicio IM, Rojo-Domínguez P, Tapia JA, Rodriguez-Martínez H, Peña FJ. The incorporation of cystine by the soluble carrier family 7 member 11 (SLC7A11) is a component of the redox regulatory mechanism in stallion spermatozoa†. Biol Reprod 2020; 101:208-222. [PMID: 30998234 DOI: 10.1093/biolre/ioz069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is considered a major mechanism causing sperm damage during cryopreservation and storage, and underlies male factor infertility. Currently, oxidative stress is no longer believed to be caused only by the overproduction of reactive oxygen species, but rather by the deregulation of redox signaling and control mechanisms. With this concept in mind, here, we describe for the first time the presence of the soluble carrier family 7 member 11 (SLC7A11) antiporter, which exchanges extracellular cystine (Cyss) for intracellular glutamate, in stallion spermatozoa, as well as its impact on sperm function using the specific inhibitor sulfasalazine. Spermatozoa incubated with Cyss exhibited an increased intracellular GSH content compared with controls (P < 0.01): 50% in fresh extended stallion spermatozoa and 30% in frozen-thawed spermatozoa. This effect was prevented by the addition of sulfasalazine to the media. Cystine supplementation also reduced the oxidation-reduction potential of spermatozoa, with sulfasalazine only preventing this effect on fresh spermatozoa that were incubated for 3 h at 37°C, but not in frozen-thawed spermatozoa. While sulfasalazine reduced the motility of frozen-thawed spermatozoa, it increased motility in fresh samples. The present findings provide new and relevant data on the mechanism regulating the redox status of spermatozoa and suggest that a different redox regulatory mechanism exists in cryopreserved spermatozoa, thus providing new clues to improve current cryopreservation technologies and treat male factor infertility.
Collapse
Affiliation(s)
- José Manuel Ortiz-Rodriguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Javier Masot
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eloy Redondo
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Gázquez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Inés M Aparicio
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Patricia Rojo-Domínguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José A Tapia
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Heriberto Rodriguez-Martínez
- Department of Clinical and Experimental Medicine, Faculty of Medicine & Health Sciences, Linköping University, Linköping, Sweden
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
8
|
Martín-Cano FE, Gaitskell-Phillips G, Ortiz-Rodríguez JM, Silva-Rodríguez A, Román Á, Rojo-Domínguez P, Alonso-Rodríguez E, Tapia JA, Gil MC, Ortega-Ferrusola C, Peña FJ. Proteomic profiling of stallion spermatozoa suggests changes in sperm metabolism and compromised redox regulation after cryopreservation. J Proteomics 2020; 221:103765. [PMID: 32247875 DOI: 10.1016/j.jprot.2020.103765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
Proteomic technologies allow the detection of thousands of proteins at the same time, being a powerful technique to reveal molecular regulatory mechanisms in spermatozoa and also sperm damage linked to low fertility or specific biotechnologies. Modifications induced by the cryopreservation in the stallion sperm proteome were studied using UHPLC/MS/MS. Ejaculates from fertile stallions were collected and split in two subsamples, one was investigated as fresh (control) samples, and the other aliquot frozen and thawed using standard procedures and investigated as frozen thawed subsamples. UHPLC/MS/MS was used to study the sperm proteome under these two distinct conditions and bioinformatic enrichment analysis conducted. Gene Ontology (GO) and pathway enrichment analysis were performed revealing dramatic changes as consequence of cryopreservation. The terms oxidative phosphorylation, mitochondrial ATP synthesis coupled electron transport and electron transport chain were significantly enriched in fresh samples (P = 5.50 × 10-12, 4.26 × 10-8 and 7.26 × 10-8, respectively), while were not significantly enriched in frozen thawed samples (P = 1). The GO terms oxidation reduction process and oxidoreductase activity were enriched in fresh samples and the enrichment was reduced in frozen thawed samples (1.40 × 10-8, 1.69 × 10-6 versus 1.13 × 10-2 and 2-86 × 10-2 respectively). Reactome pathways (using human orthologs) significantly