1
|
Tan WY, Ward MP. An evaluation of the efficiency and effectiveness of diagnostic tests for foot and mouth disease: are novel diagnostic tests for FMD more feasible than conventional tests in Southeast Asia? Aust Vet J 2024. [PMID: 39375190 DOI: 10.1111/avj.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Foot and mouth disease (FMD) remains endemic in many areas of continental Southeast Asia (SEA). It is responsible for substantial economic losses in the smallholder sector and threatens livelihoods. In recent years, novel diagnostic tests have been developed which reportedly detect FMD virus more effectively and efficiently. This critically appraised topic (CAT) aimed to evaluate the feasibility of these diagnostic tests for FMD in SEA compared to conventional tests. Relevant studies that evaluate diagnostic tests are identified and critically assessed, and recommendations are made on suitable potential diagnostic tests for use in the smallholder sector in SEA. A systematic search of electronic databases (CABI: CAB Abstracts, Web of Science Core Collections) was carried out to identify relevant studies that compared novel and conventional diagnostic tests. The search strategy initially identified 12 papers, of which six fulfilled all the inclusion criteria and were selected for this review. Most of the selected studies had limitations in design and comparability, making it difficult to validly compare the effectiveness and efficiency of the relevant diagnostic tests. These limitations include variation in sample characteristics, methodology, measurable outcomes and the different aspects of the diagnostic tests that each study focused on. Most studies concluded that novel diagnostic tests were more effective and efficient than conventional tests: had greater analytical sensitivity and specificity, were more robust, had a wider range of processable sample types and serotypes, could detect various diseases, had faster testing speeds and provided greater value for money. However, strong recommendations on which specific diagnostic test to rely on could not be made, since there was conflicting evidence and multiple confounding factors. Overall, the evidence found did not entirely apply to the target scenario, being SEA smallholder farms. Recommendations for the target scenario were also made based on the study findings.
Collapse
Affiliation(s)
- W Y Tan
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - M P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| |
Collapse
|
2
|
Sugawara S, Lee E, Craemer MA, Pruitt A, Balachandran H, Gressens SB, Kroll K, Manickam C, Li Y, Jost S, Woolley G, Reeves RK. Knockdowns of CD3zeta Chain in Primary NK Cells Illustrate Modulation of Antibody-Dependent Cellular Cytotoxicity Against Human Immunodeficiency Virus-1. AIDS Res Hum Retroviruses 2024. [PMID: 39041622 DOI: 10.1089/aid.2023.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Multifaceted natural killer (NK) cell activities are indispensable for controlling human immunodeficiency virus (HIV)-1 transmission and pathogenesis. Among the diverse functions of NK cells, antibody-dependent cellular cytotoxicity (ADCC) has been shown to predict better HIV-1 protection. ADCC is initiated by the engagement of an Fc γ receptor CD16 with an Fc portion of the antibody, leading to phosphorylation of the CD3 ζ chain (CD3ζ) and Fc receptor γ chain (FcRγ) as well as downstream signaling activation. Though CD3ζ and FcRγ were thought to have overlapping roles in NK cell ADCC, several groups have reported that CD3ζ-mediated signals trigger a more robust ADCC. However, few studies have illustrated the direct contribution of CD3ζ in HIV-1-specific ADCC. To further understand the roles played by CD3ζ in HIV-1-specific ADCC, we developed a CD3ζ knockdown system in primary human NK cells. We observed that HIV-1-specific ADCC was inhibited by CD3ζ perturbation. In summary, we demonstrated that CD3ζ is important for eliciting HIV-1-specific ADCC, and this dynamic can be utilized for NK cell immunotherapeutics against HIV-1 infection and other diseases.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Esther Lee
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Melissa A Craemer
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Alayna Pruitt
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Simon B Gressens
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Center for Biomolecular Therapeutics & Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Jeon H, Perez CR, Kyung T, Birnbaum ME, Han J. Separation of Activated T Cells Using Multidimensional Double Spiral (MDDS) Inertial Microfluidics for High-Efficiency CAR T Cell Manufacturing. Anal Chem 2024; 96:10780-10790. [PMID: 38889002 DOI: 10.1021/acs.analchem.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study introduces a T cell enrichment process, capitalizing on the size differences between activated and unactivated T cells to facilitate the isolation of activated, transducible T cells. By employing multidimensional double spiral (MDDS) inertial sorting, our approach aims to remove unactivated or not fully activated T cells post-activation, consequently enhancing the efficiency of chimeric antigen receptor (CAR) T cell manufacturing. Our findings reveal that incorporating a simple, label-free, and continuous MDDS sorting step yields a purer T cell population, exhibiting significantly enhanced viability and CAR-transducibility (with up to 85% removal of unactivated T cells and approximately 80% recovery of activated T cells); we found approximately 2-fold increase in CAR transduction efficiency for a specific sample, escalating from ∼10% to ∼20%, but this efficiency highly depends on the original T cell sample as MDDS sorting would be more effective for samples possessing a higher proportion of unactivated T cells. This new cell separation process could augment the efficiency, yield, and cost-effectiveness of CAR T cell manufacturing, potentially broadening the accessibility of this transformative therapy and contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SEOULTECH), 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | | | | | - Michael E Birnbaum
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, 1 CREATE Way, No. 04-13/14 Enterprise Wing, 138602, Singapore
- Ragon Institute of Mass General, MIT, and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Jongyoon Han
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, 1 CREATE Way, No. 04-13/14 Enterprise Wing, 138602, Singapore
| |
Collapse
|
4
|
Hein Y, Zipfel F, O'Connor G, Macdonald R, Hussels M. Flow cytometer for a dilution-free measurement approach with sample recollection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:065101. [PMID: 38829217 DOI: 10.1063/5.0187052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/12/2024] [Indexed: 06/05/2024]
Abstract
Blood testing using flow cytometry is a common and rapid method for the initial screening and diagnosis of patients. Measurements are often combined with other scientific techniques, and analyzed samples are commonly diluted and discarded afterward. When the sample is recollected instead, sample dilution is a challenge when the sample is intended or needed for additional measurements. Therefore, it is advantageous to recollect the undiluted sample. In order to enable measurements of the same undiluted sample aliquot, we designed and constructed a purpose-built flow cytometer. Our instrument employs syringes, acoustic focusing, and an open fluidics system to recollect and reuse the unadulterated sample. The cytometer is compact, which reduces sample consumption. It acquires forward, sideward, and fluorescence signals, offering opportunities for diverse measurement approaches. In particular, our cytometer has been designed to be ready for additional downstream analysis of cells, e.g., applying mass spectrometry, magnetic resonance spectroscopy, or other analytical tools. This study presents results on instrument performance, a comparison with a cytometer that uses standard hydrodynamic focusing, and a proof of concept for multiple measurements.
Collapse
|
5
|
Hermansen JU, Yin Y, Rein ID, Skånland SS. Immunophenotyping with (phospho)protein profiling and fluorescent cell barcoding for single-cell signaling analysis and biomarker discovery. NPJ Precis Oncol 2024; 8:107. [PMID: 38769096 PMCID: PMC11106235 DOI: 10.1038/s41698-024-00604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
The microenvironment of hematologic cancers contributes to tumor cell survival and proliferation, as well as treatment resistance. Understanding tumor- and drug-induced changes to the immune cell composition and functionality is therefore critical for implementing optimal treatment strategies and for the development of novel cancer therapies. The liquid nature of peripheral blood makes this organ uniquely suited for single-cell studies by flow cytometry. (Phospho)protein profiles detected by flow cytometry analyses have been shown to correlate with ex vivo drug sensitivity and to predict treatment outcomes in hematologic cancers, demonstrating that this method is suitable for pre-clinical studies. Here, we present a flow cytometry protocol that combines multi-parameter immunophenotyping with single-cell (phospho)protein profiling. The protocol makes use of fluorescent cell barcoding, which means that multiple cell samples, either collected from different donors or exposed to different treatment conditions, can be combined and analyzed as one experiment. This reduces variability between samples, increases the throughput of the experiment, and lowers experimental costs. This protocol may serve as a guide for the use and further development of assays to study immunophenotype and cell signaling at single-cell resolution in normal and malignant cells. The read-outs may provide biological insight into cancer pathogenesis, identify novel drug targets, and ultimately serve as a biomarker to guide clinical decision-making.
Collapse
Affiliation(s)
- Johanne U Hermansen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yanping Yin
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Idun Dale Rein
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Park M, Lim J, Ahn A, Oh EJ, Song J, Kim KH, Han JY, Choi HW, Park JH, Shin KH, Kim H, Kim M, Hwang SH, Kim HY, Cho D, Kang ES. Current Status of Flow Cytometric Immunophenotyping of Hematolymphoid Neoplasms in Korea. Ann Lab Med 2024; 44:222-234. [PMID: 38145891 PMCID: PMC10813832 DOI: 10.3343/alm.2023.0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
Background Flow cytometric immunophenotyping of hematolymphoid neoplasms (FCI-HLN) is essential for diagnosis, classification, and minimal residual disease (MRD) monitoring. FCI-HLN is typically performed using in-house protocols, raising the need for standardization. Therefore, we surveyed the current status of FCI-HLN in Korea to obtain fundamental data for quality improvement and standardization. Methods Eight university hospitals actively conducting FCI-HLN participated in our survey. We analyzed responses to a questionnaire that included inquiries regarding test items, reagent antibodies (RAs), fluorophores, sample amounts (SAs), reagent antibody amounts (RAAs), acquisition cell number (ACN), isotype control (IC) usage, positive/negative criteria, and reporting. Results Most hospitals used acute HLN, chronic HLN, plasma cell neoplasm (PCN), and MRD panels. The numbers of RAs were heterogeneous, with a maximum of 32, 26, 12, 14, and 10 antibodies used for acute HLN, chronic HLN, PCN, ALL-MRD, and multiple myeloma-MRD, respectively. The number of fluorophores ranged from 4 to 10. RAs, SAs, RAAs, and ACN were diverse. Most hospitals used a positive criterion of 20%, whereas one used 10% for acute and chronic HLN panels. Five hospitals used ICs for the negative criterion. Positive/negative assignments, percentages, and general opinions were commonly reported. In MRD reporting, the limit of detection and lower limit of quantification were included. Conclusions This is the first comprehensive study on the current status of FCI-HLN in Korea, confirming the high heterogeneity and complexity of FCI-HLN practices. Standardization of FCI-HLN is urgently needed. The findings provide a reference for establishing standard FCI-HLN guidelines.
