1
|
Pisapia L, Mercadante V, Andolfi G, Minchiotti G, Guardiola O. Protocol for characterizing non-genetic heterogeneity and expression dynamics of surface proteins in mouse muscle stem cells using flow cytometry. STAR Protoc 2024; 5:103216. [PMID: 39068657 PMCID: PMC11338185 DOI: 10.1016/j.xpro.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Here, we present a protocol for investigating the non-genetic heterogeneity of membrane proteins expression within murine muscle stem cell (MuSC) population isolated from injured skeletal muscles. We describe a protocol that employs flow cytometry technology to detect variations in membrane CRIPTO protein levels and ensure measurements standardization. We detail steps for muscle digestion, bulk muscle cell staining, and phenotypic analysis. This approach allows for the identification of MuSC fractions with distinct phenotypic and functional properties. For complete details on the use and execution of this protocol, please refer to Guardiola et al.1.
Collapse
Affiliation(s)
- Laura Pisapia
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Naples, Italy.
| | - Vincenzo Mercadante
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Naples, Italy
| | - Gennaro Andolfi
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Naples, Italy; Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Naples, Italy
| | - Gabriella Minchiotti
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Naples, Italy; Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Naples, Italy
| | - Ombretta Guardiola
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Naples, Italy; Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Naples, Italy.
| |
Collapse
|
2
|
Benevolo Savelli C, Bisio M, Legato L, Fasano F, Santambrogio E, Nicolosi M, Morra D, Boccomini C, Freilone R, Botto B, Novo M. Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice. Cancers (Basel) 2024; 16:1830. [PMID: 38791909 PMCID: PMC11120540 DOI: 10.3390/cancers16101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Classical Hodgkin Lymphoma (cHL) is a highly curable disease, but around 20% of patients experience progression or relapse after standard frontline chemotherapy regimens. Salvage regimens followed by autologous stem cell transplants represent the historical treatment approach for these cases. In the last decade, with the increasing understanding of cHL biology and tumor microenvironment role in disease course, novel molecules have been introduced in clinical practice, improving outcomes in the relapsed/refractory setting. The anti-CD30 antibody-drug conjugated brentuximab vedotin and PD-1/PD-L1 checkpoint inhibitors represent nowadays curative options for chemorefractory patients, and randomized trials recently demonstrated their efficacy in frontline immune-chemo-combined modalities. Several drugs able to modulate the patients' T-lymphocytes and NK cell activity are under development, as well as many anti-CD30 chimeric antigen receptor T-cell products. Multiple tumor aberrant epigenetic mechanisms are being investigated as targets for antineoplastic compounds such as histone deacetylase inhibitors and hypomethylating agents. Moreover, JAK2 inhibition combined with anti-PD1 blockade revealed a potential complementary therapeutic pathway in cHL. In this review, we will summarize recent findings on cHL biology and novel treatment options clinically available, as well as promising future perspectives in the field.
Collapse
Affiliation(s)
- Corrado Benevolo Savelli
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.B.); (L.L.); (F.F.); (E.S.); (M.N.); (D.M.); (C.B.); (R.F.); (B.B.)
| | | | | | | | | | | | | | | | | | | | - Mattia Novo
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.B.); (L.L.); (F.F.); (E.S.); (M.N.); (D.M.); (C.B.); (R.F.); (B.B.)
| |
Collapse
|
3
|
Guardiola O, Iavarone F, Nicoletti C, Ventre M, Rodríguez C, Pisapia L, Andolfi G, Saccone V, Patriarca EJ, Puri PL, Minchiotti G. CRIPTO-based micro-heterogeneity of mouse muscle satellite cells enables adaptive response to regenerative microenvironment. Dev Cell 2023; 58:2896-2913.e6. [PMID: 38056454 PMCID: PMC10855569 DOI: 10.1016/j.devcel.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/01/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle repair relies on heterogeneous populations of satellite cells (SCs). The mechanisms that regulate SC homeostasis and state transition during activation are currently unknown. Here, we investigated the emerging role of non-genetic micro-heterogeneity, i.e., intrinsic cell-to-cell variability of a population, in this process. We demonstrate that micro-heterogeneity of the membrane protein CRIPTO in mouse-activated SCs (ASCs) identifies metastable cell states that allow a rapid response of the population to environmental changes. Mechanistically, CRIPTO micro-heterogeneity is generated and maintained through a process of intracellular trafficking coupled with active shedding of CRIPTO from the plasma membrane. Irreversible perturbation of CRIPTO micro-heterogeneity affects the balance of proliferation, self-renewal, and myogenic commitment in ASCs, resulting in increased self-renewal in vivo. Our findings demonstrate that CRIPTO micro-heterogeneity regulates the adaptative response of ASCs to microenvironmental changes, providing insights into the role of intrinsic heterogeneity in preserving stem cell population diversity during tissue repair.
