1
|
Xu J, Zhao Y, Chen Z, Wei L. Clinical Application of Different Liquid Biopsy Components in Hepatocellular Carcinoma. J Pers Med 2024; 14:420. [PMID: 38673047 PMCID: PMC11051574 DOI: 10.3390/jpm14040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, usually occurring in the background of chronic liver disease. HCC lethality rate is in the third highest place in the world. Patients with HCC have concealed early symptoms and possess a high-level of heterogeneity. Once diagnosed, most of the tumors are in advanced stages and have a poor prognosis. The sensitivity and specificity of existing detection modalities and protocols are suboptimal. HCC calls for more sophisticated and individualized therapeutic regimens. Liquid biopsy is non-invasive, repeatable, unaffected by location, and can be monitored dynamically. It has emerged as a useable aid in achieving precision malignant tumor treatment. Circulating tumor cells (CTCs), circulating nucleic acids, exosomes and tumor-educated platelets are the commonest components of a liquid biopsy. It possesses the theoretical ability to conquer the high heterogeneity and the difficulty of early detection for HCC patients. In this review, we summarize the common enrichment techniques and the clinical applications in HCC for different liquid biopsy components. Tumor recurrence after HCC-related liver transplantation is more insidious and difficult to treat. The clinical use of liquid biopsy in HCC-related liver transplantation is also summarized in this review.
Collapse
Affiliation(s)
| | | | | | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China; (J.X.); (Y.Z.); (Z.C.)
| |
Collapse
|
2
|
Zhuang B, Zhu X, Lin J, Zhang F, Qiao B, Kang J, Xie X, Wei X, Xie X. Radiofrequency ablation induces tumor cell dissemination in a mouse model of hepatocellular carcinoma. Eur Radiol Exp 2023; 7:74. [PMID: 38019353 PMCID: PMC10686970 DOI: 10.1186/s41747-023-00382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND We tested the hypothesis that radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) promotes tumor cell release and explored a method for reducing these effects. METHODS A green fluorescent protein-transfected orthotopic HCC model was established in 99 nude mice. In vivo flow cytometry was used to monitor circulating tumor cell (CTC) dynamics. Pulmonary fluorescence imaging and pathology were performed to investigate lung metastases. First, the kinetics of CTCs during the periablation period and the survival rate of CTCs released during RFA were investigated. Next, mice were allocated to controls, sham ablation, or RFA with/without hepatic vessel blocking (ligation of the portal triads) for evaluating the postablation CTC level, lung metastases, and survival over time. Moreover, the kinetics of CTCs, lung metastases, and mice survival were evaluated for RFA with/without ethanol injection. Pathological changes in tumors and surrounding parenchyma after ethanol injection were noted. Statistical analysis included t-test, ANOVA, and Kaplan-Meier survival curves. RESULTS CTC counts were 12.3-fold increased during RFA, and 73.7% of RFA-induced CTCs were viable. Pre-RFA hepatic vessel blocking prevented the increase of peripheral CTCs, reduced the number of lung metastases, and prolonged survival (all p ≤ 0.05). Similarly, pre-RFA ethanol injection remarkably decreased CTC release during RFA and further decreased lung metastases with extended survival (all p ≤ 0.05). Histopathology revealed thrombus formation in blood vessels after ethanol injection, which may clog tumor cell dissemination during RFA. CONCLUSION RFA induces viable tumor cell dissemination, and pre-RFA ethanol injection may provide a prophylactic strategy to reduce this underestimated effect. RELEVANCE STATEMENT RFA for HCC promotes viable tumor cell release during ablation, while ethanol injection can prevent RFA induced tumor cell release. KEY POINTS • RFA induced the release of viable tumor cells during the ablation procedure in an animal model. • Hepatic vessel blocking can suppress tumor cells dissemination during RFA. • Ethanol injection can prevent RFA-induced tumor cell release, presumably because of the formation of thrombosis.