Collapse
Affiliation(s)
- Mikyoung Park
- Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyang Lim
- Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ari Ahn
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong-Hee Kim
- Department of Laboratory Medicine, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Joo-Heon Park
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Kyung-Hwa Shin
- Department of Laboratory Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Hyerim Kim
- Department of Laboratory Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Miyoung Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Lazarski CA, Hanley PJ. Review of flow cytometry as a tool for cell and gene therapy. Cytotherapy 2024; 26:103-112. [PMID: 37943204 PMCID: PMC10872958 DOI: 10.1016/j.jcyt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Quality control testing and analytics are critical for the development and manufacture of cell and gene therapies, and flow cytometry is a key quality control and analytical assay that is used extensively. However, the technical scope of characterization assays and safety assays must keep apace as the breadth of cell therapy products continues to expand beyond hematopoietic stem cell products into producing novel adoptive immune therapies and gene therapy products. Flow cytometry services are uniquely positioned to support the evolving needs of cell therapy facilities, as access to flow cytometers, new antibody clones and improved fluorochrome reagents becomes more egalitarian. This report will outline the features, logistics, limitations and the current state of flow cytometry within the context of cellular therapy.
Collapse
Affiliation(s)
- Christopher A Lazarski
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| | - Patrick J Hanley
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| |
Collapse
|
8
|
Nooti S, Naylor M, Long T, Groll B, Manu. LucFlow: A method to measure Luciferase reporter expression in single cells. PLoS One 2023; 18:e0292317. [PMID: 37792708 PMCID: PMC10550117 DOI: 10.1371/journal.pone.0292317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Reporter assays, in which the expression of an inert protein is driven by gene regulatory elements such as promoters and enhancers, are a workhorse for investigating gene regulation. Techniques for measuring reporter gene expression vary from single-cell or single-molecule approaches having low throughput to bulk Luciferase assays that have high throughput. We developed a Luciferase Reporter Assay using Flow-Cytometry (LucFlow), which measures reporter expression in single cells immunostained for Luciferase. We optimized and tested LucFlow with a murine cell line that can be differentiated into neutrophils, into which promoter-reporter and enhancer-promoter-reporter constructs have been integrated in a site-specific manner. The single-cell measurements are comparable to bulk ones but we found that dead cells have no detectable Luciferase protein, so that bulk assays underestimate reporter expression. LucFlow is able to achieve a higher accuracy than bulk methods by excluding dead cells during flow cytometry. Prior to fixation and staining, the samples are spiked with stained cells that can be discriminated during flow cytometry and control for tube-to-tube variation in experimental conditions. Computing fold change relative to control cells allows LucFlow to achieve a high level of precision. LucFlow, therefore, enables the accurate and precise measurement of reporter expression in a high throughput manner.
Collapse
Affiliation(s)
- Sunil Nooti
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Madison Naylor
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Trevor Long
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Brayden Groll
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Manu
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| |
Collapse
|
9
|
Mungra N, Biteghe FAN, Malindi Z, Huysamen AM, Karaan M, Hardcastle NS, Bunjun R, Chetty S, Naran K, Lang D, Richter W, Hunter R, Barth S. CSPG4 as a target for the specific killing of triple-negative breast cancer cells by a recombinant SNAP-tag-based antibody-auristatin F drug conjugate. J Cancer Res Clin Oncol 2023; 149:12203-12225. [PMID: 37432459 PMCID: PMC10465649 DOI: 10.1007/s00432-023-05031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is phenotypic of breast tumors lacking expression of the estrogen receptor (ER), the progesterone receptor (PgR), and the human epidermal growth factor receptor 2 (HER2). The paucity of well-defined molecular targets in TNBC, coupled with the increasing burden of breast cancer-related mortality, emphasizes the need to develop targeted diagnostics and therapeutics. While antibody-drug conjugates (ADCs) have emerged as revolutionary tools in the selective delivery of drugs to malignant cells, their widespread clinical use has been hampered by traditional strategies which often give rise to heterogeneous mixtures of ADC products. METHODS Utilizing SNAP-tag technology as a cutting-edge site-specific conjugation method, a chondroitin sulfate proteoglycan 4 (CSPG4)-targeting ADC was engineered, encompassing a single-chain antibody fragment (scFv) conjugated to auristatin F (AURIF) via a click chemistry strategy. RESULTS After showcasing the self-labeling potential of the SNAP-tag component, surface binding and internalization of the fluorescently labeled product were demonstrated on CSPG4-positive TNBC cell lines through confocal microscopy and flow cytometry. The cell-killing ability of the novel AURIF-based recombinant ADC was illustrated by the induction of a 50% reduction in cell viability at nanomolar to micromolar concentrations on target cell lines. CONCLUSION This research underscores the applicability of SNAP-tag in the unambiguous generation of homogeneous and pharmaceutically relevant immunoconjugates that could potentially be instrumental in the management of a daunting disease like TNBC.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Centre for Immunity and Immunotherapies, Seattle Children’s Research Institute, Washington, 98101 USA
| | - Fleury A. N. Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, USA
| | - Zaria Malindi
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Faculty of Health Sciences, Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| | - Allan M. Huysamen
- Department of Chemistry, PD Hahn Building, University of Cape Town, Cape Town, 7700 South Africa
| | - Maryam Karaan
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Natasha S. Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7700 South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7700 South Africa
| | - Shivan Chetty
- Faculty of Health Sciences, School of Clinical Medicine, University of Witwatersrand, Braamfontein, Johannesburg, 2000 South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, 7700 South Africa
| | | | - Roger Hunter
- Department of Chemistry, PD Hahn Building, University of Cape Town, Cape Town, 7700 South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town, 7700 South Africa
| |
Collapse
|
10
|
Gao C, Zhang T, Wei Y, Liu Q, Ma L, Gao M, Zhao X, Wang Y, Chen D, Sun L, Wang J, Chen J. Development of a Microfluidic Flow Cytometer with a Uniform Optical Field (Uni-μFCM) Enabling Quantitative Analysis of Single-Cell Proteins and Its Applications in Leukemia Gating, Tumor Classification, and Hierarchy of Cancer Stem Cells. ACS Sens 2023; 8:3498-3509. [PMID: 37602731 PMCID: PMC10521140 DOI: 10.1021/acssensors.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Fast and quantitative estimation of single-cell proteins with various distribution patterns remains a technical challenge. Here, a microfluidic flow cytometer with a uniform optical field (Uni-μFCM) was developed, which enabled the translation of multicolor fluorescence signals of bound antibodies into targeted protein numbers with arbitrary distributions of biological cells. As the core of Uni-μFCM, a uniform optical field for optical excitation and fluorescence detection was realized by adopting a microfabricated metal window to shape the optical beam for excitation, which was modeled and validated by both numerical simulation and experimental characterization. After the validation of Uni-μFCM in single-cell protein quantification by measuring single-cell expressions of three transcriptional factors from four cell lines of variable sizes and origins, Uni-μFCM was applied to (1) quantify membrane and cytoplasmic markers of myeloid and lymphocytic leukocytes to classify cell lines and normal and patient blood samples; (2) measure single-cell expressions of key cytokines affiliated with gene stabilities, differentiating paired oral and colon tumor cell lines with varied malignancies, and (3) quantify single-cell stemming markers of liver tumor cell lines, cell subtypes, and liver patient samples to determine a variety of lineage hierarchy. By quantitatively assessing complex cellular phenotypes, Uni-μFCM substantially expanded the phenotypic space accessible to single-cell applications in leukemia gating, tumor classification, and hierarchy determination of cancer stem cells.
Collapse
Affiliation(s)
- Chiyuan Gao
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
| | - Ting Zhang
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
| | - Yuanchen Wei
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Qinghua Liu
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Liangliang Ma
- State
Key Laboratory of Molecular Oncology,National
Cancer Center/National Clinical Research Center for Cancer/Cancer
Hospital Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing100021, People’s Republic
of China
| | - Mengge Gao
- Peking
University People’s Hospital, Peking University Institute of
Hematology, National Clinical Research Center for Hematologic Disease,
Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing100044, People’s Republic of China
| | - Xiaosu Zhao
- Peking
University People’s Hospital, Peking University Institute of
Hematology, National Clinical Research Center for Hematologic Disease,
Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing100044, People’s Republic of China
| | - Yixiang Wang
- Peking
University
Hospital of Stomatology, Beijing100081, People’s
Republic of China
| | - Deyong Chen
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Lichao Sun
- State
Key Laboratory of Molecular Oncology,National
Cancer Center/National Clinical Research Center for Cancer/Cancer
Hospital Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing100021, People’s Republic
of China
| | - Junbo Wang
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jian Chen
- State
Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, People’s
Republic of China
- School
of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| |
Collapse
|
11
|
Alshevskaya A, Zhukova J, Lopatnikova J, Shkaruba N, Chumasova O, Sizikov A, Demina D, Nepomniashchikh V, Gladkikh V, Sennikov S. Parameters of TNF receptor co-expression in allergic and autoimmune processes: Differences and diagnostic significance. J Immunol Methods 2023; 520:113525. [PMID: 37467883 DOI: 10.1016/j.jim.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The authors used a method quantitative estimation density of TNFR1/TNFR2 on cells by flow cytometry with calibration particles, which allowed them to estimate the absolute number of receptors on cells regardless of the type of flow cytometer. The TNF receptor expression parameters were used to determine their association with the fact of disease and to build diagnostic models. The proposed methodological approach using a combination of flow cytometry and mathematical modeling techniques represents a promising direction for testing the diagnostic and prognostic significance of the studied biomarkers. The multifactorial regression analysis constructed on the basis of this approach made it possible to refine and supplement diagnostic schemes for determining the probability of rheumatoid arthritis and bronchial asthma in patients.