enriched in fresh sperm were TCA cycle and respiratory electron transport (P = 1.867 × 10-8), Respiratory electron transport ATP synthesis by chemiosmosis coupling (P = 2.124 × 10-5), Citric acid cycle (TCA cycle)(P = 8.395 × 10-4) Pyruvate metabolism and TCA cycle (P = 3.380 × 10-3), Respiratory electron transport (P = 2.764 × 10-2) and Beta oxidation of laurolyl-CoA to decanoyl CoA-CoA (P = 1.854 × 10-2) none of these pathways were enriched in thawed samples (P = 1). We have provided the first detailed study on how the cryopreservation process impacts the stallion sperm proteome. Our findings identify the metabolic proteome and redoxome as the two key groups of proteins affected by the procedure. SIGNIFICANCE: In the present manuscript we investigated how the cryopreservation of stallion spermatozoa impacts the proteome of these cells. This procedure is routinely used in horse breeding and has a major impact in the industry, facilitating the trade of genetic material. This is still a suboptimal biotechnology, with numerous unresolved problems. The limited knowledge of the molecular insults occurring during cryopreservation is behind these problems. The application and development of proteomics to the spermatozoa, allow to obtain valuable information of the specific mechanisms affected by the procedure. In this paper, we report that cryopreservation impacts numerous proteins involved in metabolism regulation (mainly mitochondrial proteins involved in the TCA cycle, and oxidative phosphorylation) and also affects proteins with oxidoreductase activity. Moreover, specific proteins involved in the sperm-oocyte interaction are also affected by the procedure. The information gathered in this study, opens interesting questions and offer new lines of research for the improvement of the technology focusing the targets here identified, and the specific steps in the procedure (cooling, toxicity of antioxidants etc.) to be modified to reduce the damage.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Ángel Román
- Department of Biochemistry and Molecular Biology, University of Extremadura, Badajoz, Spain
| | | | | | - José A Tapia
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - C Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
9
|
Adams W, Bhowmick R, Bou Ghanem EN, Wade K, Shchepetov M, Weiser JN, McCormick BA, Tweten RK, Leong JM. Pneumolysin Induces 12-Lipoxygenase-Dependent Neutrophil Migration during Streptococcus pneumoniae Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:101-111. [PMID: 31776202 PMCID: PMC7195902 DOI: 10.4049/jimmunol.1800748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
Streptococcus pneumoniae is a major cause of pneumonia, wherein infection of respiratory mucosa drives a robust influx of neutrophils. We have previously shown that S. pneumoniae infection of the respiratory epithelium induces the production of the 12-lipoxygenase (12-LOX)-dependent lipid inflammatory mediator hepoxilin A3, which promotes recruitment of neutrophils into the airways, tissue damage, and lethal septicemia. Pneumolysin (PLY), a member of the cholesterol-dependent cytolysin (CDC) family, is a major S. pneumoniae virulence factor that generates ∼25-nm diameter pores in eukaryotic membranes and promotes acute inflammation, tissue damage, and bacteremia. We show that a PLY-deficient S. pneumoniae mutant was impaired in triggering human neutrophil transepithelial migration in vitro. Ectopic production of PLY endowed the nonpathogenic Bacillus subtilis with the ability to trigger neutrophil recruitment across human-cultured monolayers. Purified PLY, several other CDC family members, and the α-toxin of Clostridium septicum, which generates pores with cross-sectional areas nearly 300 times smaller than CDCs, reproduced this robust neutrophil transmigration. PLY non-pore-forming point mutants that are trapped at various stages of pore assembly did not recruit neutrophils. PLY triggered neutrophil recruitment in a 12-LOX-dependent manner in vitro. Instillation of wild-type PLY but not inactive derivatives into the lungs of mice induced robust 12-LOX-dependent neutrophil migration into the airways, although residual inflammation induced by PLY in 12-LOX-deficient mice indicates that 12-LOX-independent pathways also contribute to PLY-triggered pulmonary inflammation. These data indicate that PLY is an important factor in promoting hepoxilin A3-dependent neutrophil recruitment across pulmonary epithelium in a pore-dependent fashion.