Collapse
Affiliation(s)
- Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Xi Zhu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Jinhua Lin
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Fuli Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Jihui Kang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohua Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Biomedical Engineering Department, Peking University, Beijing, 100081, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Railean V, Buszewski B. Flow Cytometry - Sophisticated Tool for Basic Research or/and Routine Diagnosis; Impact of the Complementarity in Both Pre- as Well as Clinical Studies. Crit Rev Anal Chem 2022; 54:2087-2109. [PMID: 36576036 DOI: 10.1080/10408347.2022.2154596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flow cytometry is a sophisticated technology used widely in both basic research and as a routine tool in clinical diagnosis. The technology has progressed from single parameter detection in the 1970s and 1980s to high end multicolor analysis, with currently 30 parameters detected simultaneously, allowing the identification and purification of rare subpopulations of cells of interest. Flow cytometry continues to evolve and expand to facilitate the investigation of new diagnostic and therapeutic avenues. The present review gives an overview of basic theory and instrumentation, presents and compares the advantages and disadvantages of conventional, spectral and imaging flow cytometry as well as mass cytometry. Current methodologies and applications in both research, pre- and clinical settings are discussed, as well as potential limitations and future evolution. This finding encourages the reader to promote such relationship between basic science, diagnosis and multidisciplinary approach since the standard methods have limitations (e.g., in differentiating the cells after staining). Moreover, such path inspires future cytometry specialists develop new/alternative frontiers between pre- and clinical diagnosis and be more flexible in designing the study for both human as well as veterinary medicine.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
4
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
5
|
Temraz S, Nasr R, Mukherji D, Kreidieh F, Shamseddine A. Liquid Biopsy Derived Circulating Tumor Cells and Circulating Tumor DNA as Novel Biomarkers in Hepatocellular Carcinoma. Expert Rev Mol Diagn 2022; 22:507-518. [PMID: 35758097 DOI: 10.1080/14737159.2022.2094706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The diagnosis of hepatocellular carcinoma (HCC) is made at a relatively advanced stage resulting in poor prognosis. Alpha-fetoprotein and liver ultrasound have limited accuracy as biomarkers in HCC. Liver biopsy provides information on tumor biology; however, it is invasive and holds high threat of tumor seeding. Thus, more accurate and less invasive approaches are needed. AREAS COVERED Highly sensitive liquid biopsy assays have made possible the detection and analysis of cells or organelles such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-derived exosomes. Here, we focus on CTCs and ctDNA components of liquid biopsy and their clinical application as diagnostic, prognostic and predictive biomarkers in HCC. Unlike tissue biopsy, liquid biopsy involves attaining a sample at several time frames in an easy and a non-invasive manner. They have been efficacious in detecting and classifying cancer, in predicting treatment response, in monitoring disease relapse and in identifying mechanisms of resistance to targeted therapies. EXPERT OPINION Although interesting and highly promising, liquid biopsy techniques still have many obstacles to overcome before their wide spread clinical application sees the light. It is expected that these techniques will be incorporated into traditional methodologies for better diagnostic, predictive and prognostic results.
Collapse
Affiliation(s)
- Sally Temraz
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Deborah Mukherji
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Firas Kreidieh
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Ali Shamseddine
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| |
Collapse
|
6
|
Espejo-Cruz ML, González-Rubio S, Zamora-Olaya J, Amado-Torres V, Alejandre R, Sánchez-Frías M, Ciria R, De la Mata M, Rodríguez-Perálvarez M, Ferrín G. Circulating Tumor Cells in Hepatocellular Carcinoma: A Comprehensive Review and Critical Appraisal. Int J Mol Sci 2021; 22:ijms222313073. [PMID: 34884878 PMCID: PMC8657934 DOI: 10.3390/ijms222313073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common neoplasm and a major cause of cancer-related death worldwide. There is no ideal biomarker allowing early diagnosis of HCC and tumor surveillance in patients receiving therapy. Liquid biopsy, and particularly circulating tumor cells (CTCs), have emerged as a useful tool for diagnosis and monitoring therapeutic responses in different tumors. In the present manuscript, we evaluate the current evidence supporting the quantitative and qualitative assessment of CTCs as potential biomarkers of HCC, as well as technical aspects related to isolation, identification, and classification of CTCs. Although the dynamic assessment of CTCs in patients with HCC may aid the decision-making process, there are still many uncertainties and technical caveats to be solved before this methodology has a true impact on clinical practice guidelines. More studies are needed to identify the optimal combination of surface markers, to increase the efficiency of ex-vivo expansion of CTCs, or even to target CTCs as a potential therapeutic strategy to prevent HCC recurrence after surgery or to hamper tumor progression and extrahepatic spreading.