Collapse
Affiliation(s)
- Alina Alshevskaya
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Julia Zhukova
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Julia Lopatnikova
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Nadezhda Shkaruba
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Oksana Chumasova
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Alexey Sizikov
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Daria Demina
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Vera Nepomniashchikh
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Viktor Gladkikh
- Novosibirsk State University (NSU), 630090, 1, Pirogova str., Novosibirsk, Russia
| | - Sergey Sennikov
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099 Novosibirsk, Yadrintsevskaya str., 14, Russia.
| |
Collapse
|
12
|
Sugawara S, Hueber B, Woolley G, Terry K, Kroll K, Manickam C, Ram DR, Ndhlovu LC, Goepfert P, Jost S, Reeves RK. Multiplex interrogation of the NK cell signalome reveals global downregulation of CD16 signaling during lentivirus infection through an IL-18/ADAM17-dependent mechanism. PLoS Pathog 2023; 19:e1011629. [PMID: 37669308 PMCID: PMC10503717 DOI: 10.1371/journal.ppat.1011629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Despite their importance, natural killer (NK) cell responses are frequently dysfunctional during human immunodeficiency virus-1 (HIV-1) and simian immunodeficiency virus (SIV) infections, even irrespective of antiretroviral therapies, with poorly understood underlying mechanisms. NK cell surface receptor modulation in lentivirus infection has been extensively studied, but a deeper interrogation of complex cell signaling is mostly absent, largely due to the absence of any comprehensive NK cell signaling assay. To fill this knowledge gap, we developed a novel multiplex signaling analysis to broadly assess NK cell signaling. Using this assay, we elucidated that NK cells exhibit global signaling reduction from CD16 both in people living with HIV-1 (PLWH) and SIV-infected rhesus macaques. Intriguingly, antiretroviral treatment did not fully restore diminished CD16 signaling in NK cells from PLWH. As a putative mechanism, we demonstrated that NK cells increased surface ADAM17 expression via elevated plasma IL-18 levels during HIV-1 infection, which in turn reduced surface CD16 downregulation. We also illustrated that CD16 expression and signaling can be restored by ADAM17 perturbation. In summary, our multiplex NK cell signaling analysis delineated unique NK cell signaling perturbations specific to lentiviral infections, resulting in their dysfunction. Our analysis also provides mechanisms that will inform the restoration of dysregulated NK cell functions, offering potential insights for the development of new NK cell-based immunotherapeutics for HIV-1 disease.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Brady Hueber
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, United States of America
| | - Paul Goepfert
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Bento LC, Correia RP, de Sousa FA, Bacal NS. A novel approach for MRD assessment by high-sensitivity flow cytometry and multidimensional radar visualization. Int J Lab Hematol 2023; 45:616-619. [PMID: 36907222 DOI: 10.1111/ijlh.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Affiliation(s)
- Laiz Cameirão Bento
- Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rodolfo Patussi Correia
- Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Flávia Arandas de Sousa
- Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nydia Strachman Bacal
- Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
14
|
Kuo CW, Su PL, Huang TH, Lin CC, Chen CW, Tsai JS, Liao XM, Chan TY, Shieh CC. Cigarette smoke increases susceptibility of alveolar macrophages to SARS-CoV-2 infection through inducing reactive oxygen species-upregulated angiotensin-converting enzyme 2 expression. Sci Rep 2023; 13:7894. [PMID: 37193781 DOI: 10.1038/s41598-023-34785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
Alveolar macrophages (AMs) are the drivers of pulmonary cytokine storm in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to investigate clinical-regulatory factors for the entrance protein of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) in AMs. Human AMs were collected from 56 patients using bronchoalveolar lavage. ACE2 expression in AMs was positively correlated with smoking pack-year (Spearman's r = 0.347, P = 0.038). In multivariate analysis, current smoking was associated with increased ACE2 in AMs (β-coefficient: 0.791, 95% CI 0.019-1.562, P = 0.045). In vitro study, ex-vivo human AMs with higher ACE2 were more susceptible to SARS-CoV-2 pseudovirus (CoV-2 PsV). Treating human AMs using cigarette smoking extract (CSE) increases the ACE2 and susceptibility to CoV-2 PsV. CSE did not significantly increase the ACE2 in AMs of reactive oxygen species (ROS) deficient Cybb-/- mice; however, exogenous ROS increased the ACE2 in Cybb-/- AMs. N-acetylcysteine (NAC) decreases ACE2 by suppressing intracellular ROS in human AMs. In conclusion, cigarette smoking increases the susceptibility to SARS-CoV-2 by increasing ROS-induced ACE2 expression of AMs. Further investigation into the preventive effect of NAC on the pulmonary complications of COVID-19 is required.
Collapse
Affiliation(s)
- Chin-Wei Kuo
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lan Su
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tang-Hsiu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chian-Wei Chen
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jeng-Shiuan Tsai
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xin-Min Liao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yi Chan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan.
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Lee S, Jung S, Kim HJ, Kim S, Moon JH, Chung H, Kang SJ, Park CG. Mesenchymal stem cell-derived extracellular vesicles subvert Th17 cells by destabilizing RORγt through posttranslational modification. Exp Mol Med 2023; 55:665-679. [PMID: 36964252 PMCID: PMC10073130 DOI: 10.1038/s12276-023-00949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 03/26/2023] Open
Abstract
Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) are known to exert immunosuppressive functions. This study showed that MSC-sEVs specifically convert T helper 17 (Th17) cells into IL-17 low-producer (ex-Th17) cells by degrading RAR-related orphan receptor γt (RORγt) at the protein level. In experimental autoimmune encephalomyelitis (EAE)-induced mice, treatment with MSC-sEVs was found to not only ameliorate clinical symptoms but also to reduce the number of Th17 cells in draining lymph nodes and the central nervous system. MSC-sEVs were found to destabilize RORγt by K63 deubiquitination and deacetylation, which was attributed to the EP300-interacting inhibitor of differentiation 3 (Eid3) contained in the MSC-sEVs. Small extracellular vesicles isolated from the Eid3 knockdown MSCs by Eid3-shRNA failed to downregulate RORγt. Moreover, forced expression of Eid3 by gene transfection was found to significantly decrease the protein level of RORγt in Th17 cells. Altogether, this study reveals the novel immunosuppressive mechanisms of MSC-sEVs, which suggests the feasibility of MSC-sEVs as an attractive therapeutic tool for curing Th17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Sunho Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunyoung Jung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Korea
- Seoul National University Hospital, Seoul, Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University Hospital, Seoul, Korea
| | - Sueon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ji Hwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyunwoo Chung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seong-Jun Kang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
16
|
Sebben D, Strohle G, Roy PS, Li H. Gold-nanoparticle-embedded hydrogel droplets with enhanced fluorescence for imaging and quantification of proteins in cells. Mikrochim Acta 2023; 190:144. [PMID: 36939899 DOI: 10.1007/s00604-023-05728-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
Conventional cellular protein detection techniques such as immunocytochemistry and flow cytometry require abundant cells, posing multiple challenges, including difficulty and cost for obtaining enough cells and the potential for clogging the instrument when using flow cytometry. Also, it is challenging to conduct cellular protein imaging and quantification simultaneously from a single experiment. We present a novel 3D platform, which integrates highly biocompatible cell-entrapped alginate hydrogel droplet array with gold-nanoparticle (AuNP)-based metal enhanced fluorescence (MEF), to achieve simultaneous imaging and quantification of proteins in intact cells in a sensitive manner. Compared to 2D immunocytochemistry, this 3D system allows for a higher cell loading capacity per unit area; together with the MEF-based signal enhancement from the embedded AuNPs, sensitive protein quantification was realized. Furthermore, compared to flow cytometry, this platform allows for protein imaging from individual cells. Taking the detection of EpCAM protein in ovarian cancer cells as a model, we optimized the AuNP size and concentration for optimal fluorescent signals. The 5 nm AuNPs at 6.54 × 1013 particles/mL proved to be the most effective in signal enhancement, providing 2.4-fold higher signals compared to that without AuNPs and 6.4-fold higher signals than that of 2D immunocytochemistry. The number of cells required in our technology is 1-3 orders of magnitude smaller than that of conventional methods. This AuNP-embedded hydrogel platform combines the benefits of immunocytochemistry and flow cytometry, providing increased assay sensitivity while also allowing for qualitative analysis through imaging, suitable for protein determination in a variety of cells.
Collapse
Affiliation(s)
- David Sebben
- School of Engineering, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Gisela Strohle
- School of Engineering, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Promit Sinha Roy
- School of Engineering, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
17
|
Sheng R, Clarke D, Laver T, Meichner K, Northrup N, Tarigo J. Prognostic significance of CD25 expression in dogs with a noninvasive diagnosis of B-cell lymphoma treated with CHOP chemotherapy. Vet Comp Oncol 2023; 21:28-35. [PMID: 36111442 DOI: 10.1111/vco.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Prior studies have identified high CD25 expression in canine diffuse large B-cell lymphoma as a negative prognostic indicator. The objective of this retrospective study was to evaluate CD25 expression as a prognostic indicator in dogs with B-cell lymphoma (BCL) diagnosed with commonly used noninvasive diagnostics (cytology and flow cytometry [FC]) and treated with CHOP chemotherapy. Lymph node aspirates from 57 dogs with cytologic diagnosis of lymphoma composed of intermediate to large lymphocytes were analysed with FC. Percentage of neoplastic B-cells expressing CD25 and median fluorescence intensity (MFI) of CD25 were measured. Relationships of CD25 percent positivity and MFI to progression free survival (PFS) and survival time were evaluated. Median survival time (MST) of all dogs was 272 days (95% CI, 196-348 days) and median PFS was 196 days (95% CI, 172-220 days). Higher percentage of B-cells positive for CD25 was associated with decreased risk of death in multivariable analysis (p = .02). Dogs with higher CD25 positivity had longer MST and PFS than dogs with lower CD25 positivity (318 days versus 176 days and 212 days versus 148 days, respectively), but these differences were not significant. CD25 MFI was not significantly associated with outcome. Based on the results of this study, the association of CD25 expression and prognosis in dogs with BCL diagnosed using noninvasive methods should be interpreted with caution. Further evaluation, with studies that include histopathologic differentiation of lymphoma subtypes, is needed.
