1
|
Nogueira JDS, Gomes TR, Secco DA, de Almeida IS, da Costa ASMF, Cobas RA, Costa Dos Santos G, Gomes MB, Porto LC. Type 1 Diabetes Brazilian patients exhibit reduced frequency of recent thymic emigrants in regulatory CD4 +CD25 +Foxp3 +T cells. Immunol Lett 2024; 267:106857. [PMID: 38604551 DOI: 10.1016/j.imlet.2024.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
To control immune responses, regulatory CD4+CD25+Foxp3+ T cells (Treg) maintain their wide and diverse repertoire through continuous arrival of recent thymic emigrants (RTE). However, during puberty, the activity of RTE starts to decline as a natural process of thymic involution, introducing consequences, not completely described, to the repertoire. Type 1 diabetes (T1D) patients show quantitative and qualitative impairments on the Treg cells. Our aim was to evaluate peripheral Treg and RTE cell frequencies, in T1D patients from two distinct age groups (young and adults) and verify if HLA phenotypes are concomitant associated. To this, blood samples from Brazilian twenty established T1D patients (12 young and 8 adults) and twenty-one healthy controls (11 young and 10 adults) were analyzed, by flow cytometry, to verify the percentages of CD4, Treg (CD4+CD25+Foxp3+) and the subsets of CD45RA+ (naive) and CD31+(RTE) within then. Furthermore, the HLA typing was also set. We observed that the young established T1D patients feature decreased frequencies in total Treg cells and naive RTE within Treg cells. Significant prevalence of HLA alleles, associated with risk, in T1D patients, was also identified. Performing a multivariate analysis, we confirmed that the cellular changes described offers significant variables that distinct T1D patients from the controls. Our data collectively highlight relevant aspects about homeostasis imbalances in the Treg cells of T1D patients, especially in young, and disease prognosis; that might contribute for future therapeutic strategies involving Treg cells manipulation.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thamires Rodrigues Gomes
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Danielle Angst Secco
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Inez Silva de Almeida
- Nursing Faculty, Department of Nursing Fundamentals, Ambulatory of the Adolescent Health Studies Center (NESA), Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Roberta Arnoldi Cobas
- Ambulatory of Diabetes, Piquet Carneiro Polyclinic, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos
- Laboratory of Metabolomics (LabMet), IBRAG, Rio de Janeiro State University, Rio de Janeiro RJ Brazil
| | - Marília Brito Gomes
- Ambulatory of Diabetes, Piquet Carneiro Polyclinic, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Luís Cristóvão Porto
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Petsiou A, Vartholomatos G, Tsatsoulis A, Papadopoulos GK. Comment on Liu et al. Immune and Metabolic Effects of Antigen-Specific Immunotherapy Using Multiple β-Cell Peptides in Type 1 Diabetes. Diabetes 2022;71:722-732. Diabetes 2022; 71:e20-e21. [PMID: 36409789 DOI: 10.2337/db22-0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Asimina Petsiou
- Third Local Health Unit of Anatoli, Anatoli, Ioannina, Greece
| | - George Vartholomatos
- Unit of Molecular Biology, Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina School of Medicine, Ioannina, Greece
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials, and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| |
Collapse
|
3
|
Sonigra A, Nel HJ, Wehr P, Ramnoruth N, Patel S, van Schie KA, Bladen MW, Mehdi AM, Tesiram J, Talekar M, Rossjohn J, Reid HH, Stuurman FE, Roberts H, Vecchio P, Gourley I, Rigby M, Becart S, Toes RE, Scherer HU, Lê Cao KA, Campbell K, Thomas R. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. JCI Insight 2022; 7:e160964. [PMID: 36278483 PMCID: PMC9714780 DOI: 10.1172/jci.insight.160964] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 10/11/2023] Open
Abstract