Collapse
Affiliation(s)
- María Lola Espejo-Cruz
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Sandra González-Rubio
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Javier Zamora-Olaya
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Víctor Amado-Torres
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Rafael Alejandre
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Marina Sánchez-Frías
- Department of Pathology, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Manuel De la Mata
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Correspondence:
| | - Gustavo Ferrín
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
7
|
Pelizzaro F, Cardin R, Penzo B, Pinto E, Vitale A, Cillo U, Russo FP, Farinati F. Liquid Biopsy in Hepatocellular Carcinoma: Where Are We Now? Cancers (Basel) 2021; 13:2274. [PMID: 34068786 PMCID: PMC8126224 DOI: 10.3390/cancers13092274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Diagnostic, prognostic, and predictive biomarkers are urgently needed in order to improve patient survival. Indeed, the most widely used biomarkers, such as alpha-fetoprotein (AFP), have limited accuracy as both diagnostic and prognostic tests. Liver biopsy provides an insight on the biology of the tumor, but it is an invasive procedure, not routinely used, and not representative of the whole neoplasia due to the demonstrated intra-tumoral heterogeneity. In recent years, liquid biopsy, defined as the molecular analysis of cancer by-products, released by the tumor in the bloodstream, emerged as an appealing source of new biomarkers. Several studies focused on evaluating extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding RNA as novel reliable biomarkers. In this review, we aimed to provide a comprehensive overview on the most relevant available evidence on novel circulating biomarkers for early diagnosis, prognostic stratification, and therapeutic monitoring. Liquid biopsy seems to be a very promising instrument and, in the near future, some of these new non-invasive tools will probably change the clinical management of HCC patients.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Romilda Cardin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Barbara Penzo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Elisa Pinto
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Alessandro Vitale
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Francesco Paolo Russo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| |
Collapse
|
8
|
Zhou J, Zhu Y, Li Y, Liu K, He F, Xu S, Li X, Li L, Hu J, Liu Y. Combined detection of circulating tumor cells, α-fetoprotein heterogene-3 and α-fetoprotein in the early diagnosis of HCC for the prediction of efficacy, prognosis, recurrence after microwave ablation. Infect Agent Cancer 2021; 16:28. [PMID: 33971914 PMCID: PMC8111940 DOI: 10.1186/s13027-021-00367-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Early diagnosis can significantly improve treatment outcomes for hepatocellular carcinoma (HCC) patients. Currently, the dosage of serum alpha fetoprotein (AFP) is widely used in the diagnosis of HCC, but this biomarker has low specificity and may cause false positive or false negative results. Thus, it's necessary to find and validate other serum tumor markers that in association for AFP would increase the sensitivity and the specificity in the HCC diagnosis. This study investigated the predictive value of combined of AFP, AFP-L3, and Circulating tumor cells (CTCs). METHODS A total of 105 patients with HCC after microwave ablation (MWA) were divided into non recurrence group, recurrence group, good prognosis (CR + PR group, CR: Complete remission, PR: Partial remission) and poor prognosis (SD + PD group, SD: Stable, PD: Progression). ROC curve was used to analyze the short-term efficacy, prognosis and clinical value of combined detection of the three indicators in predicting postoperative recurrence of HCC patients with MWA. RESULTS The positive rate of serum CTCs, AFP-L3 and AFP combined detection in the diagnosis of HCC is higher than that of single index and two index detection. The AUC, sensitivity and specificity of serum CTCs, AFP-L3 and AFP combined detection was better than that of single index and two indexes in patients with HCC after MWA. CONCLUSIONS Combined detection of AFP, AFP-L3, and CTCs can effectively make up for the shortcomings of the detection with single and pairwise indicators. It can't only diagnose HCC in early, but also has a high clinical value of predicting the short-term efficacy, prognosis and recurrence of HCC patients after MWA treatment.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Infectious Diseases, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Yue Zhu
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Yi Li
- Department of Infectious Diseases, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Kun Liu
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Fei He
- Department of Ultrasound Interventional Therapy, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, 430064, Wuhan, China
| | - Sihuan Xu
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Xin Li
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Li Li
- The Ministry of Science and Education, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Junfang Hu
- Department of Pharmacy, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China
| | - Yan Liu
- Biological Cell Therapy Research Center, Puren Hospital Affiliated to Wuhan University of Science and Technology, 430081, Wuhan, China.
| |
Collapse
|
9
|
Labgaa I, Villanueva A, Dormond O, Demartines N, Melloul E. The Role of Liquid Biopsy in Hepatocellular Carcinoma Prognostication. Cancers (Basel) 2021; 13:cancers13040659. [PMID: 33562173 PMCID: PMC7914891 DOI: 10.3390/cancers13040659] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest cancer. Clinical guidelines for the management of HCC endorse algorithms deriving from clinical variables whose performances to prognosticate HCC is limited. Liquid biopsy is the molecular analysis of tumor by-products released into the bloodstream. It offers minimally-invasive access to circulating analytes like DNA, RNA, exosomes and cells. This technology demonstrated promising results for various applications in cancers, including prognostication. This review aimed to provide a comprehensive overview of the contribution of liquid biopsy in HCC prognostication. The results suggested that liquid biopsy may be a polyvalent and valuable tool to prognosticate HCC. Abstract Showing a steadily increasing cancer-related mortality, the epidemiological evolution of hepatocellular carcinoma (HCC) is concerning. Numerous strategies have attempted to prognosticate HCC but their performance is modest; this is partially due to the heterogeneous biology of this cancer. Current clinical guidelines endorse classifications and scores that use clinical variables, such as the Barcelona Clinic Liver Cancer (BCLC) classification. These algorithms are unlikely to fully recapitulate the genomic complexity of HCC. Integrating molecular readouts on a patient-basis, following a precision-medicine perspective, might be an option to refine prognostic systems. The limited access to HCC tissue samples is an important limitation to these approaches but it could be partially circumvented by using liquid biopsy. This concept consists of the molecular analysis of products derived from a solid tumor and released into biological fluids, mostly into the bloodstream. It offers an easy and minimally-invasive access to DNA, RNA, extracellular vesicles and cells that can be analyzed with next-generation sequencing (NGS) technologies. This review aims to investigate the potential contributions of liquid biopsy in HCC prognostication. The results identified prognostic values for each of the components of liquid biopsy, suggesting that this technology may help refine HCC prognostication.