Collapse
Affiliation(s)
- Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy.
| | - Francescopaolo Iavarone
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", Naples 80125, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Gennaro Andolfi
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, Rome 00143, Italy; Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Eduardo J Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Naples 80131, Italy.
| |
Collapse
|
4
|
Di Gregorio E, Romiti C, Di Lorenzo A, Cavallo F, Ferrauto G, Conti L. RGD_PLGA Nanoparticles with Docetaxel: A Route for Improving Drug Efficiency and Reducing Toxicity in Breast Cancer Treatment. Cancers (Basel) 2022; 15:cancers15010008. [PMID: 36612006 PMCID: PMC9817983 DOI: 10.3390/cancers15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women. Although many therapeutic approaches are available, systemic chemotherapy remains the primary choice, especially for triple-negative and advanced breast cancers. Unfortunately, systemic chemotherapy causes serious side effects and requires high doses to achieve an effective concentration in the tumor. Thus, the use of nanosystems for drug delivery may overcome these limitations. Herein, we formulated Poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) containing Docetaxel, a fluorescent probe, and a magnetic resonance imaging (MRI) probe. The cyclic RGD tripeptide was linked to the PLGA surface to actively target αvβ3 integrins, which are overexpressed in breast cancer. PLGA-NPs were characterized using dynamic light scattering, fast field-cycling 1H-relaxometry, and 1H-nuclear magnetic resonance. Their therapeutic effects were assessed both in vitro in triple-negative and HER2+ breast cancer cells, and in vivo in murine models. In vivo MRI and inductively coupled plasma mass spectrometry of excised tumors revealed a stronger accumulation of PLGA-NPs in the RGD_PLGA group. Targeted PLGAs have improved therapeutic efficacy and strongly reduced cardiac side effects compared to free Docetaxel. In conclusion, RGD-PLGA is a promising system for breast cancer treatment, with positive outcome in terms of therapeutic efficiency and reduction in side effects.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Correspondence: (E.D.G.); (A.D.L.); Tel.: +39-011-6708459 (E.D.G.); +39-011-6706458 (A.D.L.)
| | | | - Antonino Di Lorenzo
- Correspondence: (E.D.G.); (A.D.L.); Tel.: +39-011-6708459 (E.D.G.); +39-011-6706458 (A.D.L.)
| | | | | | | |
Collapse
|
5
|
Ghosh D, Sugimoto H, Lee JY, Qian M. Targeted Mass Spectrometry-Based Approach for the Determination of Intrinsic Internalization Kinetics of Cell-Surface Membrane Protein Targets. Anal Chem 2021; 93:10005-10012. [PMID: 34255494 DOI: 10.1021/acs.analchem.1c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful development of targeted therapeutics aimed at the elimination of diseased cells relies on the target properties and the therapeutics that target them. Currently, target properties have been evaluated through antibody-dependent semiquantitative approaches such as flow cytometry, Western blotting, or microscopy. Since antibodies can alter target properties following binding, antibody-dependent approaches provide at best skewed measurements for target intrinsic properties. To circumvent, here we attempted to develop an antibody-free targeted mass spectrometry-based (ATM) strategy to measure the surface densities and the intrinsic rates (Kint) of CD38 internalization in multiple myeloma cell lines. Using cell-surface biotinylation in conjunction with differential mass tagging to separate inward CD38 molecules from the outbound and nascent ones, the ATM approach revealed diversities in measured CD38 Kint values of 0.239 min-1 S.E. ± 0.076, 0.109 min-1 S.E. ± 0.032, and 0.058 min-1 S.E. ± 0.001 for LP1, NCIH929, and MOLP8 cell lines, respectively. Together with CD38 surface densities, intrinsic Kint values aligned well with the tumor penetration model and supported the outcomes for tumor regression in mouse xenografts upon drug treatment. Additionally, the ATM approach can evaluate molecules with fast Kint as we determined for CTLA4 protein. We believe that the ATM approach has the potential to evaluate diverse cell-surface targets as part of the pharmacological assessment in drug discovery.