Collapse
Affiliation(s)
- Walter Adams
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192
| | - Rudra Bhowmick
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Kristin Wade
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Mikhail Shchepetov
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; and
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111;
| |
Collapse
|
10
|
Sahebekhtiari N, Fernandez-Guerra P, Nochi Z, Carlsen J, Bross P, Palmfeldt J. Deficiency of the mitochondrial sulfide regulator ETHE1 disturbs cell growth, glutathione level and causes proteome alterations outside mitochondria. Biochim Biophys Acta Mol Basis Dis 2018; 1865:126-135. [PMID: 30391543 DOI: 10.1016/j.bbadis.2018.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/14/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023]
Abstract
The mitochondrial enzyme ETHE1 is a persulfide dioxygenase essential for cellular sulfide detoxification, and its deficiency causes the severe and complex inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of well-described clinical symptoms of the disease, detailed cellular and molecular characterization is still ambiguous. Cellular redox regulation has been described to be influenced in ETHE1 deficient cells, and to clarify this further we applied image cytometry and detected decreased levels of reduced glutathione (GSH) in cultivated EE patient fibroblast cells. Cell growth initiation of the EE patient cells was impaired, whereas cell cycle regulation was not. Furthermore, Seahorse metabolic analyzes revealed decreased extracellular acidification, i. e. decreased lactate formation from glycolysis, in the EE patient cells. TMT-based large-scale proteomics was subsequently performed to broadly elucidate cellular consequences of the ETHE1 deficiency. More than 130 proteins were differentially regulated, of which the majority were non-mitochondrial. The proteomics data revealed a link between ETHE1-deficiency and down-regulation of several ribosomal proteins and LIM domain proteins important for cellular maintenance, and up-regulation of cell surface glycoproteins. Furthermore, several proteins of endoplasmic reticulum (ER) were perturbed including proteins influencing disulfide bond formation (e.g. protein disulfide isomerases and peroxiredoxin 4) and calcium-regulated proteins. The results indicate that decreased level of reduced GSH and alterations in proteins of ribosomes, ER and of cell adhesion lie behind the disrupted cell growth of the EE patient cells.
Collapse
Affiliation(s)
- Navid Sahebekhtiari
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| |
Collapse
|
11
|
Peña FJ, Ortiz Rodriguez JM, Gil MC, Ortega Ferrusola C. Flow cytometry analysis of spermatozoa: Is it time for flow spermetry? Reprod Domest Anim 2018; 53 Suppl 2:37-45. [DOI: 10.1111/rda.13261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Fernando J. Peña
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | - Jose M. Ortiz Rodriguez
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | - María C. Gil
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | | |
Collapse
|
12
|
Vara D, Watt JM, Fortunato TM, Mellor H, Burgess M, Wicks K, Mace K, Reeksting S, Lubben A, Wheeler-Jones CPD, Pula G. Direct Activation of NADPH Oxidase 2 by 2-Deoxyribose-1-Phosphate Triggers Nuclear Factor Kappa B-Dependent Angiogenesis. Antioxid Redox Signal 2018; 28:110-130. [PMID: 28793782 PMCID: PMC5725637 DOI: 10.1089/ars.2016.6869] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. RESULTS Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2-/- mice. INNOVATION For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. CONCLUSIONS This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110-130.
Collapse
Affiliation(s)
- Dina Vara
- 1 Institute of Biomedical and Clinical Science, University of Exeter Medical School , Exeter, United Kingdom
| | - Joanna M Watt
- 2 Department of Pharmacy and Pharmacology, University of Bath , Bath, United Kingdom
| | - Tiago M Fortunato
- 3 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Harry Mellor
- 4 Department of Biochemistry, University of Bristol , Bristol, United Kingdom
| | - Matthew Burgess
- 5 The Healing Foundation Centre, University of Manchester , Manchester, United Kingdom
| | - Kate Wicks
- 5 The Healing Foundation Centre, University of Manchester , Manchester, United Kingdom
| | - Kimberly Mace
- 5 The Healing Foundation Centre, University of Manchester , Manchester, United Kingdom
| | - Shaun Reeksting
- 6 Mass Spectrometry Service and Chemical Characterisation and Analysis Facility, University of Bath , Bath, United Kingdom
| | - Anneke Lubben
- 6 Mass Spectrometry Service and Chemical Characterisation and Analysis Facility, University of Bath , Bath, United Kingdom
| | | | - Giordano Pula
- 1 Institute of Biomedical and Clinical Science, University of Exeter Medical School , Exeter, United Kingdom
| |
Collapse
|
13
|
Wong CW, Chen YT, Chien CL, Yu TY, Rwei SP, Hsu SH. A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:69-79. [DOI: 10.1016/j.msec.2017.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
14
|
Piwocka K. When polychromatic flow cytometry meets mitochondrial reactive oxygen species. Cytometry A 2016; 89:1052-1053. [PMID: 27632791 DOI: 10.1002/cyto.a.22980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Pieper IL, Radley G, Chan CHH, Friedmann Y, Foster G, Thornton CA. Quantification methods for human and large animal leukocytes using DNA dyes by flow cytometry. Cytometry A 2016; 89:565-74. [DOI: 10.1002/cyto.a.22874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/19/2016] [Accepted: 04/26/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Ina Laura Pieper
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Gemma Radley
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Chris H. H. Chan
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Yasmin Friedmann
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
| | - Graham Foster
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Catherine A. Thornton
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
| |
Collapse
|