Collapse
Affiliation(s)
- Ismail Labgaa
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland; (I.L.); (O.D.); (E.M.)
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olivier Dormond
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland; (I.L.); (O.D.); (E.M.)
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland; (I.L.); (O.D.); (E.M.)
- Correspondence:
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland; (I.L.); (O.D.); (E.M.)
| |
Collapse
|
10
|
Liu Z, Yan C, Xiao Y, Zhang W, Wang L, Li Q, Cai W. Expression and inhibitory effects of p53-upregulated modulator of apoptosis in gallbladder carcinoma. Oncol Lett 2021; 21:234. [PMID: 33613723 PMCID: PMC7856684 DOI: 10.3892/ol.2021.12495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
The p53-upregulated modulator of apoptosis (PUMA) has been reported to be involved in various types of cancer. However, its potential biological role in gallbladder carcinoma (GBC) has not been fully elucidated. The present study aimed to determine the expression levels of PUMA and its biological effects on GBC. The mRNA and protein expression levels of PUMA in GBC tissues and cell lines were measured using reverse transcription-quantitative PCR and western blotting, respectively. The effects of PUMA overexpression on cell viability, proliferation and invasive ability were determined in vitro using the MTT, colony formation and Transwell invasion assays, respectively. The apoptotic rates were detected using the Annexin V-FITC apoptosis detection kit. Furthermore, follow-up of patients with GBC was performed to identify the association between PUMA expression levels and GBC prognosis. The results of the present study demonstrated that the expression levels of PUMA were significantly lower in the GBC tissues and cell lines compared with those in adjacent normal gallbladder tissues and normal gallbladder cells, respectively. Further experiments indicated that overexpression of PUMA inhibited the viability, proliferation and invasive ability of GBC cells compared with those in the control-transfected GBC cells. In addition, overexpression of PUMA significantly promoted apoptosis in GBC cells. Furthermore, overexpression of PUMA inhibited epithelial-mesenchymal transition, and promoted Bax upregulation and Bcl-2 downregulation compared with those in the control group. Low PUMA expression levels were associated with a short overall survival time in patients with GBC. In conclusions, PUMA may act as a tumor suppressor in GBC and may serve as a potential novel treatment target for human GBC.
Collapse
Affiliation(s)
- Zhide Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Cheng Yan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yangyan Xiao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Weichang Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Li Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Qinglong Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wenwu Cai
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
11
|
Tian C, Xu X, Wang Y, Li D, Lu H, Yang Z. Development and Clinical Prospects of Techniques to Separate Circulating Tumor Cells from Peripheral Blood. Cancer Manag Res 2020; 12:7263-7275. [PMID: 32884342 PMCID: PMC7434565 DOI: 10.2147/cmar.s248380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Detection of circulating tumor cells (CTC) is an important liquid biopsy technique that has advanced considerably in recent years. To further advance the development of technology for curing cancer, several CTC technologies have been proposed by various research groups. Despite their potential role in early cancer diagnosis and prognosis, CTC methods are currently used for research purposes only, and very few methods have been accepted for clinical applications because of difficulties, including CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Although current CTC technologies have not been truly implemented, they possess high potential as future clinical diagnostic techniques for individualized cancer. Here, we review current developments in CTC separation technology. We also explore new CTC detection methods based on telomerase and nanomaterials, such as in vivo flow cytometry. In addition, we discuss the difficulties that must be overcome before CTC can be applied in clinical settings.