Collapse
Affiliation(s)
- Richard Sheng
- Department of Small Animal Medicine and Surgery, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Dawn Clarke
- Department of Small Animal Medicine and Surgery, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Travis Laver
- Department of Small Animal Medicine and Surgery, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Kristina Meichner
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Nicole Northrup
- Department of Small Animal Medicine and Surgery, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| | - Jaime Tarigo
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA
| |
Collapse
|
18
|
Joshi I, Carney WP, Rock EP. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol 2023; 14:1130214. [PMID: 36825018 PMCID: PMC9942705 DOI: 10.3389/fimmu.2023.1130214] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.
Collapse
Affiliation(s)
- Ila Joshi
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States,*Correspondence: Ila Joshi,
| | - Walter P. Carney
- Walt Carney Biomarkers Consulting, LLC., North Andover, MA, United States
| | - Edwin P. Rock
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States
| |
Collapse
|
19
|
Li J, Cui Y, Xie Q, Jiang T, Xin S, Liu P, Zhou T, Li Q. Ultraportable Flow Cytometer Based on an All-Glass Microfluidic Chip. Anal Chem 2023; 95:2294-2302. [PMID: 36654498 DOI: 10.1021/acs.analchem.2c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The flow cytometer has become a powerful and widely accepted measurement device in both biological studies and clinical diagnostics. The application of the flow cytometer in emerging point-of-care scenarios, such as instant detection in remote areas and emergency diagnosis, requires a significant reduction in physical dimension, cost, and power consumption. This requirement promotes studies to develop portable flow cytometers, mostly based on the utilization of polymer microfluidic chips. However, due to the relatively poor optical performance of polymer materials, existing microfluidic flow cytometers are incapable of accurate blood analysis, such as the four-part leukocyte differential count, which is necessary to monitor the immune system and to assess the risk of allergic inflammation or viral infection. To address this issue, an ultraportable flow cytometer based on an all-glass microfluidic chip (AG-UFCM) has been developed in this study. Compared with that of a typical commercial flow cytometer (BD FACSAria III), the volume of the AG-UFCM was reduced by 90 times (from 720 to 8 L). A two-step laser processing was employed to fabricate an all-glass microfluidic chip with a surface roughness of less than 1 nm, significantly improving the optical performance of on-chip micro-lens. The signal-to-noise ratio was enhanced by 3 dB, compared with that of polymer materials. For the first time, a four-part leukocyte differential count based on single fluorescence staining was realized using a miniaturized flow cytometer, laying a foundation for the point-of-care testing of miniaturized flow cytometers.
Collapse
Affiliation(s)
- Jiayu Li
- School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Yuhan Cui
- School of Medical Technology, Beijing Institute of Technology, Beijing100081, China
| | - Qiucheng Xie
- School of Medical Technology, Beijing Institute of Technology, Beijing100081, China
| | - Tao Jiang
- Shandong QianQianRuo Medical Technology Limited Company, Jinan250022, China
| | - Siyuan Xin
- Shandong QianQianRuo Medical Technology Limited Company, Jinan250022, China
| | - Peng Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing100081, China.,Chongqing Innovation Center, Beijing Institute of Technology, Chongqing401120, China
| | - Tianfeng Zhou
- School of Medical Technology, Beijing Institute of Technology, Beijing100081, China
| | - Qin Li
- School of Life Science, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
20
|
Zhang T, Chen X, Chen D, Wang J, Chen J. Development of constrictional microchannels and the recurrent neural network in single-cell protein analysis. Front Bioeng Biotechnol 2023; 11:1195940. [PMID: 37207125 PMCID: PMC10190128 DOI: 10.3389/fbioe.2023.1195940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction: As the golden approach of single-cell analysis, fluorescent flow cytometry can estimate single-cell proteins with high throughputs, which, however, cannot translate fluorescent intensities into protein numbers. Methods: This study reported a fluorescent flow cytometry based on constrictional microchannels for quantitative measurements of single-cell fluorescent levels and the recurrent neural network for data analysis of fluorescent profiles for high-accuracy cell-type classification. Results: As a demonstration, fluorescent profiles (e.g., FITC labeled β-actin antibody, PE labeled EpCAM antibody and PerCP labeled β-tubulin antibody) of individual A549 and CAL 27 cells were firstly measured and translated into protein numbers of 0.56 ± 0.43 × 104, 1.78 ± 1.06 × 106 and 8.11 ± 4.89 × 104 of A549 cells (ncell = 10232), and 3.47 ± 2.45 × 104, 2.65 ± 1.19 × 106 and 8.61 ± 5.25 × 104 of CAL 27 cells (ncell = 16376) based on the equivalent model of the constrictional microchannel. Then, the feedforward neural network was used to process these single-cell protein expressions, producing a classification accuracy of 92.0% for A549 vs. CAL 27 cells. In order to further increase the classification accuracies, as a key subtype of the recurrent neural network, the long short-term memory (LSTM) neural network was adopted to process fluorescent pulses sampled in constrictional microchannels directly, producing a classification accuracy of 95.5% for A549 vs. CAL 27 cells after optimization. Discussion: This fluorescent flow cytometry based on constrictional microchannels and recurrent neural network can function as an enabling tool of single-cell analysis and contribute to the development of quantitative cell biology.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Junbo Wang, ; Jian Chen,
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Junbo Wang, ; Jian Chen,
| |
Collapse
|
21
|
Zhang T, Gao M, Chen X, Gao C, Feng S, Chen D, Wang J, Zhao X, Chen J. Demands and technical developments of clinical flow cytometry with emphasis in quantitative, spectral, and imaging capabilities. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the gold-standard method for single-cell analysis, flow cytometry enables high-throughput and multiple-parameter characterization of individual biological cells. This review highlights the demands for clinical flow cytometry in laboratory hematology (e.g., diagnoses of minimal residual disease and various types of leukemia), summarizes state-of-the-art clinical flow cytometers (e.g., FACSLyricTM by Becton Dickinson, DxFLEX by Beckman Coulter), then considers innovative technical improvements in flow cytometry (including quantitative, spectral, and imaging approaches) to address the limitations of clinical flow cytometry in hematology diagnosis. Finally, driven by these clinical demands, future developments in clinical flow cytometry are suggested.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Mengge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, People’s Republic of China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Chiyuan Gao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaosu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, People’s Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
22
|
Yang G, Yang H, Zhang T, Gao C, Chen D, Wang J, Chen J. Quantitative flow cytometry leveraging
droplet‐based
constriction microchannels with high reliability and high sensitivity. Cytometry A 2022; 103:429-438. [PMID: 36420790 DOI: 10.1002/cyto.a.24705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
This study presented a quantitative flow cytometry leveraging droplet-based constriction microchannels with high reliability and high sensitivity. Droplets encapsulating single cells and even distribution of fluorescein labeled antibodies removed from targeted cells deformed through the constriction microchannel where the excited fluorescent signals were sampled and interpreted into numbers of proteins based on volume equivalence in measurement of droplets and calibration of fluorescence. To improve the detection reliability, a comprehensive analysis and comparison of multiple stripping agents such as proteinase K, guanidine hydrochloride, and urea was conducted. To improve the detection sensitivity, light modulation was used to address electrical noises and quartz microchannels were fabricated to address optical noises. As a demonstration, based on this quantitative flow cytometry of droplet microfluidics, (1) mutant p53 expressions of single cells were quantified as 1.95 ± 0.60 × 105 (ncell = 2918 of A431) and 1.30 ± 0.70 × 105 (ncell = 3954 of T47D); (2) single-cell expressions of Ras, c-Myc, and β-tubulin were quantified as 1.90 ± 0.59 × 105 , 4.39 ± 1.44 × 105 , and 2.97 ± 0.81 × 105 (ncell = 3298 of CAL 27), 1.83 ± 0.58 × 105 , 2.08 ± 0.13 × 106 , and 1.96 ± 0.74 × 105 (ncell = 5459 of WSU-HN6). As a microfluidic tool capable of quantitatively estimating single-cell protein expressions, this methodology may provide a new quantitative perspective for the field of flow cytometry.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
| | - Hongyu Yang
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Ting Zhang
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Chiyuan Gao
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Jian Chen
- State Key Laboratory of Transducer Technology Aerospace Information Research Institute of Chinese Academy of Sciences Beijing China
- School of Electronic, Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
23
|
Differential expression of immune-regulatory proteins C5AR1, CLEC4A and NLRP3 on peripheral blood mononuclear cells in early-stage non-small cell lung cancer patients. Sci Rep 2022; 12:18439. [PMID: 36323738 PMCID: PMC9630369 DOI: 10.1038/s41598-022-21891-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023] Open
Abstract
Changes in gene expression profiling of peripheral blood mononuclear cells (PBMC) appear to represent the host's response to the cancer cells via paracrine signaling. We speculated that protein expression on circulating T-lymphocytes represent T-lymphocyte trafficking before infiltration into the tumor microenvironment. The possibility of using protein expression on circulating T-lymphocytes as a biomarker to discriminate early-stage non-small cell lung cancer (NSCLC) was explored. Four independent PBMC gene expression microarray datasets (GSE12771, GSE13255, GSE20189 and GSE3934) were analyzed. We selected C5AR1, CLEC4A and NLRP3 based on their significant protein expression in tumor-infiltrating lymphocytes, but not in normal lymphoid tissue. A validation study using automated flow cytometry was conducted in 141 study participants including 76 treatment-naive early-stage non-small cell lung cancer patients (NSCLC), 12 individuals with non-malignant pulmonary diseases, and 53 healthy individuals. Median ratios of C5AR1, CLEC4A and NLRP3 specific antibody staining to CD3 positive cells in early-stage NSCLC patients compared to healthy controls were 0.014 [0-0.37] vs. 0.01 [0-0.07, p = 0.13], 0.03 [0-0.87] vs. 0.02 [0-0.13, p = 0.10] and 0.19 [0-0.60] vs. 0.09 [0.02-0.31, p < 0.0001], respectively. Median fluorescence intensity (MFI) of CD3+C5AR1+, CD3+CLEC4A+ and CD3+NLRP3+ expression in early-stage NSCLC patients compared to healthy volunteers was 185 [64.2-4801] vs. 107.5 [27-229, p < 0.0001], 91.2 [42.4-2355] vs. 71.25 [46.2-103, p = 0.0005], and 1585 [478-5224] vs. 758.5 [318-1976, p < 0.0001], respectively. NLRP3:CD3 ratio, CD3+C5AR1+, CD3+CLEC4A+ and CD3+NLRP3+ MFI were significantly higher in early-stage NSCLC than healthy volunteers with an area under the ROC curve of 0.69-0.76. The CD3+NLRP3+ MFI provided the most distinguishable expression at 71.5% sensitivity and 70% specificity. Furthermore, CD3+NLRP3+ MFI potentially discriminated between early-stage NSCLC from malignant-mimic inflammation and infection pulmonary disease. Further validation in various pulmonary inflammatory disease might be warranted. Our proof-of-principle findings strengthen the hypothesis that malignancies generate distinctive protein expression fingerprints on circulating T-lymphocytes.
