1
|
Molinos-Quintana Á, Alonso-Saladrigues A, Herrero B, Caballero-Velázquez T, Galán-Gómez V, Panesso M, Torrebadell M, Delgado-Serrano J, Pérez de Soto C, Faura A, González-Martínez B, Castillo-Robleda A, Diaz-de-Heredia C, Pérez-Martínez A, Pérez-Hurtado JM, Rives S, Pérez-Simón JA. Impact of disease burden and late loss of B cell aplasia on the risk of relapse after CD19 chimeric antigen receptor T Cell (Tisagenlecleucel) infusion in pediatric and young adult patients with relapse/refractory acute lymphoblastic leukemia: role of B-cell monitoring. Front Immunol 2024; 14:1280580. [PMID: 38292483 PMCID: PMC10825008 DOI: 10.3389/fimmu.2023.1280580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Loss of B-cell aplasia (BCA) is a well-known marker of functional loss of CD19 CAR-T. Most relapses and loss of BCA occur in the first months after CD19 CAR-T infusion. In addition, high tumor burden (HTB) has shown to have a strong impact on relapse, especially in CD19-negative. However, little is known about the impact of late loss of BCA or the relationship between BCA and pre-infusion tumor burden in patients infused with tisagenlecleucel for relapsed/refractory B-cell acute lymphoblastic leukemia. Therefore, the optimal management of patients with loss of BCA is yet to be defined. Methods We conducted a Spanish, multicentre, retrospective study in patients infused with tisagenlecleucel after marketing authorization. A total of 73 consecutively treated patients were evaluated. Results Prior to infusion, 39 patients had HTB (≥ 5% bone marrow blasts) whereas 34 had a low tumor burden (LTB) (<5% blasts). Complete remission was achieved in 90.4% of patients, of whom 59% relapsed. HTB was associated with inferior outcomes, with a 12-month EFS of 19.3% compared to 67.2% in patients with LTB (p<0.001) with a median follow-up of 13.5 months (95% CI 12.4 - 16.2). In the HTB subgroup relapses were mainly CD19-negative (72%) whereas in the LTB subgroup they were mainly CD19-positive (71%) (p=0.017). In the LTB group, all CD19-positive relapses were preceded by loss of BCA whereas only 57% (4/7) of HTB patients experienced CD19-positive relapse. We found a positive correlation between loss of BCA and CD19-positive relapse (R-squared: 74) which persisted beyond six months post-infusion. We also explored B-cell recovery over time using two different definitions of loss of BCA and found a few discrepancies. Interestingly, transient immature B-cell recovery followed by BCA was observed in two pediatric patients. In conclusion, HTB has an unfavorable impact on EFS and allo-SCT might be considered in all patients with HTB, regardless of BCA. In patients with LTB, loss of BCA preceded all CD19-positive relapses. CD19-positive relapse was also frequent in patients who lost BCA beyond six months post-infusion. Therefore, these patients are still at significant risk for relapse and close MRD monitoring and/or therapeutic interventions should be considered.