Collapse
Affiliation(s)
- Cheng Tian
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Xinhua Xu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Yuke Wang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Dailong Li
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Haiyan Lu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Ziwei Yang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| |
Collapse
|
12
|
Harrington WN, Nolan J, Nedosekin DA, Smeltzer MS, Zharov VP. Real-Time Monitoring of Bacteria Clearance From Blood in a Murine Model. Cytometry A 2019; 97:706-712. [PMID: 31769208 DOI: 10.1002/cyto.a.23925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
Bloodstream infections, especially those that are antibiotic resistant, pose a significant challenge to health care leading to increased hospitalization time and patient mortality. There are different facets to this problem that make these diseases difficult to treat, such as the difficulty to detect bacteria in the blood and the poorly understood mechanism of bacterial invasion into and out of the circulatory system. However, little progress has been made in developing techniques to study bacteria dynamics in the bloodstream. Here, we present a new approach using an in vivo flow cytometry platform for real-time, noninvasive, label-free, and quantitative monitoring of the lifespan of green fluorescent protein-expressing Staphylococcus aureus and Pseudomonas aeruginosa in a murine model. We report a relatively fast average rate of clearance for S. aureus (k = 0.37 ± 0.09 min-1 , half-life ~1.9 min) and a slower rate for P. aeruginosa (k = 0.07 ± 0.02 min-1 , half-life ~9.6 min). We also observed what appears to be two stages of clearance for S. aureus, while P. aeruginosa appeared only to have a single stage of clearance. Our results demonstrate that an advanced research tool can be used for studying the dynamics of bacteria cells directly in the bloodstream, providing insight into the progression of infectious diseases in circulation. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Walter N Harrington
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 543, Little Rock, Arkansas, 72205
| | - Jacqueline Nolan
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 543, Little Rock, Arkansas, 72205
| | - Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 543, Little Rock, Arkansas, 72205
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences 4301 W. Markham, Slot 511, Little Rock, Arkansas, 72205
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 543, Little Rock, Arkansas, 72205
| |
Collapse
|
13
|
Wei D, Zeng X, Yang Z, Zhou Q, Weng X, He H, Gao W, Gu Z, Wei X. Visualizing Interactions of Circulating Tumor Cell and Dendritic Cell in the Blood Circulation Using In Vivo Imaging Flow Cytometry. IEEE Trans Biomed Eng 2019; 66:2521-2526. [DOI: 10.1109/tbme.2019.2891068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Suo Y, Gu Z, Wei X. Advances of In Vivo Flow Cytometry on Cancer Studies. Cytometry A 2019; 97:15-23. [DOI: 10.1002/cyto.a.23851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yuanzhen Suo
- Biomedical Pioneering Innovation CenterPeking University Beijing China
- School of Life SciencesPeking University Beijing China
| | - Zhenqin Gu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xunbin Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong University Shanghai China
- School of PhysicsFoshan University Foshan 52800 China
| |
Collapse
|
15
|
Nolan J, Nedosekin DA, Galanzha EI, Zharov VP. Detection of Apoptotic Circulating Tumor Cells Using in vivo Fluorescence Flow Cytometry. Cytometry A 2018; 95:664-671. [PMID: 30508273 DOI: 10.1002/cyto.a.23642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Most cancer patients die from metastatic disease as a result of a circulating tumor cell (CTC) spreading from a primary tumor through the blood circulation to distant organs. Many studies have demonstrated the tremendous potential of using CTC counts as prognostic markers of metastatic development and therapeutic efficacy. However, it is only the viable CTCs capable of surviving in the blood circulation that can create distant metastasis. To date, little progress has been made in understanding what proportion of CTCs is viable and what proportion is in an apoptotic state. Here, we introduce a novel approach toward in situ characterization of CTC apoptosis status using a multicolor in vivo flow cytometry platform with fluorescent detection for the real-time identification and enumeration of such cells directly in blood flow. The proof of concept was demonstrated with two-color fluorescence flow cytometry (FFC) using breast cancer cells MDA-MB-231 expressing green fluorescein protein (GFP), staurosporine as an activator of apoptosis, Annexin-V apoptotic kit with orange dye color, and a mouse model. The future application of this new platform for real-time monitoring of antitumor drug efficiency is discussed. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jacqueline Nolan
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Dmitry A Nedosekin
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Ekaterina I Galanzha
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Vladimir P Zharov
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| |
Collapse
|
16
|
Correnti M, Raggi C. Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer. Oncotarget 2018; 8:7094-7115. [PMID: 27738343 PMCID: PMC5351693 DOI: 10.18632/oncotarget.12569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Poor prognosis and high recurrence remain leading causes of primary liver cancerassociated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
17
|
Tárnok A. The rooster impact: End of year note 2017. Cytometry A 2017; 91:1141-1142. [PMID: 29265733 DOI: 10.1002/cyto.a.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/29/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Medical Faculty, University of Leipzig, Leipzig, Germany.,Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,Department Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| |
Collapse
|
18
|
Affiliation(s)
- Paul E Hutchinson
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Vuong Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Hartmann C, Patil R, Lin CP, Niedre M. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects. Phys Med Biol 2017; 63:01TR01. [PMID: 29240559 DOI: 10.1088/1361-6560/aa98f9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, 'in vivo flow cytometry' (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Collapse
Affiliation(s)
- Carolin Hartmann