BACKGROUNDAntigen-specific regulation of autoimmune disease is a major goal. In seropositive rheumatoid arthritis (RA), T cell help to autoreactive B cells matures the citrullinated (Cit) antigen-specific immune response, generating RA-specific V domain glycosylated anti-Cit protein antibodies (ACPA VDG) before arthritis onset. Low or escalating antigen administration under "sub-immunogenic" conditions favors tolerance. We explored safety, pharmacokinetics, and immunological and clinical effects of s.c. DEN-181, comprising liposomes encapsulating self-peptide collagen II259-273 (CII) and NF-κB inhibitor 1,25-dihydroxycholecalciferol.METHODSA double-blind, placebo-controlled, exploratory, single-ascending-dose, phase I trial assessed the impact of low, medium, and high DEN-181 doses on peripheral blood CII-specific and bystander Cit64vimentin59-71-specific (Cit-Vim-specific) autoreactive T cell responses, cytokines, and ACPA in 17 HLA-DRB1*04:01+ or *01:01+ ACPA+ RA patients on methotrexate.RESULTSDEN-181 was well tolerated. Relative to placebo and normalized to baseline values, Cit-Vim-specific T cells decreased in patients administered medium and high doses of DEN-181. Relative to placebo, percentage of CII-specific programmed cell death 1+ T cells increased within 28 days of DEN-181. Exploratory analysis in DEN-181-treated patients suggested improved RA disease activity was associated with expansion of CII-specific and Cit-Vim-specific T cells; reduction in ACPA VDG, memory B cells, and inflammatory myeloid populations; and enrichment in CCR7+ and naive T cells. Single-cell sequencing identified T cell transcripts associated with tolerogenic TCR signaling and exhaustion after low or medium doses of DEN-181.CONCLUSIONThe safety and immunomodulatory activity of low/medium DEN-181 doses provide rationale to further assess antigen-specific immunomodulatory therapy in ACPA+ RA.TRIAL REGISTRATIONAnzctr.org.au identifier ACTRN12617001482358, updated September 8, 2022.FUNDINGInnovative Medicines Initiative 2 Joint Undertaking (grant agreement 777357), supported by European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations; Arthritis Queensland; National Health and Medical Research Council (NHMRC) Senior Research Fellowship; and NHMRC grant 2008287.
Collapse
Affiliation(s)
- Amee Sonigra
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Hendrik J Nel
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Pascale Wehr
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Nishta Ramnoruth
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Swati Patel
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Karin A van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Maxwell W Bladen
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Ahmed M Mehdi
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Joanne Tesiram
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Meghna Talekar
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Hugh H Reid
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Frederik E Stuurman
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Helen Roberts
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
- Dendright Pty Ltd, Brisbane, Queensland, Australia
| | - Phillip Vecchio
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ian Gourley
- Immunology Clinical Development, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Mark Rigby
- Immunology Clinical Development, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Stephane Becart
- Discovery Immunology, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Rene Em Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Kim Campbell
- Immunology Translational Medicine, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
4
|
Zhao LP, Skyler J, Papadopoulos GK, Pugliese A, Najera JA, Bondinas GP, Moustakas AK, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Association of HLA-DQ Heterodimer Residues -18β and β57 With Progression From Islet Autoimmunity to Diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 2022; 45:1610-1620. [PMID: 35621697 PMCID: PMC9274226 DOI: 10.2337/dc21-1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/07/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The purpose was to test the hypothesis that the HLA-DQαβ heterodimer structure is related to the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Next-generation targeted sequencing was used to genotype HLA-DQA1-B1 class II genes in 670 subjects in the Diabetes Prevention Trial-Type 1 (DPT-1). Coding sequences were translated into DQ α- and β-chain amino acid residues and used in hierarchically organized haplotype (HOH) association analysis to identify motifs associated with diabetes onset. RESULTS The opposite diabetes risks were confirmed for HLA DQA1*03:01-B1*03:02 (hazard ratio [HR] 1.36; P = 2.01 ∗ 10-3) and