Collapse
Affiliation(s)
- Águeda Molinos-Quintana
- Pediatric Unit, Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Anna Alonso-Saladrigues
- CAR T-cell Unit. Leukemia and Lymphoma Department. Pediatric Cancer Center Barcelona (PCCB). Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Blanca Herrero
- Pediatric Hemato-Oncology Department, Peditric University Hospital del Niño Jesús, Madrid, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Víctor Galán-Gómez
- Pediatric Hemato-Oncology Department, University Hospital La Paz, Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Melissa Panesso
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Montserrat Torrebadell
- CAR T-cell Unit. Leukemia and Lymphoma Department. Pediatric Cancer Center Barcelona (PCCB). Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Javier Delgado-Serrano
- Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Concepción Pérez de Soto
- Pediatric Unit, Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Anna Faura
- CAR T-cell Unit. Leukemia and Lymphoma Department. Pediatric Cancer Center Barcelona (PCCB). Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Berta González-Martínez
- Pediatric Hemato-Oncology Department, University Hospital La Paz, Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Castillo-Robleda
- Pediatric Hemato-Oncology Department, Peditric University Hospital del Niño Jesús, Madrid, Spain
| | - Cristina Diaz-de-Heredia
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Antonio Pérez-Martínez
- Pediatric Hemato-Oncology Department, University Hospital La Paz, Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - José María Pérez-Hurtado
- Pediatric Unit, Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Susana Rives
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red De Enfermedades Raras (CIBERER), Madrid, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Kovach AE, Wood BL. Updates on lymphoblastic leukemia/lymphoma classification and minimal/measurable residual disease analysis. Semin Diagn Pathol 2023; 40:457-471. [PMID: 37953192 DOI: 10.1053/j.semdp.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Lymphoblastic leukemia/lymphoma (ALL/LBL), especially certain subtypes, continues to confer morbidity and mortality despite significant therapeutic advances. The pathologic classification of ALL/LBL, especially that of B-ALL, has recently substantially expanded with the identification of several distinct and prognostically important genetic drivers. These discoveries are reflected in both current classification systems, the World Health Organization (WHO) 5th edition and the new International Consensus Classification (ICC). In this article, novel subtypes of B-ALL are reviewed, including DUX4, MEF2D and ZNF384-rearranged B-ALL; the rare pediatric entity B-ALL with TLF3::HLF, now added to the classifications, is discussed; updates to the category of B-ALL with BCR::ABL1-like features (Ph-like B-ALL) are summarized; and emerging genetic subtypes of T-ALL are presented. The second half of the article details current approaches to minimal/measurable residual disease (MRD) detection in B-ALL and T-ALL and presents anticipated challenges to current approaches in the burgeoning era of antigen-directed immunotherapy.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
[Chinese consensus on minimal residual disease detection and interpretation of patients with acute lymphoblastic leukemia (2023)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:267-275. [PMID: 37356994 PMCID: PMC10282871 DOI: 10.3760/cma.j.issn.0253-2727.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/27/2023]
|
4
|
Chen X, Gao Q, Roshal M, Cherian S. Flow cytometric assessment for minimal/measurable residual disease in B lymphoblastic leukemia/lymphoma in the era of immunotherapy. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:205-223. [PMID: 36683279 DOI: 10.1002/cyto.b.22113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023]
Abstract
Minimal/measurable residual disease (MRD) is the most important independent prognostic factor for patients with B-lymphoblastic leukemia (B-LL). MRD post therapy has been incorporated into risk stratification and clinical management, resulting in substantially improved outcomes in pediatric and adult patients. Currently, MRD in B-ALL is most commonly assessed by multiparametric flow cytometry and molecular (polymerase chain reaction or high-throughput sequencing based) methods. The detection of MRD by flow cytometry in B-ALL often begins with B cell antigen-based gating strategies. Over the past several years, targeted immunotherapy directed against B cell markers has been introduced in patients with relapsed or refractory B-ALL and has demonstrated encouraging results. However, targeted therapies have significant impact on the immunophenotype of leukemic blasts, in particular, downregulation or loss of targeted antigens on blasts and normal B cell precursors, posing challenges for MRD detection using standard gating strategies. Novel flow cytometric approaches, using alternative strategies for population identification, sometimes including alternative gating reagents, have been developed and implemented to monitor MRD in the setting of post targeted therapy.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Qi Gao
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mikhail Roshal
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sindhu Cherian
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Zaffina S, Piano Mortari E, Di Prinzio RR, Cappa M, Novelli A, Agolini E, Raponi M, Dallapiccola B, Locatelli F, Perno CF, Carsetti R. Case Report: Precision COVID-19 Immunization Strategy to Overcome Individual Fragility: A Case of Generalized Lipodystrophy Type 4. Front Immunol 2022; 13:869042. [PMID: 35464479 PMCID: PMC9020769 DOI: 10.3389/fimmu.2022.869042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
A 48-year-old patient affected with congenital generalized lipodystrophy type 4 failed to respond to two doses of the BNT162b2 vaccine, consisting of lipid nanoparticle encapsulated mRNA. As the disease is caused by biallelic variants of CAVIN1, a molecule indispensable for lipid endocytosis and regulation, we complemented the vaccination cycle with a single dose of the Ad26.COV2 vaccine. Adenovirus-based vaccine entry is mediated by the interaction with adenovirus receptors and transport occurs in clathrin-coated pits. Ten days after Ad26.COV2 administration, S- and RBD-specific antibodies and high-affinity memory B cells increased significantly to values close to those observed in Health Care Worker controls.