Collapse
|
24
|
Erdoğan M, Aru B, Tayğun UC, Şimşek C, Yeşilada E, Yanıkkaya‐Demirel G, Kırmızıbekmez H. Activity‐Guided Isolation of Cytotoxic Non‐Glycosidic Ester Iridoids from
Valeriana alliariifolia
Adams and Unravelling Their Cell Death Mechanisms. Chem Biodivers 2022; 19:e202200659. [DOI: 10.1002/cbdv.202200659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Murat Erdoğan
- Department of Pharmacognosy Faculty of Pharmacy Yeditepe University TR-34755 Kayışdağı İstanbul Turkey
| | - Başak Aru
- Department of Immunology Faculty of Medicine Yeditepe University TR-34755 Kayışdağı İstanbul Turkey
| | - Umut Can Tayğun
- Faculty of Pharmacy Yeditepe University TR-34755 Kayışdağı İstanbul Turkey
| | - Ceren Şimşek
- Faculty of Pharmacy Yeditepe University TR-34755 Kayışdağı İstanbul Turkey
| | - Erdem Yeşilada
- Department of Pharmacognosy Faculty of Pharmacy Yeditepe University TR-34755 Kayışdağı İstanbul Turkey
| | | | - Hasan Kırmızıbekmez
- Department of Pharmacognosy Faculty of Pharmacy Yeditepe University TR-34755 Kayışdağı İstanbul Turkey
| |
Collapse
|
25
|
Hu K, Yan TM, Cao KY, Li F, Ma XR, Lai Q, Liu JC, Pan Y, Kou JP, Jiang ZH. A tRNA-derived fragment of ginseng protects heart against ischemia/reperfusion injury via targeting the lncRNA MIAT/VEGFA pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:672-688. [PMID: 36090756 PMCID: PMC9440274 DOI: 10.1016/j.omtn.2022.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicines (TCMs) have been widely used for treating ischemic heart disease (IHD), and secondary metabolites are generally regarded as their pharmacologically active components. However, the effects of nucleic acids in TCMs remain unclear. We reported for the first time that a 22-mer double-strand RNA consisting of HC83 (a tRNA-derived fragment [tRF] from the 3' end of tRNAGln(UUG) of ginseng) and its complementary sequence significantly promoted H9c2 cell survival after hypoxia/reoxygenation (H/R) in vitro. HC83_mimic could also significantly improve cardiac function by maintaining both cytoskeleton integrity and mitochondrial function of cardiomyocytes. Further in vivo investigations revealed that HC83_mimic is more potent than metoprolol by >500-fold against myocardial ischemia/reperfusion (MI/R) injury. In-depth studies revealed that HC83 directly downregulated a lncRNA known as myocardial infarction-associated transcript (MIAT) that led to a subsequent upregulation of VEGFA expression. These findings provided the first evidence that TCM-derived tRFs can exert miRNA-like functions in mammalian systems, therefore supporting the idea that TCM-derived tRFs are promising RNA drug candidates shown to have extraordinarily potent effects. In summary, this study provides a novel strategy not only for discovering pharmacologically active tRFs from TCMs but also for efficiently exploring new therapeutic targets for various diseases.
Collapse
Affiliation(s)
- Kua Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Kai-Yue Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Fang Li
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao-Rong Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Qiong Lai
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Jin-Cheng Liu
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Jun-Ping Kou
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| |
Collapse
|
26
|
Šinkorová Z, Lierová A, Filipová A, Čížková J, Tichý A, Pejchal J, Milanová M, Vilasová Z, Andrejsová L. MITOCHONDRIA IN BIODOSIMETRY: FLOW CYTOMETRY ASSESMENT IN VITRO. RADIATION PROTECTION DOSIMETRY 2022; 198:521-526. [PMID: 36005990 DOI: 10.1093/rpd/ncac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The JC-1 dye is widely used in apoptosis studies to monitor mitochondrial health. The probe was tested in vitro on two established cell lines and peripheral porcine blood lymphocytes after gamma irradiation (IR) to assess its potential in biodosimetric evaluation. In brief, we stained irradiated and non-irradiated cells with the JC-1 dye to determine the existing changes in mitochondrial membrane potential and monitor cell health through flow cytometry. The stage of injury in these cells was evaluated through an irradiated versus non-irradiated ratio (IVNIR), comparing the relative proportion of polarised cells containing red JC-1 aggregates. We observed a decreasing IVNIR as the radiation dose increased (i.e. 0.5; 1; 2; 4; 6; 8 and 10 Gy), performing the analysis at 4, 8 and 24 h after IR in all the tested cells. The results from the JC1-dye test showed that CD4 T lymphocytes were more sensitive to irradiation than other subpopulations.
Collapse
Affiliation(s)
- Zuzana Šinkorová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Anna Lierová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Jana Čížková
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Marcela Milanová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Zdena Vilasová
- Department of Clinical Discipline, Faculty of Health Studies, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Lenka Andrejsová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| |
Collapse
|
27
|
Civelekoglu O, Wang N, Arifuzzman A, Boya M, Sarioglu AF. Automated lightless cytometry on a microchip with adaptive immunomagnetic manipulation. Biosens Bioelectron 2022; 203:114014. [DOI: 10.1016/j.bios.2022.114014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2021] [Accepted: 01/15/2022] [Indexed: 01/08/2023]
|
28
|
Giménez‐Arnau AM, Ribas‐Llauradó C, Mohammad‐Porras N, Deza G, Pujol RM, Gimeno R. IgE and high-affinity IgE receptor in chronic inducible urticaria, pathogenic, and management relevance. Clin Transl Allergy 2022; 12:e12117. [PMID: 35126995 PMCID: PMC8805593 DOI: 10.1002/clt2.12117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND IgE and high-affinity IgE receptor (FcεRI) expression on basophils have been scarcely explored in patients with chronic inducible urticaria (CIndU). OBJECTIVES To investigate baseline serum IgE and FcεRI expression on blood basophils in a large cohort of CIndU patients and its relationship to treatment response. METHODS Baseline total serum IgE and basophil FcεRI expression measured by flow cytometry in 165 patients with CIndU was studied. The relationship of both parameters with the response to antihistamine and anti-IgE (omalizumab) treatment was considered in a subsample of CIndU patients. FcεRI expression in basophils was assessed by mean fluorescence intensity (MFI) and basophil FcεRI standardized density (receptors/cell). RESULTS The median FcεRI expression standardized per density in blood basophils was found significantly higher in patients with CIndU compared to HCs. A positive correlation was found between IgE serum levels and basophil FcεRI expression. Basal FcεRI expression was not related to antihistamine treatment response. However, it was related to omalizumab, and patients responding to omalizumab showed higher basal basophil expression of FcεRI levels. Non-responders to the antihistamine showed significantly higher IgE serum levels. CONCLUSIONS FcεRI receptor overexpression in patients with CIndU shows almost the same pattern than chronic spontaneous urticaria. It seems to be independent of CIndU subtypes. Although additional studies would be welcome, our work highlights the relevance of FcεRI receptor regulation in CIndU supporting autoimmune basophil and mast cell activation and may be a biomarker for response to anti-IgE therapy.
Collapse
Affiliation(s)
- Ana M. Giménez‐Arnau
- Department of DermatologyHospital del Mar‐Institut d’Investigacions Mèdiques (IMIM)Universitat Pompeu Fabra de BarcelonaBarcelonaSpain
| | - Clara Ribas‐Llauradó
- Department of DermatologyHospital del Mar‐Institut d’Investigacions Mèdiques (IMIM)Universitat Pompeu Fabra de BarcelonaBarcelonaSpain
- Department of ImmunologyHospital del Mar‐Institut Mar d’Investigacions MèdiquesBarcelonaSpain
| | - Nasser Mohammad‐Porras
- Department of DermatologyHospital del Mar‐Institut d’Investigacions Mèdiques (IMIM)Universitat Pompeu Fabra de BarcelonaBarcelonaSpain
| | - Gustavo Deza
- Department of DermatologyHospital del Mar‐Institut d’Investigacions Mèdiques (IMIM)Universitat Pompeu Fabra de BarcelonaBarcelonaSpain
| | - Ramón M. Pujol
- Department of DermatologyHospital del Mar‐Institut d’Investigacions Mèdiques (IMIM)Universitat Pompeu Fabra de BarcelonaBarcelonaSpain
| | - Ramón Gimeno
- Department of ImmunologyHospital del Mar‐Institut Mar d’Investigacions MèdiquesBarcelonaSpain
| |
Collapse
|
29
|
Technical Aspects of Flow Cytometry-based Measurable Residual Disease Quantification in Acute Myeloid Leukemia: Experience of the European LeukemiaNet MRD Working Party. Hemasphere 2022; 6:e676. [PMID: 34964040 PMCID: PMC8701786 DOI: 10.1097/hs9.0000000000000676] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Measurable residual disease (MRD) quantified by multiparameter flow cytometry (MFC) is a strong and independent prognostic factor in acute myeloid leukemia (AML). However, several technical factors may affect the final read-out of the assay. Experts from the MRD Working Party of the European LeukemiaNet evaluated which aspects are crucial for accurate MFC-MRD measurement. Here, we report on the agreement, obtained via a combination of a cross-sectional questionnaire, live discussions, and a Delphi poll. The recommendations consist of several key issues from bone marrow sampling to final laboratory reporting to ensure quality and reproducibility of results. Furthermore, the experiences were tested by comparing two 8-color MRD panels in multiple laboratories. The results presented here underscore the feasibility and the utility of a harmonized theoretical and practical MFC-MRD assessment and are a next step toward further harmonization.