DQA1*03:03-B1*03:01 (HR 0.62; P = 0.037). The HOH analysis uncovered residue -18β in the signal peptide and β57 in the β-chain to form six motifs. DQ*VA was associated with faster (HR 1.49; P = 6.36 ∗ 10-4) and DQ*AD with slower (HR 0.64; P = 0.020) progression to diabetes onset. VA/VA, representing DQA1*03:01-B1*03:02 (DQ8/8), had a greater HR of 1.98 (P = 2.80 ∗ 10-3). The DQ*VA motif was associated with both islet cell antibodies (P = 0.023) and insulin autoantibodies (IAAs) (P = 3.34 ∗ 10-3), while the DQ*AD motif was associated with a decreased IAA frequency (P = 0.015). Subjects with DQ*VA and DQ*AD experienced, respectively, increasing and decreasing trends of HbA1c levels throughout the follow-up. CONCLUSIONS HLA-DQ structural motifs appear to modulate progression from islet autoimmunity to diabetes among at-risk relatives with islet autoantibodies. Residue -18β within the signal peptide may be related to levels of protein synthesis and β57 to stability of the peptide-DQab trimolecular complex.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,School of Public Health, University of Washington, Seattle, WA
| | - Jay Skyler
- Diabetes Research Institute and Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - Alberto Pugliese
- Diabetes Research Institute and Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL
| | | | - George P Bondinas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Kefalonia, Greece
| | - Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Kefalonia, Greece
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
5
|
Zhao LP, Papadopoulos GK, Lybrand TP, Moustakas AK, Bondinas GP, Carlsson A, Larsson HE, Ludvigsson J, Marcus C, Persson M, Samuelsson U, Wang R, Pyo CW, Nelson WC, Geraghty DE, Rich SS, Lernmark Å. The KAG motif of HLA-DRB1 (β71, β74, β86) predicts seroconversion and development of type 1 diabetes. EBioMedicine 2021; 69:103431. [PMID: 34153873 PMCID: PMC8220560 DOI: 10.1016/j.ebiom.2021.103431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND HLA-DR4, a common antigen of HLA-DRB1, has multiple subtypes that are strongly associated with risk of type 1 diabetes (T1D); however, some are risk neutral or resistant. The pathobiological mechanism of HLA-DR4 subtypes remains to be elucidated. METHODS We used a population-based case-control study of T1D (962 patients and 636 controls) to decipher genetic associations of HLA-DR4 subtypes and specific residues with susceptibility to T1D. Using a birth cohort of 7865 children with periodically measured islet autoantibodies (GADA, IAA or IA-2A), we proposed to validate discovered genetic associations with a totally different study design and time-to-seroconversions prior to clinical onset of T1D. A novel analytic strategy hierarchically organized the HLA-DRB1 alleles by sequence similarity and identified critical amino acid residues by minimizing local genomic architecture and higher-order interactions. FINDINGS Three amino acid residues of HLA-DRB1 (β71, β74, β86) were found to be predictive of T1D risk in the population-based study. The "KAG" motif, corresponding to HLA-DRB1×04:01, was most strongly associated with T1D risk ([O]dds [R]atio=3.64, p = 3.19 × 10-64). Three less frequent motifs ("EAV", OR = 2.55, p = 0.025; "RAG", OR = 1.93, p = 0.043; and "RAV", OR = 1.56, p = 0.003) were associated with T1D risk, while two motifs ("REG" and "REV") were equally protective (OR = 0.11, p = 4.23 × 10-4). In an independent birth cohort of HLA-DR3 and HLA-DR4 subjects, those having the "KAG" motif had increased risk for time-to-seroconversion (Hazard Ratio = 1.74, p = 6.51 × 10-14) after adjusting potential confounders. INTERPRETATIONS DNA sequence variation in HLA-DRB1 at positions β71, β74, and β86 are non-conservative (β74 A→E, β71 E vs K vs R and β86 G vs V). They result in substantial differences in peptide antigen anchor pocket preferences at p1, p4 and potentially neighboring regions such as pocket p7. Differential peptide antigen binding is likely to be affected. These sequence substitutions may account for most of the HLA-DR4 contribution to T1D risk as illustrated in two HLA-peptide model complexes of the T1D autoantigens preproinsulin and GAD65. FUNDING National Institute of Diabetes and Digestive and Kidney Diseases and the Swedish Child Diabetes Foundation and the Swedish Research Council.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave NE, Seattle, WA 98109, USA.