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States of America. Institute of Hydrochemistry, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|
20
|
Tárnok A. Cytometry is expanding. Cytometry A 2017; 91:649-650. [PMID: 28727293 DOI: 10.1002/cyto.a.23167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Medical Faculty, University of Leipzig, Leipzig, Germany.,Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| |
Collapse
|
21
|
GABPA predicts prognosis and inhibits metastasis of hepatocellular carcinoma. BMC Cancer 2017; 17:380. [PMID: 28549418 PMCID: PMC5446731 DOI: 10.1186/s12885-017-3373-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence indicates that abnormal expression of GABPA is associated with tumor development and progression. However, the function and clinicopathological significance of GABPA in hepatocellular carcinoma (HCC) remain obscure. Methods The mRNA and protein expression of GABPA in HCC clinical specimens and cell lines was examined by real-time PCR and western blotting, respectively. Follow-up data were used to uncover the relationship between GABPA expression and the prognosis of HCC patients. HCC cell lines stably overexpressing or silencing GABPA were established to explore the function of GABPA in HCC cell migration and invasion by Transwell and wound healing assays in vitro and in a xenograft model in vivo. Restoration of function analysis was used to examine the underlying molecular mechanisms. Results GABPA was downregulated at the protein and mRNA levels in HCC tissues compared with adjacent normal tissues. Decreased GABPA expression was correlated with alpha-fetoprotein levels (P = 0.001), tumor grade (P = 0.017), and distant metastasis (P = 0.021). Kaplan-Meier survival analysis showed that patients with lower GABPA expression had significantly shorter survival times than those with higher GABPA (P = 0.031). In vivo and in vitro assays demonstrated that GABPA negatively regulated HCC cell migration and invasion, and the effect of GABPA on HCC cell migration was mediated at least partly by the regulation of E-cadherin. Conclusions Collectively, our data indicate that GABPA inhibits HCC cell migration by modulating E-cadherin and could serve as a novel biomarker for HCC prognosis. GABPA may act as a tumor suppressor during HCC progression and metastasis, and is a potential therapeutic target in HCC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3373-7) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Zhou J, Huang A, Yang XR. Liquid Biopsy and its Potential for Management of Hepatocellular Carcinoma. J Gastrointest Cancer 2017; 47:157-67. [PMID: 26969471 DOI: 10.1007/s12029-016-9801-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We summarized the recent findings of liquid biopsy in cancer field and discussed its potential utility in hepatocellular carcinoma. METHODS Literature published in MEDLINE, EMBASE, and Science Direct electronic databases was searched and reviewed. RESULTS Liquid biopsy specially referred to the detection of nucleic acids (circulating cell-free DNA, cfDNA) and circulating tumor cells (CTCs) in the blood of cancer patients. Compared to conventional single-site sampling or biopsy method, liquid biopsy had the advantages such as non-invasiveness, dynamic monitoring, and the most important of all, overcoming the limit of spatial and temporal heterogeneity. The genomic information of cancer could be profiled by genotyping cfDNA/CTC and subsequently applied to make molecular classification, targeted therapy guidance, and unveil drug resistance mechanisms. The serial sampling feature of liquid biopsy made it possible to monitor treatment response in a real-time manner and predict tumor metastasis/recurrence in advance. CONCLUSIONS Liquid biopsy is a non-invasive, dynamic, and informative sampling method with important clinical translational significance in cancer research and practice. Much work needs to be done before it is used in the management of HCC.
Collapse
Affiliation(s)
- Jian Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| | - Ao Huang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xin-Rong Yang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| |
Collapse
|
23
|
Su X, Tárnok A. Cytometry Advancement: A Perspective from China:. Cytometry A 2016; 89:1049-1051. [PMID: 28002656 DOI: 10.1002/cyto.a.23036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Xuantao Su
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Attila Tárnok
- Saxonian Incubator for Clinical Translation (SIKT), University Leipzig, Leipzig, Germany.,Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany.,Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| |
Collapse
|
24
|
Yao J, Feng J, Gao X, Wei D, Kang T, Zhu Q, Jiang T, Wei X, Chen J. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer. Biomaterials 2016; 113:1-17. [PMID: 27794222 DOI: 10.1016/j.biomaterials.2016.10.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022]
Abstract
Antiangiogenesis therapy has been served as a potent cancer treatment strategy for decades, yet disrupting neovasculature would provoke tumor cells into invasive growth and result in distal metastasis. The basic cause of cancer metastasis can be traced down to the presence of circulating tumor cells (CTCs) which detach from primary tumor site and act as 'seeds'. Epithelial cell adhesion molecule (EpCAM) is a potential biomarker for selective capture of epithelium-derived CTCs. Here, we integrated tumor neovessles-targetable ligands K237 peptide with Ep23 aptamer against EpCAM into a single drug-loaded nanoplatform using paclitaxel (PTX) as the model drug, aiming at damaging the primary tumor and neutralizing CTCs simultaneously to achieve a synergistic anti-tumor therapeutic effect. Enhanced cellular uptake, cell apoptosis-induction and cell-viability inhibition efficiency of the peptide and aptamer dual-functionalized nanoparticles (dTNP) were observed in both human umbilical vein endothelial cells (HUVEC) and 4T1 cells in vitro. Using cone-and-plate viscometer to create venous flow velocity, dTNP was also found to be able to capture CTCs under shear stress. The CTC-targeting and neutralization effect of dTNP in bloodstream and 4T1-GFP cell-derived lung metastasis mice model was confirmed via in vivo flow cytometry (IVFC), intravital imaging and confocal microscopy analysis. As a result, the orthotropic breast tumor-bearing mice administrated with PTX-loaded dTNP exhibited the optimal therapeutic effect. Taken together, the findings here provided direct evidence that the tumor neovasculature and CTCs dual-targeting drug delivery system could provide a novel modality for the treatment of highly-invasive breast cancer.