Collapse
Affiliation(s)
- Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Reparata Rosa Di Prinzio
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Sapienza, University of Rome, Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit and Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Microbiology and Diagnostic Immunology Unit and Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Lanza F, Maffini E. ISSUE HIGHLIGHTS - July 2020. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 98:295-298. [PMID: 32687692 DOI: 10.1002/cyto.b.21937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francesco Lanza
- Hematology Unit and Romagna Transplant Network, Ravenna & Ferrara University, Italy
| | - Enrico Maffini
- Hematology Unit and Romagna Transplant Network, Ravenna & Ferrara University, Italy
| |
Collapse
|
7
|
Shah NN, Lee DW, Yates B, Yuan CM, Shalabi H, Martin S, Wolters PL, Steinberg SM, Baker EH, Delbrook CP, Stetler-Stevenson M, Fry TJ, Stroncek DF, Mackall CL. Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. J Clin Oncol 2021; 39:1650-1659. [PMID: 33764809 DOI: 10.1200/jco.20.02262] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE CD19 chimeric antigen receptor (CD19-CAR) T cells induce high response rates in children and young adults (CAYAs) with B-cell acute lymphoblastic leukemia (B-ALL), but relapse rates are high. The role for allogeneic hematopoietic stem-cell transplant (alloHSCT) following CD19-CAR T-cell therapy to improve long-term outcomes in CAYAs has not been examined. METHODS We conducted a phase I trial of autologous CD19.28ζ-CAR T cells in CAYAs with relapsed or refractory B-ALL. Response and long-term clinical outcomes were assessed in relation to disease and treatment variables. RESULTS Fifty CAYAs with B-ALL were treated (median age, 13.5 years; range, 4.3-30.4). Thirty-one (62.0%) patients achieved a complete remission (CR), 28 (90.3%) of whom were minimal residual disease-negative by flow cytometry. Utilization of fludarabine/cyclophosphamide-based lymphodepletion was associated with improved CR rates (29/42, 69%) compared with non-fludarabine/cyclophosphamide-based lymphodepletion (2/8, 25%; P = .041). With median follow-up of 4.8 years, median overall survival was 10.5 months (95% CI, 6.3 to 29.2 months). Twenty-one of 28 (75.0%) patients achieving a minimal residual disease-negative CR proceeded to alloHSCT. For those proceeding to alloHSCT, median overall survival was 70.2 months (95% CI, 10.4 months to not estimable). The cumulative incidence of relapse after alloHSCT was 9.5% (95% CI, 1.5 to 26.8) at 24 months; 5-year EFS following alloHSCT was 61.9% (95% CI, 38.1 to 78.8). CONCLUSION We provide the longest follow-up in CAYAs with B-ALL after CD19-CAR T-cell therapy reported to date and demonstrate that sequential therapy with CD19.28ζ-CAR T cells followed by alloHSCT can mediate durable disease control in a sizable fraction of CAYAs with relapsed or refractory B-ALL (ClinicalTrials.gov identifier: NCT01593696).
