1
|
Kholmanskikh O, Wang YM, Hersey S, Wadhwa M, Block K, Bandukwala A, Szapacs M, Weiner R, Awwad K, Dessy F, Downing S, Du X, Garofolo F, Harris S, Hou V, Jones J, Kar S, Kinhikar A, Li M, Mathews J, Meissen J, Sumner GO, Pan L, Sanderink G, Scully I, Stanta J, Tanaka Y, Vauleon S, Wagner L, Wang K, Zhu L, Eck S, Lin YD, Azadeh M, Decman V, Diebold S, Du X, Goihberg P, Alcaide EG, Gonneau C, Hedrick MN, Hopkins G, Kar S, Loschko J, McCausland M, Mendez L, Sehra S, Stevens E, Sun YS, Tangri S, Trampont PC, Cludts I, Dysinger M, Kavita U, Sugimoto H, Chilewski S, Grimaldi C, Jiang Y, Kamerud J, Liu S, Owen C, Palackal N, Petit-frere C, Pine S, Abhari MR, Scheibner K, Williams L, Xu T, Zhang G. 2023 White Paper on Recent Issues in Bioanalysis: EU IVDR 2017/746 Implementation/Impact, IVD/CDx/CLIA Approved Assays, High Dimensional Cytometry, Multiplexing Technologies, LBA Tissue Analysis, Vaccine Study Endpoints, Cell-Based Assays for Biomarkers, Cell Therapy and Vaccines ( PART 2 - Recommendations on Development & Validation of Biomarkers, IVD, CDx, Cell-Based, Flow Cytometry, Ligand-Binding and Enzyme Assays; Advanced Critical Reagents Strategies). Bioanalysis 2024; 16:179-220. [PMID: 38899739 PMCID: PMC11216500 DOI: 10.1080/17576180.2024.2340961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/21/2024] Open
Abstract
The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on 19-23 June 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with these NEW Regulations" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication (Part 2) covers the recommendations on Biomarkers, IVD/CDx, LBA and Cell-Based Assays. Part 1A (Mass Spectrometry Assays and Regulated Bioanalysis/BMV), P1B (Regulatory Inputs) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 9 and 7 (2024), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francis Dessy
- GlaxoSmithKline, Rixensart, Belgium
- Takeda, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kai Wang
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Paramithiotis E, Varaklis C, Pillet S, Shafiani S, Lancelotta MP, Steinhubl S, Sugden S, Clutter M, Montamat-Sicotte D, Chermak T, Crawford SY, Lambert BL, Mattison J, Murphy RL. Integrated antibody and cellular immunity monitoring are required for assessment of the long term protection that will be essential for effective next generation vaccine development. Front Immunol 2023; 14:1166059. [PMID: 38077383 PMCID: PMC10701527 DOI: 10.3389/fimmu.2023.1166059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The COVID pandemic exposed the critical role T cells play in initial immunity, the establishment and maintenance of long term protection, and of durable responsiveness against novel viral variants. A growing body of evidence indicates that adding measures of cellular immunity will fill an important knowledge gap in vaccine clinical trials, likely leading to improvements in the effectiveness of the next generation vaccines against current and emerging variants. In depth cellular immune monitoring in Phase II trials, particularly for high risk populations such as the elderly or immune compromised, should result in better understanding of the dynamics and requirements for establishing effective long term protection. Such analyses can result in cellular immunity correlates that can then be deployed in Phase III studies using appropriate, scalable technologies. Measures of cellular immunity are less established than antibodies as correlates of clinical immunity, and some misconceptions persist about cellular immune monitoring usefulness, cost, complexity, feasibility, and scalability. We outline the currently available cellular immunity assays, review their readiness for use in clinical trials, their logistical requirements, and the type of information each assay generates. The objective is to provide a reliable source of information that could be leveraged to develop a rational approach for comprehensive immune monitoring during vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Steve Steinhubl
- Purdue University, West Lafayette, IN, United States
- PhysIQ, Chicago, IL, United States
| | - Scott Sugden
- Medical and Scientific Affairs, Infectious Diseases, Cepheid, Sunnyvale, CA, United States
| | - Matt Clutter
- Research and Development, CellCarta, Montreal, QC, Canada
| | | | - Todd Chermak
- Regulatory and Government Affairs, CellCarta, Montreal, QC, Canada
| | - Stephanie Y. Crawford
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois Chicago, Chicago, IL, United States
| | - Bruce L. Lambert
- Department of Communication Studies, Institute for Global Health, Northwestern University, Evanston, IL, United States
| | - John Mattison
- Health Technology Advisory Board, Arsenal Capital, New York, NY, United States
| | - Robert L. Murphy
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Paramithiotis E, Sugden S, Papp E, Bonhomme M, Chermak T, Crawford SY, Demetriades SZ, Galdos G, Lambert BL, Mattison J, McDade T, Pillet S, Murphy R. Cellular Immunity Is Critical for Assessing COVID-19 Vaccine Effectiveness in Immunocompromised Individuals. Front Immunol 2022; 13:880784. [PMID: 35693815 PMCID: PMC9179228 DOI: 10.3389/fimmu.2022.880784] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022] Open
Abstract
COVID-19 vaccine clinical development was conducted with unprecedented speed. Immunity measurements were concentrated on the antibody response which left significant gaps in our understanding how robust and long-lasting immune protection develops. Better understanding the cellular immune response will fill those gaps, especially in the elderly and immunocompromised populations which not only have the highest risk for severe infection, but also frequently have inadequate antibody responses. Although cellular immunity measurements are more logistically complex to conduct for clinical trials compared to antibody measurements, the feasibility and benefit of doing them in clinical trials has been demonstrated and so should be more widely adopted. Adding significant cellular response metrics will provide a deeper understanding of the overall immune response to COVID-19 vaccination, which will significantly inform vaccination strategies for the most vulnerable populations. Better monitoring of overall immunity will also substantially benefit other vaccine development efforts, and indeed any therapies that involve the immune system as part of the therapeutic strategy.
Collapse
Affiliation(s)
| | - Scott Sugden
- Scientific Team, CellCarta, Montreal, QC, Canada
| | - Eszter Papp
- Global Research and Development, CellCarta, Montreal, QC, Canada
| | - Marie Bonhomme
- Vaccine Sciences Division, Pharmaceutical Product Development (PPD) Inc., Wilmington, NC, United States
| | - Todd Chermak
- Regulatory and Government Affairs, CellCarta, Montreal, QC, Canada
| | - Stephanie Y. Crawford
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois Chicago, Chicago, IL, United States
| | | | - Gerson Galdos
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Bruce L. Lambert
- Center for Communication and Health, Northwestern University, Evanston, IL, United States
| | - John Mattison
- Health Information, Kaiser Permanente, Pasadena, CA, United States
- Health Technology Advisory Board, Arsenal Capital, New York, NY, United States
| | - Thomas McDade
- Department of Anthropology, Northwestern University, Evanston, IL, United States
| | | | - Robert Murphy
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| |
Collapse
|