Collapse
|
30
|
Fetal oxygen supply can be improved by an effective cross-talk between fetal erythrocytes and vascular endothelium. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166243. [PMID: 34371111 DOI: 10.1016/j.bbadis.2021.166243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
In twin/multiple pregnancy, siblings experience an adverse intrauterine environment which forms the major etiological factor leading to pathological conditions. The status of the developing fetus is highly determined by the nitric oxide (NO) level, that facilitates vasodilation which in turn modulates the oxygen and nutrition supply. As the umbilical cord (UC) lacks innervation, activation of the endothelial nitric oxide synthase (NOS3) is fundamental to maintain adequate NO production. Recent ground breaking fact showed that under stress conditions, circulating red blood cells (RBCs) can actively produces NO as a "rescue mechanism". Therefore, this study majorly focused on the molecular mechanisms that affected the redox environment by altering NOS3 activation - both in the UC arteries and vein endothelium and RBCs - that have impacts on developmental parameters, like birth weight. In connection to that, we pursued the communication efficiency between the vessels' endothelium and the circulating RBCs in demand of bioavailable NO. Our results indicated that twinning itself at stage 33-35 weeks, does not reduce the NOS3 level and its phosphorylation status in the cord vessels. However, RBC-NOS3 activation is highly upregulated during this period - providing additional evidence for the active regulatory role of fetal RBCs in the rate of blood flow - and this functional activity highly correlates with the birth weight of the fetuses. Detailed analysis on NOS3 signalling at different time points of gestation could establish a benchmark in understanding of the pathophysiological mechanisms involved in the process of developing neonatal vascular diseases.
Collapse
|
31
|
Establishing CD19 B-cell reference control materials for comparable and quantitative cytometric expression analysis. PLoS One 2021; 16:e0248118. [PMID: 33740004 PMCID: PMC7978366 DOI: 10.1371/journal.pone.0248118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
In the field of cell-based therapeutics, there is a great need for high-quality, robust, and validated measurements for cell characterization. Flow cytometry has emerged as a critically important platform due to its high-throughput capability and its ability to simultaneously measure multiple parameters in the same sample. However, to assure the confidence in measurement, well characterized biological reference materials are needed for standardizing clinical assays and harmonizing flow cytometric results between laboratories. To date, the lack of adequate reference materials, and the complexity of the cytometer instrumentation have resulted in few standards. This study was designed to evaluate CD19 expression in three potential biological cell reference materials and provide a preliminary assessment of their suitability to support future development of CD19 reference standards. Three commercially available human peripheral blood mononuclear cells (PBMCs) obtained from three different manufacturers were tested. Variables that could potentially contribute to the differences in the CD19 expression, such as PBMCs manufacturing process, number of healthy donors used in manufacturing each PBMC lot, antibody reagent, operators, and experimental days were included in our evaluation. CD19 antibodies bound per cell (ABC) values were measured using two flow cytometry-based quantification schemes with two independent calibration methods, a single point calibration using a CD4 reference cell and QuantiBrite PE bead calibration. Three lots of PBMC from three different manufacturers were obtained. Each lot of PBMC was tested on three different experimental days by three operators using three different lots of unimolar anti-CD19PE conjugates. CD19 ABC values were obtained in parallel on a selected lot of the PBMC samples using mass spectrometry (CyTOF) with two independent calibration methods, EQ4 and bead-based calibration were evaluated with CyTOF-technology. Including all studied variabilities such as PBMC lot, antibody reagent lot, and operator, the averaged mean values of CD19 ABC for the three PBMC manufacturers (A,B, and C) obtained by flow cytometry were found to be: 7953 with a %CV of 9.0 for PBMC-A, 10535 with a %CV of 7.8 for PBMC-B, and 12384 with a %CV of 16 for PBMC-C. These CD19 ABC values agree closely with the findings using CyTOF. The averaged mean values of CD19 ABC for the tested PBMCs is 9295 using flow cytometry-based method and 9699 using CyTOF. The relative contributions from various sources of uncertainty in CD19 ABC values were quantified for the flow cytometry-based measurement scheme. This uncertainty analysis suggests that the number of antigens or ligand binding sites per cell in each PBMC preparation is the largest source of variability. On the other hand, the calibration method does not add significant uncertainty to the expression estimates. Our preliminary assessment showed the suitability of the tested materials to serve as PBMC-based CD19+ reference control materials for use in quantifying relevant B cell markers in B cell lymphoproliferative disorders and immunotherapy. However, users should consider the variabilities resulting from different lots of PBMC and antibody reagent when utilizing cell-based reference materials for quantification purposes and perform bridging studies to ensure harmonization between the results before switching to a new lot.
Collapse
|
32
|
Dos Reis SB, de Oliveira Silva J, Garcia-Fossa F, Leite EA, Malachias A, Pound-Lana G, Mosqueira VCF, Oliveira MC, de Barros ALB, de Jesus MB. Mechanistic insights into the intracellular release of doxorubicin from pH-sensitive liposomes. Biomed Pharmacother 2020; 134:110952. [PMID: 33348307 DOI: 10.1016/j.biopha.2020.110952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
pH-sensitive liposomes are interesting carriers for drug-delivery, undertaking rapid bilayer destabilization in response to pH changes, allied to tumor accumulation, a desirable behavior in the treatment of cancer cells. Previously, we have shown that pH-sensitive liposomes accumulate in tumor tissues of mice, in which an acidic environment accelerates drug delivery. Ultimately, these formulations can be internalized by tumor cells and take the endosome-lysosomal route. However, the mechanism of doxorubicin release and intracellular traffic of pH-sensitive liposomes remains unclear. To investigate the molecular mechanisms underlying the intracellular release of doxorubicin from pH-sensitive liposomes, we followed HeLa cells viability, internalization, intracellular trafficking, and doxorubicin's intracellular delivery mechanisms from pH-sensitive (SpHL-DOX) and non-pH-sensitive (nSpHL-DOX) formulations. We found that SpHL-DOX has faster internalization kinetics and intracellular release of doxorubicin, followed by strong nuclear accumulation compared to nSpHL-DOX. The increased nuclear accumulation led to the activation of cleaved caspase-3, which efficiently induced apoptosis. Remarkably, we found that chloroquine and E64d enhanced the cytotoxicity of SpHL-DOX. This knowledge is paramount to improve the efficiency of pH-sensitive liposomes or to be used as a rational strategy for developing new formulations to be applied in vivo.
Collapse
Affiliation(s)
- Samara Bonesso Dos Reis
- Nano-Cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | - Juliana de Oliveira Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Garcia-Fossa
- Nano-Cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Angelo Malachias
- Physics Department, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gwenaelle Pound-Lana
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), Pharmacy School, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), Pharmacy School, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Bispo de Jesus
- Nano-Cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
33
|
Hung SK, Lan HM, Han ST, Wu CC, Chen KF. Current Evidence and Limitation of Biomarkers for Detecting Sepsis and Systemic Infection. Biomedicines 2020; 8:biomedicines8110494. [PMID: 33198109 PMCID: PMC7697922 DOI: 10.3390/biomedicines8110494] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sepsis was recently redefined as a life-threatening disease involving organ dysfunction caused by a dysregulated host response to infection. Biomarkers play an important role in early detection, diagnosis, and prognostication. We reviewed six promising biomarkers for detecting sepsis and systemic infection, including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), CD64, presepsin, and sTREM-1. Among the recent studies, we found the following risks of bias: only a few studies adopted the random or consecutive sampling strategy; extensive case-control analysis, which worsened the over-estimated performance; most of the studies used post hoc cutoff values; and heterogeneity with respect to the inclusion criteria, small sample sizes, and different quantitative synthesis methods applied in meta-analyses. We recommend that CD64 and presepsin should be considered as the most promising biomarkers for diagnosing sepsis. Future studies should enroll a larger sample size with a cohort rather than a case-control study design. A random or consecutive study design with a pre-specified laboratory threshold, consistent sampling timing, and an updated definition of sepsis will also increase the reliability of the studies. Further investigations of appropriate specimens, testing assays, and cutoff levels for specific biomarkers are also warranted.
Collapse
Affiliation(s)
- Shang-Kai Hung
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (S.-K.H.); (S.-T.H.)
| | - Hao-Min Lan
- Department of Education, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Tsung Han
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (S.-K.H.); (S.-T.H.)
| | - Chin-Chieh Wu
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Kuan-Fu Chen
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Correspondence:
| |
Collapse
|
34
|
Chakraborty P, Dugmonits KN, Orvos H, Hermesz E. Mature Twin Neonates Exhibit Oxidative Stress via Nitric Oxide Synthase Dysfunctionality: A Prognostic Stress Marker in the Red Blood Cells and Umbilical Cord Vessels. Antioxidants (Basel) 2020; 9:antiox9090845. [PMID: 32927592 PMCID: PMC7555925 DOI: 10.3390/antiox9090845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022] Open
Abstract
Intrauterine hypoxic condition increases the generation of reactive oxygen species and fetal oxidative stress. Multiple pregnancy always bears an additional oxidative stress condition with severe complications, such as prematurity, structural abnormalities, delayed development and low birthweight. The umbilical cord (UC) vessels, along with circulating fetal red blood cells (RBCs), highly determine the oxygenation status of fetus and regulate the feto-placental circulation. As UC lacks innervation, the activation of the endothelial nitric oxide synthase (NOS3) is fundamental for proper NO production. Therefore, we aimed to study the NOS3 activation pathways along with damages to macromolecules in the endothelium of UC vessels and RBCs of mature non-discordant twins, in connection to major differences in their birth weight. We provide evidence that, under severe hypoxic conditions such as twin pregnancy, the NOS3-related NO production pathways are altered both in UC vessels and RBCs; moreover, the extent of changes is highly birthweight-specific. Furthermore, macromolecular damages are prominent in the RBCs and arteries compared to the vein, with a similar increase in the Arginase1 level, which is believed to play a role in NOS3 functionality, resulting in endothelial dysfunctionality, which might have relevance to the major etiologies of cardiovascular diseases in later life.