Collapse
Affiliation(s)
- Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Daniel W Lee
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Constance M Yuan
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, MD.,Oncogenomics Section, Genetics Branch, NCI, Bethesda, MD
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, Bethesda, MD
| | - Eva H Baker
- Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD
| | - Cindy P Delbrook
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Maryalice Stetler-Stevenson
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, MD.,Oncogenomics Section, Genetics Branch, NCI, Bethesda, MD
| | - Terry J Fry
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD.,Division of Human Immunology and Immunotherapy Initiative, Pediatric Hematology/Oncology, Children's Hospital of Colorado, Aurora, CO
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD
| | - Crystal L Mackall
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD.,Department of Pediatrics, Stanford University, Stanford, CA.,Department of Medicine, Stanford University, Stanford, CA.,Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA
| |
Collapse
|
8
|
Selim AG, Minson A, Blombery P, Dickinson M, Harrison SJ, Anderson MA. CAR-T cell therapy: practical guide to routine laboratory monitoring. Pathology 2021; 53:408-415. [PMID: 33685719 DOI: 10.1016/j.pathol.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/24/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a genetically-modified cellular immunotherapy that has a current established role in the treatment of relapsed/refractory B-cell acute lymphoblastic leukaemia and diffuse large B-cell lymphoma, with emerging utility in a spectrum of other haematological and solid organ malignancies. It is associated with a number of characteristic toxicities, most notably cytokine release syndrome and neurotoxicity, for which laboratory testing can aid in the prediction of severity and in monitoring. Other toxicities, such as cytopenias/marrow hypoplasia, hypogammagloblinaemia and delayed immune reconstitution are recognised and require monitoring due to the implications for infection risk and prophylaxis. The detection or quantitation of circulating CAR-T can be clinically useful, and is achieved through both direct methods, if available, or indirect/surrogate methods. It is important that the laboratory is informed of the CAR-T therapy and target antigen whenever tissue is collected, both for response assessment and investigation of possible relapse, so that the expression of the relevant antigen can be assessed, in order to distinguish antigen-positive and -negative relapses. Finally, the measurement of circulating tumour DNA has an evolving role in the surveillance of malignancy, with evidence of its utility in the post-CAR-T setting, including predicting patients who will inevitably experience frank relapse, potentially allowing for pre-emptive therapy.
Collapse
Affiliation(s)
- Adrian G Selim
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Centre of Excellence in Cellular Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Adrian Minson
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Piers Blombery
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia
| | - Michael Dickinson
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Simon J Harrison
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Centre of Excellence in Cellular Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic, Australia
| | - Mary Ann Anderson
- Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Centre of Excellence in Cellular Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia; Division of Blood Cells and Blood Cancer, The Walter and Eliza Hall Institute, Parkville, Vic, Australia.
| |
Collapse
|
9
|
Sun YQ, Li SQ, Zhao XS, Chang YJ. Measurable residual disease of acute lymphoblastic leukemia in allograft settings: how to evaluate and intervene. Expert Rev Anticancer Ther 2020; 20:453-464. [PMID: 32459519 DOI: 10.1080/14737140.2020.1766973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a curable strategy for acute lymphoblastic leukemia (ALL), especially for adult cases. However, leukemia relapse after allograft restricts the improvement of transplant outcomes. Measurable residual disease (MRD) has been the strongest predictor for relapse after allo-HSCT, allowing MRD-directed preemptive therapy. AREAS COVERED This manuscript summarizes the detection of MRD in patients with ALL who undergo allo-HSCT, focusing the effects of positive pre-HSCT MRD and post-HSCT MRD on outcomes as well as MRD-directed interventions. EXPERT OPINION Except for MFC and RQ-PCR, other strategies, such as next-generation sequencing and RNAseq, have been developed for MRD determination. Negative effects of positive MRD peri-transplantation on outcomes of ALL patients were observed both in human leukocyte antigen (HLA)-matched sibling donor transplantation and in alternative donor transplantation. Advances have been made in determining the need for transplant according to MRD evaluation after induction or consolidation therapy. A number of approaches, including CAR-T-cell therapy, antibodies (blinatumomab, etc), targeted therapy (imatinib, etc), transplant donor selection, as well as donor lymphocyte infusion and interferon-α, have been successfully used or are promising for peri-transplantation MRD interventions. This progress could lead to the significant improvement of transplant outcomes for ALL patients.