Collapse
Affiliation(s)
- Jianhui Yao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Jingxian Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Dan Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, PR China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Qianqian Zhu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Tianze Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, PR China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China.
| |
Collapse
|
25
|
Tárnok A. Class struggle under the microscope. Cytometry A 2016; 89:879-880. [PMID: 27768830 DOI: 10.1002/cyto.a.23002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Attila Tárnok
- Saxonian Incubator for Clinical Translation (SIKT) University Leipzig, Leipzig, Germany. .,Medical Faculty, Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.
| |
Collapse
|
26
|
Van Hees S, Michielsen P, Vanwolleghem T. Circulating predictive and diagnostic biomarkers for hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol 2016; 22:8271-8282. [PMID: 27729734 PMCID: PMC5055858 DOI: 10.3748/wjg.v22.i37.8271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infected patients have an almost 100-fold increased risk to develop hepatocellular carcinoma (HCC). HCC is the fifth most common and third most deadly cancer worldwide. Up to 50% of newly diagnosed HCC cases are attributed to HBV infection. Early detection improves survival and can be achieved through regular screening. Six-monthly abdominal ultrasound, either alone or in combination with alpha-fetoprotein serum levels, has been widely endorsed for this purpose. Both techniques however yield limited diagnostic accuracy, which is not improved when they are combined. Alternative circulating or histological markers to predict or diagnose HCC are therefore urgently needed. Recent advances in systems biology technologies have enabled the identification of several new putative circulating biomarkers. Although results from studies assessing combinations of these biomarkers are promising, evidence for their clinical utility remains low. In addition, most of the studies conducted so far show limitations in design. Attention must be paid for instance to different ethnicities and different etiologies when studying biomarkers for hepatocellular carcinoma. This review provides an overview on the current understandings and recent progress in the field of diagnostic and predictive circulating biomarkers for hepatocellular carcinoma in chronically infected HBV patients and discusses the future prospects.
Collapse
|
27
|
Chen W, Allen SG, Reka AK, Qian W, Han S, Zhao J, Bao L, Keshamouni VG, Merajver SD, Fu J. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics. BMC Cancer 2016; 16:614. [PMID: 27501846 PMCID: PMC4977622 DOI: 10.1186/s12885-016-2638-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have shown prognostic relevance in many cancer types. However, the majority of current CTC capture methods rely on positive selection techniques that require a priori knowledge about the surface protein expression of disseminated CTCs, which are known to be a dynamic population. METHODS We developed a microfluidic CTC capture chip that incorporated a nanoroughened glass substrate for capturing CTCs from blood samples. Our CTC capture chip utilized the differential adhesion preference of cancer cells to nanoroughened etched glass surfaces as compared to normal blood cells and thus did not depend on the physical size or surface protein expression of CTCs. RESULTS The microfluidic CTC capture chip was able to achieve a superior capture yield for both epithelial cell adhesion molecule positive (EpCAM+) and EpCAM- cancer cells in blood samples. Additionally, the microfluidic CTC chip captured CTCs undergoing transforming growth factor beta-induced epithelial-to-mesenchymal transition (TGF-β-induced EMT) with dynamically down-regulated EpCAM expression. In a mouse model of human breast cancer using EpCAM positive and negative cell lines, the number of CTCs captured correlated positively with the size of the primary tumor and was independent of their EpCAM expression. Furthermore, in a syngeneic mouse model of lung cancer using cell lines with differential metastasis capability, CTCs were captured from all mice with detectable primary tumors independent of the cell lines' metastatic ability. CONCLUSIONS The microfluidic CTC capture chip using a novel nanoroughened glass substrate is broadly applicable to capturing heterogeneous CTC populations of clinical interest independent of their surface marker expression and metastatic propensity. We were able to capture CTCs from a non-metastatic lung cancer model, demonstrating the potential of the chip to collect the entirety of CTC populations including subgroups of distinct biological and phenotypical properties. Further exploration of the biological potential of metastatic and presumably non-metastatic CTCs captured using the microfluidic chip will yield insights into their relevant differences and their effects on tumor progression and cancer outcomes.