Collapse
Affiliation(s)
- Dhimankrishna Ghosh
- Preclinical and Translational Sciences/Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
| | - Hiroshi Sugimoto
- Preclinical and Translational Sciences/Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
| | - Janice Y Lee
- Preclinical and Translational Sciences/Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
| | - Mark Qian
- Preclinical and Translational Sciences/Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Hamamichi S, Fukuhara T, Hattori N. Immunotoxin Screening System: A Rapid and Direct Approach to Obtain Functional Antibodies with Internalization Capacities. Toxins (Basel) 2020; 12:toxins12100658. [PMID: 33076544 PMCID: PMC7602748 DOI: 10.3390/toxins12100658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Toxins, while harmful and potentially lethal, have been engineered to develop potent therapeutics including cytotoxins and immunotoxins (ITs), which are modalities with highly selective targeting capabilities. Currently, three cytotoxins and IT are FDA-approved for treatment of multiple forms of hematological cancer, and additional ITs are tested in the clinical trials or at the preclinical level. For next generation of ITs, as well as antibody-mediated drug delivery systems, specific targeting by monoclonal antibodies is critical to enhance efficacies and reduce side effects, and this methodological field remains open to discover potent therapeutic monoclonal antibodies. Here, we describe our application of engineered toxin termed a cell-based IT screening system. This unique screening strategy offers the following advantages: (1) identification of monoclonal antibodies that recognize cell-surface molecules, (2) selection of the antibodies that are internalized into the cells, (3) selection of the antibodies that induce cytotoxicity since they are linked with toxins, and (4) determination of state-specific activities of the antibodies by differential screening under multiple experimental conditions. Since the functional monoclonal antibodies with internalization capacities have been identified successfully, we have pursued their subsequent modifications beyond antibody drug conjugates, resulting in development of immunoliposomes. Collectively, this screening system by using engineered toxin is a versatile platform, which enables straight-forward and rapid selection for discovery of novel functional antibodies.
Collapse
Affiliation(s)
- Shusei Hamamichi
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Correspondence: ; Tel.: +81-3-5802-2731; Fax: +81-3-5800-0547
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Ferrarini I, Rigo A, Zamò A, Vinante F. Classical Hodgkin lymphoma cells may promote an IL-17-enriched microenvironment. Leuk Lymphoma 2019; 60:3395-3405. [PMID: 31304817 DOI: 10.1080/10428194.2019.1636983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In classical Hodgkin lymphoma (cHL), the significance of the interplay between Hodgkin and Reed-Sternberg cells (HRS) and reactive T cells remains poorly defined. By immunohistochemistry on bioptic cHL specimens, we found that HRS and surrounding T lymphocytes stained positive for IL-17 in 40% of cases. IL-17 was detectable in a similar proportion of patients' sera and correlated with disease burden. Supernatants of KM-H2 and HDLM-2 cHL cell lines guided preferential chemotaxis of CCR6+ T lymphocytes. Coculture of cHL cell lines with PBMC promoted the enrichment of Th17 lymphocytes and Foxp3+/IL-17+ cells, whereas T regulatory cells slightly decreased. Soluble CD30 downmodulated membrane CD30 expression on T cells and contributed to their polarization shift by stimulating IL-17 production and reducing IFN-γ synthesis. Thus, HRS and a number of reactive CD4+ T cells, attracted by tumor-secreted chemokines, produce an IL-17 tumor-shaped inflammatory milieu in a cHL subset.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Oncology, University of Turin, Turin, Italy
| | - Fabrizio Vinante
- Department of Medicine, Section of Hematology, Cancer Research & Cell Biology Laboratory, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Krikun G. The CXL12/CXCR4/CXCR7 axis in female reproductive tract disease: Review. Am J Reprod Immunol 2018; 80:e13028. [PMID: 30106199 DOI: 10.1111/aji.13028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022] Open
Abstract
Initial studies on the chemokine stromal derived factor 1 (now referred to as CXCL12) were proposed to be enhanced in several diseases including those which affect the female reproductive tract. These include endometriosis, Asherman's syndrome, endometrial cancers, and ovarian cancers. Additionally, recent studies from our laboratory suggest that CXCL12 signaling is involved in leiomyomas (fibroids). These diseases present an inflammatory/hypoxic environment which further promotes pathology. At first, studies focused on signaling by CXCL12 via its well-known receptor, CXCR4. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in endometrial disease and cancer progression has questioned the potential of "selective blockade"' of CXCR4 to treat these ailments. This review will focus on the signaling and effects of the potent chemokine CXCL12, and its long-known G protein-coupled receptor CXCR4, as well as the alternate receptor CXCR7 on the female reproductive tract and related diseases such as endometriosis, Asherman's syndrome, leiomyomas, endometrial cancer, and ovarian cancer. Although several other mechanisms are inherent to these diseases such as gene mutations, differential expression of miRNAs and epigenetics, for this review, we will focus on the CXCL12/CXCR4/CXCR7 axis as a novel target.
Collapse
Affiliation(s)
- Graciela Krikun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|