Collapse
Affiliation(s)
- Payal Chakraborty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, P.O.Box 533, H-6701 Szeged, Hungary; (P.C.); (K.N.D.)
| | - Krisztina N. Dugmonits
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, P.O.Box 533, H-6701 Szeged, Hungary; (P.C.); (K.N.D.)
| | - Hajnalka Orvos
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Szeged, P.O.Box 533, H-6701 Szeged, Hungary;
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, P.O.Box 533, H-6701 Szeged, Hungary; (P.C.); (K.N.D.)
- Correspondence: ; Tel./Fax: +36-62-544887
| |
Collapse
|
35
|
Hoffmann K, Nirmalananthan-Budau N, Resch-Genger U. Fluorescence calibration standards made from broadband emitters encapsulated in polymer beads for fluorescence microscopy and flow cytometry. Anal Bioanal Chem 2020; 412:6499-6507. [PMID: 32409890 PMCID: PMC7442758 DOI: 10.1007/s00216-020-02664-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 01/31/2023]
Abstract
We present here the design and characterization of a set of spectral calibration beads. These calibration beads are intended for the determination and regular control of the spectral characteristics of fluorescence microscopes and other fluorescence measuring devices for the readout of bead-based assays. This set consists of micrometer-sized polymer beads loaded with dyes from the liquid Calibration Kit Spectral Fluorescence Standards developed and certified by BAM for the wavelength-dependent determination of the spectral responsivity of fluorescence measuring devices like spectrofluorometers. To cover the wavelength region from 400 to 800 nm, two new near-infrared emissive dyes were included, which were spectroscopically characterized in solution and encapsulated in the beads. The resulting set of beads presents the first step towards a new platform of spectral calibration beads for the determination of the spectral characteristics of fluorescence instruments like fluorescence microscopes, FCM setups, and microtiter plate readers, thereby meeting the increasing demand for reliable and comparable fluorescence data especially in strongly regulated areas, e.g., medical diagnostics. This will eventually provide the basis for standardized calibration procedures for imaging systems as an alternative to microchannel slides containing dye solutions previously reported by us. Graphical abstract.
Collapse
Affiliation(s)
- Katrin Hoffmann
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | | | - Ute Resch-Genger
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
36
|
Keyes TJ, Domizi P, Lo YC, Nolan GP, Davis KL. A Cancer Biologist's Primer on Machine Learning Applications in High-Dimensional Cytometry. Cytometry A 2020; 97:782-799. [PMID: 32602650 PMCID: PMC7416435 DOI: 10.1002/cyto.a.24158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The application of machine learning and artificial intelligence to high-dimensional cytometry data sets has increasingly become a staple of bioinformatic data analysis over the past decade. This is especially true in the field of cancer biology, where protocols for collecting multiparameter single-cell data in a high-throughput fashion are rapidly developed. As the use of machine learning methodology in cytometry becomes increasingly common, there is a need for cancer biologists to understand the basic theory and applications of a variety of algorithmic tools for analyzing and interpreting cytometry data. We introduce the reader to several keystone machine learning-based analytic approaches with an emphasis on defining key terms and introducing a conceptual framework for making translational or clinically relevant discoveries. The target audience consists of cancer cell biologists and physician-scientists interested in applying these tools to their own data, but who may have limited training in bioinformatics. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Timothy J Keyes
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, California
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Pablo Domizi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Yu-Chen Lo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Garry P Nolan
- Department of Microbiology and Immunology | Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California
| | - Kara L Davis
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
37
|
Kaźmierczak Z, Szostak-Paluch K, Przybyło M, Langner M, Witkiewicz W, Jędruchniewicz N, Dąbrowska K. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg Med Chem 2020; 28:115556. [PMID: 32828419 DOI: 10.1016/j.bmc.2020.115556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kamila Szostak-Paluch
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland; Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland
| | - Magdalena Przybyło
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Marek Langner
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| | | | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland; Research and Development Center, Regional Specialized Hospital, Wrocław, Poland.
| |
Collapse
|
38
|
Maternal Smoking Highly Affects the Function, Membrane Integrity, and Rheological Properties in Fetal Red Blood Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1509798. [PMID: 31871538 PMCID: PMC6906794 DOI: 10.1155/2019/1509798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
An understanding of the basic pathophysiological mechanisms of neonatal diseases necessitates detailed knowledge about the wide range of complications in the circulating fetal RBCs. Recent publications on adult red blood cells (RBCs) provide evidence that RBCs carry an active nitric oxide synthase (NOS3) enzyme and contribute to vascular functioning and integrity via their active nitric oxide synthesis. The aim of this study was to determine the effect of maternal smoking on the phenotypical appearance and functionality of fetal RBCs, based on morphological and molecular studies. We looked for possible links between vascular dysfunction and NOS3 expression and activation and its regulation by arginase (ARG1). Significant morphological and functional differences were found between fetal RBCs isolated from the arterial cord blood of neonates born to nonsmoking (RBC-NS, n = 62) and heavy-smoking (RBC-S, n = 51) mothers. Morphological variations were quantified by Advanced Cell Classifier, microscopy-based intelligent analysis software. To investigate the relevance of the newly suggested “erythrocrine” function in fetal RBCs, we measured the levels of NOS3 and its phosphorylation in parallel with the level of ARG1, as one of the major influencers of NOS3 dimerization, by fluorescence-activated cell sorting. Fetal RBCs, even the “healthy-looking” biconcave-shaped type, exhibited impaired NOS3 activation in the RBC-S population, which was paralleled with elevated ARG1 level, thus suggesting an increased redox burden. Our molecular data indicate that maternal smoking can exert marked effects on the circulating fetal RBCs, which could have a consequence on the outcome of in utero development. We hypothesize that any endothelial dysfunction altering NO production/bioavailability can be sensed by circulating fetal RBCs. Hence, we are putting forward the idea that neonatal RBC could serve as a real-time sensor for not only monitoring RBC-linked anomalies but also predicting the overall status of the vascular microenvironment.
Collapse
|
39
|
Alonzi T, Petruccioli E, Vanini V, Fimia GM, Goletti D. Optimization of the autophagy measurement in a human cell line and primary cells by flow cytometry. Eur J Histochem 2019; 63. [PMID: 31243942 PMCID: PMC6610717 DOI: 10.4081/ejh.2019.3044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022] Open
Abstract
The limited availability of rapid and reliable flow cytometry-based assays for ex vivo quantification of autophagy has hampered their clinical applications for studies of diseases pathogenesis or for the implementation of autophagy-targeting therapies. To this aim, we modified and improved the protocol of a commercial kit developed for quantifying the microtubule-associated protein 1A/1B light chain 3B (LC3), the most reliable marker for autophagosomes currently available. The protocol modifications were set up measuring the autophagic flux in neoplastic (THP-1 cells) and primary cells (peripheral blood mononuclear cells; PBMC) of healthy donors. Moreover, PBMC of active tuberculosis (TB) patients were stimulated with the Mycobacterium tuberculosis purified protein derivatives or infected with live Mycobacterium bovis bacillus Calmette-Guerin (BCG). We found that the baseline median fluorescent intensity (MFI) of THP-1 cells changed depending on the time of sample acquisition to the flow cytometer. To solve this problem, a fixation step was introduced in different stages of the assay's protocol, obtaining more reproducible and sensitive results when a post-LC3 staining fixation was performed, in either THP1 or PBMC. Furthermore, since we found that results are influenced by the type and the dose of the lysosome inhibitor used, the best dose of Chloroquine for LC3 accumulation were set up in either THP-1 cells or PBMC. Finally, applying these experimental settings, we measured the autophagic flux in CD14+ cells from active TB patients' PBMC upon BCG infection. In conclusion, our data indicate that the protocol modifications here described in this work improve the stability and accuracy of a flow cytometry-based assay for the evaluation of autophagy, thus assuring more standardised cell analyses.
Collapse
Affiliation(s)
- Tonino Alonzi
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome.