Collapse
Affiliation(s)
- Weiqiang Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY 10012 USA
| | - Steven G. Allen
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ajaya Kumar Reka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY 10012 USA
| | - Shuo Han
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jianing Zhao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- School of Advanced Engineering, Beihang University, Beijing, 100191 China
| | - Liwei Bao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Venkateshwar G. Keshamouni
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sofia D. Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
28
|
Terashima T, Yamashita T, Horii R, Arai K, Kawaguchi K, Kitamura K, Yamashita T, Sakai Y, Mizukoshi E, Honda M, Kaneko S. Potential efficacy of therapies targeting intrahepatic lesions after sorafenib treatment of patients with hepatocellular carcinoma. BMC Cancer 2016; 16:338. [PMID: 27246496 PMCID: PMC4886418 DOI: 10.1186/s12885-016-2380-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/18/2016] [Indexed: 12/16/2022] Open
Abstract
Background We investigated the contribution of subsequent therapy for advanced hepatocellular carcinoma refractory or intolerant to sorafenib. Further, we investigated the impact of sorafenib on overall survival using individual data. Methods We reviewed the medical records of patients with advanced hepatocellular carcinoma treated with sorafenib. Survival after sorafenib treatment and overall survival were defined as the time when we discovered that patients were either refractory or intolerant to sorafenib and the period from the start of sorafenib treatment, respectively, until death during the study. We compared patients’ prognoses according to their subsequent treatment as follows: group A, therapies targeting intrahepatic lesions; group B, systemic therapies alone; group C, no subsequent therapy. We used linear regression analysis to determine whether there was an association with survival after sorafenib treatment and with overall survival. Results Of 79 patients, 63 (79.7 %) received one or more subsequent therapies (44 and 19 patients in groups A and B, respectively). The five patients who survived more than two years after sorafenib treatment was discontinued responded to therapies targeting intrahepatic lesions. The median survival times of groups A, B, and C were 11.9 months, 5.8 months, and 3.6 months, respectively. Multivariate analysis revealed that group A, Child-Pugh score, serum α-fetoprotein level, and cause of failure of sorafenib treatment were independent prognostic factors for survival after sorafenib treatment. Individual survival after sorafenib treatment correlated highly with overall survival. Conclusions Targeting intrahepatic lesions may be useful for treating patients with advanced hepatocellular carcinoma patients after sorafenib treatment is discontinued. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2380-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takeshi Terashima
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.,Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Rika Horii
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kuniaki Arai
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazunori Kawaguchi
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuya Kitamura
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yoshio Sakai
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Eishiro Mizukoshi
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masao Honda
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shuichi Kaneko
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
29
|
Affiliation(s)
- Attila Tárnok
- Department of Pediatric Cardiology, Heart Centre, Leipzig, Germany.,Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
30
|
Jiang G, Zhang L, Zhu Q, Bai D, Zhang C, Wang X. CD146 promotes metastasis and predicts poor prognosis of hepatocellular carcinoma. J Exp Clin Cancer Res 2016; 35:38. [PMID: 26928402 PMCID: PMC4772456 DOI: 10.1186/s13046-016-0313-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/24/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Recurrence and metastasis after curative resection remain critical obstacles in HCC treatment. CD146 predicted poor prognosis of a variety of cancers including melanoma, breast tumors, prostate cancer, and gastric cancer. However, the role of CD146 in HCC has not yet been systematically explored. METHODS To investigate the role of CD146 in HCC, we evaluated its expression in HCC tissues and HCC cell lines using real-time PCR and western blotting (WB). Second, we established HCC cell lines that stably overexpressed and interfered CD146 and explored the function of CD146 in HCC in vitro and in vivo. Third, we conducted microarray analysis to investigate the potential mechanism by identifying differentially expressed genes. Last, follow ups were conducted to help uncover the connection of CD146 expression and the prognosis of HCC patients. RESULTS We found that CD146 was overexpressed in HCC tissues and that high CD146 expression predicted poor overall survival time and shorter recurrence period in HCC patients. In vitro and in vivo experiments indicated that CD146 promoted migration and invasion of HCC cell lines. Further study indicated that CD146 promoted epithelial mesenchymal transition (EMT), IL-8 upregulation, and STAT1 downregulation. CD146 was upregulated in HCC tissues and cell lines. CONCLUSIONS CD146 promoted metastasis of HCC cells and predicted poor prognosis of HCC patients. CD146 induced EMT, and IL-8 upregulation and STAT1 downregulation may be the potential underlying mechanism. The exact mechanism still needs further investigation.
Collapse
Affiliation(s)
- Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College of Yangzhou University, Yangzhou, P.R. China.
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Long Zhang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Qin Zhu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College of Yangzhou University, Yangzhou, P.R. China.
| | - Chuanyong Zhang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|