1
|
Zhao Y, Amodio M, Vander Wyk B, Gerritsen B, Kumar MM, van Dijk D, Moon K, Wang X, Malawista A, Richards MM, Cahill ME, Desai A, Sivadasan J, Venkataswamy MM, Ravi V, Fikrig E, Kumar P, Kleinstein SH, Krishnaswamy S, Montgomery RR. Single cell immune profiling of dengue virus patients reveals intact immune responses to Zika virus with enrichment of innate immune signatures. PLoS Negl Trop Dis 2020; 14:e0008112. [PMID: 32150565 PMCID: PMC7082063 DOI: 10.1371/journal.pntd.0008112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/19/2020] [Accepted: 02/03/2020] [Indexed: 01/04/2023] Open
Abstract
The genus Flavivirus contains many mosquito-borne human pathogens of global epidemiological importance such as dengue virus, West Nile virus, and Zika virus, which has recently emerged at epidemic levels. Infections with these viruses result in divergent clinical outcomes ranging from asymptomatic to fatal. Myriad factors influence infection severity including exposure, immune status and pathogen/host genetics. Furthermore, pre-existing infection may skew immune pathways or divert immune resources. We profiled immune cells from dengue virus-infected individuals by multiparameter mass cytometry (CyTOF) to define functional status. Elevations in IFNβ were noted in acute patients across the majority of cell types and were statistically elevated in 31 of 36 cell subsets. We quantified response to in vitro (re)infection with dengue or Zika viruses and detected a striking pattern of upregulation of responses to Zika infection by innate cell types which was not noted in response to dengue virus. Significance was discovered by statistical analysis as well as a neural network-based clustering approach which identified unusual cell subsets overlooked by conventional manual gating. Of public health importance, patient cells showed significant enrichment of innate cell responses to Zika virus indicating an intact and robust anti-Zika response despite the concurrent dengue infection.
Collapse
Affiliation(s)
- Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Matthew Amodio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Bram Gerritsen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Mahesh M. Kumar
- Program in Human Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - David van Dijk
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Kevin Moon
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Anna Malawista
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Monique M. Richards
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Megan E. Cahill
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Anita Desai
- Department of Neurovirology, The National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | | | - Manjunatha M. Venkataswamy
- Department of Neurovirology, The National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, The National Institute of Mental Health and NeuroSciences (NIMHANS), Bangalore, India
| | - Erol Fikrig
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Priti Kumar
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Smita Krishnaswamy
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, Untied States of America
- Program in Human Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Reeves PM, Sluder AE, Paul SR, Scholzen A, Kashiwagi S, Poznansky MC. Application and utility of mass cytometry in vaccine development. FASEB J 2017; 32:5-15. [PMID: 29092906 DOI: 10.1096/fj.201700325r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Mass cytometry enables highly multiplexed profiling of cellular immune responses in limited-volume samples, advancing prospects of a new era of systems immunology. The capabilities of mass cytometry offer expanded potential for deciphering immune responses to infectious diseases and to vaccines. Several studies have used mass cytometry to profile protective immune responses, both postinfection and postvaccination, although no vaccine-development program has yet systematically employed the technology from the outset to inform both candidate design and clinical evaluation. In this article, we review published mass cytometry studies relevant to vaccine development, briefly compare immune profiling by mass cytometry to other systems-level technologies, and discuss some general considerations for deploying mass cytometry in the context of vaccine development.-Reeves, P. M., Sluder, A. E., Raju Paul, S., Scholzen, A., Kashiwagi, S., Poznansky, M. C. Application and utility of mass cytometry in vaccine development.
Collapse
Affiliation(s)
- Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | | | - Satoshi Kashiwagi
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| |
Collapse
|
3
|
Yao Y, Welp T, Liu Q, Niu N, Wang X, Britto CJ, Krishnaswamy S, Chupp GL, Montgomery RR. Multiparameter Single Cell Profiling of Airway Inflammatory Cells. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2017; 92:12-20. [PMID: 27807928 PMCID: PMC5250532 DOI: 10.1002/cyto.b.21491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022]
Abstract
Airway diseases affect over 7% of the U.S. population and millions of patients worldwide. Asthmatic patients have wide variation in clinical severity with different clinical and physiologic manifestations of disease that may be driven by distinct biologic mechanisms. Further, the immunologic underpinnings of this complex trait disease are heterogeneous and treatment success depends on defining subgroups of asthmatics. Because of the limited availability and number of cells from the lung, the active site, in-depth investigation has been challenging. Recent advances in technology support transcriptional analysis of cells from induced sputum. Flow cytometry studies have described cells present in the sputum but a detailed analysis of these subsets is lacking. Mass cytometry or CyTOF (Cytometry by Time-Of-Flight) offers tremendous opportunities for multiparameter single cell analysis. Experiments can now allow detection of up to ∼40 markers to facilitate unprecedented multidimensional cellular analyses. Here we demonstrate the use of CyTOF on primary airway samples obtained from well-characterized patients with asthma and cystic fibrosis. Using this technology, we quantify cellular frequency and functional status of defined cell subsets. Our studies provide a blueprint to define the heterogeneity among subjects and underscore the power of this single cell method to characterize airway immune status. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Yi Yao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tobias Welp
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Qing Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Naiqian Niu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Xiaomei Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Clemente J. Britto
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Geoff L. Chupp
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|