Collapse
Affiliation(s)
- Yu-Qian Sun
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R.C
| | - Si-Qi Li
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R.C
| | - Xiao-Su Zhao
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R.C
| | - Ying-Jun Chang
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R.C
| |
Collapse
|
10
|
Wallace PK. Issue Highlights-May 2018 (94B3). CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 94:387-391. [PMID: 29734502 DOI: 10.1002/cyto.b.21640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Elm & Carlton Streets, New York, 14263 Buffalo
| |
Collapse
|
11
|
Li S, Shen H, Shu Q. S3Ab, a novel antibody targeting B lymphocytes, is a potential therapeutic agent for B-lineage malignancies. J Drug Target 2019; 27:1053-1060. [PMID: 30856012 DOI: 10.1080/1061186x.2019.1584809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CD79α protein together with the related CD79β protein forms the B-cell antigen receptor (BCR). It remains present when B cells transform into active plasma cells, and is also present in virtually all B cell neoplasms. Monoclonal antibody (mAb) S3 (S3Ab) is a novel anti-CD79α antibody generated by using Raji cells as an immunogen. Herein, we conducted a study on S3Ab using various cellular and immunocytological techniques. The results showed that S3Ab could recognise CD79α in living cells. The molecular weights of the heavy and the light chains of S3Ab were 55 and 26 kDa, respectively. S3 antigen is only expressed on more mature B cells and negative on blast B cells. It could partially block the binding of anti-CD79α (Hm47, recognising the cytoplasmic domain of CD79α) to target cells. Immunoprecipitation experiment showed that S3 antigen is about 33 kDa and S3 can specifically bind to the recombinant extracellular segment of CD79α. The internalisation rate of S3Ab to the target cells was as high as 74.0% after incubation at for 3 h. In conclusion, S3Ab is probably a new target molecule for B cells and can be an excellent antibody in targeting treatment of haematopoietic malignancies, warranting further development of this agent.
Collapse
Affiliation(s)
- Sisi Li
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine , Hangzhou , P.R. China
| | - Hongqiang Shen
- Division of Clinical Laboratory, and Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine , Hangzhou , P.R. China
| | - Qiang Shu
- Division of Cardiac Surgery, Children's Hospital of Zhejiang University School of Medicine , Hangzhou , P.R. China
| |
Collapse
|
12
|
Seegmiller AC, Hsi ED, Craig FE. The current role of clinical flow cytometry in the evaluation of mature B-cell neoplasms. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:20-29. [PMID: 30549186 DOI: 10.1002/cyto.b.21756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/14/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Flow cytometry (FC) has a well-established role in the diagnostic evaluation of mature B-cell neoplasms. Effective assessment for lineage associated antigens, aberrant antigen expression, and immunoglobulin light chain restriction requires a well-designed, optimized, and controlled FC assay. However, it is important for hematopathologists to know when flow cytometry has a more limited role, and other modalities, such as immunohistochemistry, cytogenetic and molecular testing, are more important. This review will discuss the features of an optimal FC assay for the evaluation of mature B-cell neoplasms, and the current role of FC in the diagnosis and sub-classification, prognostic assessment, identification of therapeutic targets, and assessment for disease response to therapy. © 2018 International Clinical Cytometry Society.
Collapse
|
13
|
Tomuleasa C, Fuji S, Berce C, Onaciu A, Chira S, Petrushev B, Micu WT, Moisoiu V, Osan C, Constantinescu C, Pasca S, Jurj A, Pop L, Berindan-Neagoe I, Dima D, Kitano S. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. Front Immunol 2018. [PMID: 29515572 PMCID: PMC5825894 DOI: 10.3389/fimmu.2018.00239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Shigeo Fuji
- Department of Stem Cell Transplantation, Osaka International Cancer Institute, Osaka, Japan
| | - Cristian Berce
- Animal Facility, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Anca Onaciu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bobe Petrushev
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Wilhelm-Thomas Micu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Osan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj Napoca, Romania
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy, Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|