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta GR47100, Greece.
| | - Terry P Lybrand
- Department of Chemistry, Department of Pharmacology and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli GR26100, Cephalonia, Greece
| | - George P Bondinas
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta GR47100, Greece
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Skåne University Hospital SUS, Malmö SE-205 02, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Department of Clinical Science and Education Karolinska Institutet and Institution of Medicine, Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Martina Persson
- Department of Medicine, Clinical Epidemiological Unit, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, PO Box 800717, MSB Room 3232, 1300 Jefferson Park Ave, Charlottesville, VA 22908, United States.
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Skåne University Hospital SUS, Malmö SE-205 02, Sweden.
| |
Collapse
|
6
|
Porcellato I, Brachelente C, Cappelli K, Menchetti L, Silvestri S, Sforna M, Mecocci S, Iussich S, Leonardi L, Mechelli L. FoxP3, CTLA-4, and IDO in Canine Melanocytic Tumors. Vet Pathol 2020; 58:42-52. [PMID: 33021155 DOI: 10.1177/0300985820960131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite promising immunotherapy strategies in human melanoma, there are few studies on the immune environment of canine melanocytic tumors. In humans, the activation of immunosuppressive cell subpopulations, such as regulatory T cells (Tregs) that express forkhead box protein P3 (FoxP3), the engagement of immunosuppressive surface receptors like cytotoxic T lymphocyte antigen (CTLA-4), and the secretion of molecules inhibiting lymphocyte activation, such as indoleamine-pyrrole 2,3-dioxygenase (IDO), are recognized as immunoescape mechanisms that allow tumor growth and progression. The aim of our study was to investigate the expression of these immunosuppression markers in canine melanocytic tumors and to postulate their possible role in melanoma biology and progression. Fifty-five formalin-fixed, paraffin-embedded canine melanocytic tumors (25 oral melanomas; 20 cutaneous melanomas; 10 cutaneous melanocytomas) were selected to investigate the expression of FoxP3, CTLA-4, and IDO by immunohistochemistry and RT-qPCR (real-time quantitative polymerase chain reaction). All of the tested markers showed high gene and protein expression in oral melanomas and were differently expressed in cutaneous melanomas when compared to their benign counterpart. IDO expression was associated with an increased hazard of death both in univariable and multivariable analyses (P < .05). FoxP3 protein expression >6.9 cells/HPF (high-power field) was an independent predictor of death (P < .05). CTLA-4 gene and protein expressions were associated with a worse prognosis, but only in the univariable analysis (P < .05). FoxP3, CTLA-4, and IDO likely play a role in canine melanoma immunoescape. Their expression, if supported by future studies, could represent a prognostic tool in canine melanoma and pave the way to future immunotherapeutic approaches in dogs.
Collapse
Affiliation(s)
| | | | | | - Laura Menchetti
- 9309University of Perugia, Perugia, Italy.,Department of Agricultural and Food Sciences (DISTAL), University of Bologna
| | | | | | | | | | | | | |
Collapse
|
7
|
de Wolf ACMT, Herberts CA, Hoefnagel MHN. Dawn of Monitoring Regulatory T Cells in (Pre-)clinical Studies: Their Relevance Is Slowly Recognised. Front Med (Lausanne) 2020; 7:91. [PMID: 32300597 PMCID: PMC7142310 DOI: 10.3389/fmed.2020.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products. However, the extent of immune monitoring performed in studies for marketing authorisation and the degree of correspondence with data available in the public domain is not known. We evaluated the presence of T cell immunomonitoring in 46 registration dossiers of monoclonal antibodies indicated for immune-related disorders and published scientific papers. We found that the depth of Treg analysis in registration dossiers was rather small. Nevertheless, data on treatment-related Treg effects are available in public academia-driven studies (post-registration) and suggest that Tregs may act as a biomarker for clinical responses. However, public data are fragmented and obtained with heterogeneity of experimental approaches from a diversity of species and tissues. To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical studies, more cell-specific data should be acquired, at least for medicinal products with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset contribution to clinical responses and the relevance of treatment-induced changes in their levels is needed. Preferably, industry and academia should work together to obtain these data in a standardised manner and to enrich our knowledge about T cell activity in disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell subset monitoring in the therapeutic benefit-risk assessment.
Collapse
|