| | | | | | | | | |
Collapse
|
40
|
Huse K. Expanding the Clinical Cytometry Toolbox-Receptor Occupancy by Mass Cytometry. Cytometry A 2019; 95:1046-1048. [PMID: 31046178 DOI: 10.1002/cyto.a.23784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/17/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for B cell malignancies, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Bringeland GH, Bader L, Blaser N, Budzinski L, Schulz AR, Mei HE, Myhr KM, Vedeler CA, Gavasso S. Optimization of Receptor Occupancy Assays in Mass Cytometry: Standardization Across Channels with QSC Beads. Cytometry A 2019; 95:314-322. [PMID: 30688025 PMCID: PMC6590231 DOI: 10.1002/cyto.a.23723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/03/2023]
Abstract
Receptor occupancy, the ratio between amount of drug bound and amount of total receptor on single cells, is a biomarker for treatment response to therapeutic monoclonal antibodies. Receptor occupancy is traditionally measured by flow cytometry. However, spectral overlap in flow cytometry limits the number of markers that can be measured simultaneously. This restricts receptor occupancy assays to the analysis of major cell types, although rare cell populations are of potential therapeutic relevance. We therefore developed a receptor occupancy assay suitable for mass cytometry. Measuring more markers than currently available in flow cytometry allows simultaneous receptor occupancy assessment and high-parameter immune phenotyping in whole blood, which should yield new insights into disease activity and therapeutic effects. However, varying sensitivity across the mass cytometer detection range may lead to misinterpretation of the receptor occupancy when drug and receptor are detected in different channels. In this report, we describe a method for optimization of mass cytometry receptor occupancy measurements by using antibody-binding quantum simply cellular (QSC) beads for standardization across channels with different sensitivities. We evaluated the method in a mass cytometry-based receptor occupancy assay for natalizumab, a therapeutic antibody used in multiple sclerosis treatment that binds to α4-integrin, which is expressed on leukocyte cell surfaces. Peripheral blood leukocytes from a treated patient were stained with a panel containing metal-conjugated antibodies for detection of natalizumab and α4-integrin. QSC beads with known antibody binding capacity were stained with the same metal-conjugated antibodies and were used to standardize the signal intensity in the leukocyte sample before calculating receptor occupancy. We found that QSC bead standardization across channels corrected for sensitivity differences for detection of drug and receptor and generated more accurate results than observed without standardization. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Gerd Haga Bringeland
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lucius Bader
- Bergen group of Epidemiology and Biomarkers in Rheumatic Disease, Department of Rheumatology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nello Blaser
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Lisa Budzinski
- German Rheumatism Research Centre Berlin (DRFZ), Berlin, Germany
| | - Axel R Schulz
- German Rheumatism Research Centre Berlin (DRFZ), Berlin, Germany
| | - Henrik E Mei
- German Rheumatism Research Centre Berlin (DRFZ), Berlin, Germany
| | - Kjell-Morten Myhr
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian A Vedeler
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sonia Gavasso
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Conrad VK, Dubay CJ, Malek M, Brinkman RR, Koguchi Y, Redmond WL. Implementation and Validation of an Automated Flow Cytometry Analysis Pipeline for Human Immune Profiling. Cytometry A 2018; 95:183-191. [DOI: 10.1002/cyto.a.23664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Valerie K. Conrad
- Earle A. Chiles Research InstituteProvidence Portland Medical Center Portland Oregon
| | - Christopher J. Dubay
- Earle A. Chiles Research InstituteProvidence Portland Medical Center Portland Oregon
| | - Mehrnoush Malek
- Terry Fox LaboratoryBC Cancer Agency Vancouver British Columbia
| | - Ryan R. Brinkman
- Terry Fox LaboratoryBC Cancer Agency Vancouver British Columbia
- Department of Medical GeneticsUniversity of British Columbia Vancouver British Columbia
| | - Yoshinobu Koguchi
- Earle A. Chiles Research InstituteProvidence Portland Medical Center Portland Oregon
| | - William L. Redmond
- Earle A. Chiles Research InstituteProvidence Portland Medical Center Portland Oregon
| |
Collapse
|
43
|
Bras AE, de Haas V, van Stigt A, Jongen-Lavrencic M, Beverloo HB, Te Marvelde JG, Zwaan CM, van Dongen JJM, Leusen JHW, van der Velden VHJ. CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:134-142. [PMID: 30450744 PMCID: PMC6587863 DOI: 10.1002/cyto.b.21745] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND While it is known that CD123 is normally strongly expressed on plasmacytoid dendritic cells and completely absent on nucleated red blood cells, detailed information regarding CD123 expression in acute leukemia is scarce and, if available, hard to compare due to different methodologies. METHODS CD123 expression was evaluated using standardized EuroFlow immunophenotyping in 139 pediatric AML, 316 adult AML, 193 pediatric BCP-ALL, 69 adult BCP-ALL, 101 pediatric T-ALL, and 28 adult T-ALL patients. Paired diagnosis-relapse samples were available for 57 AML and 19 BCP-ALL patients. Leukemic stem cell (LSC) data was available for 32 pediatric AML patients. CD123 expression was evaluated based on mean fluorescence intensity, median fluorescence intensity, and percentage CD123 positive cells. RESULTS EuroFlow panels were stable over time and between laboratories. CD123 was expressed in the majority of AML and BCP-ALL patients, but absent in most T-ALL patients. Within AML, CD123 expression was lower in erythroid/megakaryocytic leukemia, higher in NPM1 mutated and FLT3-ITD mutated leukemia, and comparable between LSC and leukemic blasts. Within BCP-ALL, CD123 expression was higher in patients with (high) hyperdiploid karyotypes and the BCR-ABL fusion gene. Interestingly, CD123 expression was increased in BCP-ALL relapses while highly variable in AML relapses (compared to CD123 expression at diagnosis). CONCLUSIONS Authors evaluated CD123 expression in a large cohort of acute leukemia patients, based on standardized and reproducible methodology. Our results may facilitate stratification of patients most likely to respond to CD123 targeted therapies and serve as reference for CD123 expression (in health and disease). © 2018 The Authors. Cytometry Part B: Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Anne E Bras
- Laboratory Medical immunology (LMI), Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Arthur van Stigt
- Laboratory for Translational Immunology (LTI), University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mojca Jongen-Lavrencic
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jeroen G Te Marvelde
- Laboratory Medical immunology (LMI), Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jacques J M van Dongen
- Laboratory Medical immunology (LMI), Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jeanette H W Leusen
- Laboratory for Translational Immunology (LTI), University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vincent H J van der Velden
- Laboratory Medical immunology (LMI), Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
44
|
Leone P, Di Lernia G, Solimando AG, Cicco S, Saltarella I, Lamanuzzi A, Ria R, Frassanito MA, Ponzoni M, Ditonno P, Dammacco F, Racanelli V, Vacca A. Bone marrow endothelial cells sustain a tumor-specific CD8 + T cell subset with suppressive function in myeloma patients. Oncoimmunology 2018; 8:e1486949. [PMID: 30546939 DOI: 10.1080/2162402x.2018.1486949] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023] Open
Abstract
Endothelial cells (EC) line the bone marrow microvasculature and are in close contact with CD8+ T cells that come and go across the permeable capillaries. Because of these intimate interactions, we investigated the capacity of EC to act as antigen-presenting cells (APC) and modulate CD8+ T cell activation and proliferation in bone marrow of patients with multiple myeloma (MM) and monoclonal gammopathy of undetermined significance. We found that EC from MM patients show a phenotype of semi-professional APC given that they express low levels of the co-stimulatory molecules CD40, CD80 and CD86, and of the inducible co-stimulator ligand (ICOSL). In addition, they do not undergo the strong switch from immunoproteasome to standard proteasome subunit expression which is typical of mature professional APC such as dendritic cells. EC can trap and present antigen to CD8+ T cells, stimulating a central memory CD8+ T cell population that expresses Foxp3 and produces high amounts of IL-10 and TGF-β. Another CD8+ T cell population is stimulated by professional APC, produces IFN-γ, and exerts antitumor activity. Thus, two distinct CD8+ T cell populations coexist in the bone marrow of MM patients: the first population is sustained by EC, expresses Foxp3, produces IL-10 and TGF-β, and exerts pro-tumor activity by negatively regulating the second population. This study adds new insight into the role that EC play in MM biology and describes an additional immune regulatory mechanism that inhibits the development of antitumor immunity and may impair the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Giuseppe Di Lernia
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Maurilio Ponzoni
- Pathology Unit & Leukemia Unit, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - Paolo Ditonno
- Hematology Unit, IRCCS "Giovanni Paolo II", Bari, Italy
| | - Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| |
Collapse
|
45
|
Manohar S, Shah P, Biswas S, Mukadam A, Joshi M, Viswanathan G. Combining fluorescent cell barcoding and flow cytometry‐based phospho‐ERK1/2 detection at short time scales in adherent cells. Cytometry A 2018; 95:192-200. [DOI: 10.1002/cyto.a.23602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Sonal Manohar
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Prachi Shah
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Sharmila Biswas
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Anam Mukadam
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Madhura Joshi
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Ganesh Viswanathan
- Department of Chemical EngineeringIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| |
Collapse
|
46
|
Brando B. Issue Highlights-March 2018. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:208-210. [PMID: 29438583 DOI: 10.1002/cyto.b.21629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bruno Brando
- Hematology Laboratory and Transfusion Center, Legnano Hospital, Milan, Italy
| |
Collapse
|
47
|
Do CH, Bailey S, Macardle C, Thurgood LA, Lower KM, Kuss BJ. Development of locus specific sub-clone separation by fluorescence in situ hybridization in suspension in chronic lymphocytic leukemia. Cytometry A 2017; 91:1088-1095. [PMID: 29024486 DOI: 10.1002/cyto.a.23264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
Intra-tumor genetic heterogeneity is a hallmark of cancer. The ability to monitor and analyze these sub-clonal cell populations can be considered key to successful treatment, particularly in the modern era of targeted therapies. Although advances in sequencing technologies have significantly improved our ability to analyze the mutational landscape of tumors, this utility is reduced when considering small, but clinically significant sub-clones, that is, those representing <10% of the tumor burden. We have developed a high-throughput method that utilizes a 17-probe labeled bacterial artificial chromosome contig to quantify sub-clonal populations of cells based on deletion of a single locus. Chronic lymphocytic leukemia (CLL) cells harboring deletion of the short arm of chromosome 17 (del17p), an important prognostic marker for CLL were used to demonstrate the technique. Sub-clones of del17p cells were quantified and isolated from heterogeneous CLL populations using fluorescence in situ hybridization in suspension (FISH-IS) and the locus specific probe set. Using the combination of FISH-IS with the locus-specific probe set enables automated analysis of tens of thousands of cells, accurately quantifying and isolating cells carrying a del17p. Based on the fluorescence intensity of 17p probes, 17p (TP53) deleted cells were identified and sorted using flow cytometric techniques, and enrichment was demonstrated using single nucleotide polymorphism analysis. The ability to separate sub-clones of cells based on genetic heterogeneity, independent of the clone size, highlights the potential application of this method not only in the diagnostic and prognostic setting, but also as an unbiased approach to enable further detailed genetic analysis of the sub-clone with deep sequencing approaches. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Cuc H Do
- Discipline Molecular Medicine and Pathology College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Sheree Bailey
- Department of Immunology Allergy and Arthritis, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Cindy Macardle
- Department of Immunology Allergy and Arthritis, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Lauren A Thurgood
- Discipline Molecular Medicine and Pathology College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Karen M Lower
- Discipline Molecular Medicine and Pathology College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Bryone J Kuss
- Discipline Molecular Medicine and Pathology College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Hematology, Molecular Medicine and Pathology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Ikoma MRV. Scientific comment on: "Quantitative flow cytometric evaluation of CD200, CD123, CD43 and CD52 as a tool for the differential diagnosis of mature B-cell neoplasms". Rev Bras Hematol Hemoter 2017; 39:199-201. [PMID: 28830597 PMCID: PMC5568581 DOI: 10.1016/j.bjhh.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 11/27/2022] Open
|