1
|
Bartova L, Fugger G, Dold M, Kautzky A, Bairhuber I, Kloimstein P, Fanelli G, Zanardi R, Weidenauer A, Rujescu D, Souery D, Mendlewicz J, Zohar J, Montgomery S, Fabbri C, Serretti A, Kasper S. The clinical perspective on late-onset depression in European real-world treatment settings. Eur Neuropsychopharmacol 2024; 84:59-68. [PMID: 38678879 DOI: 10.1016/j.euroneuro.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
The clinical phenotype of the so-called late-onset depression (LOD) affecting up to 30% of older adults and yielding heterogeneous manifestations concerning symptoms, severity and course has not been fully elucidated yet. This European, cross-sectional, non-interventional, naturalistic multicenter study systematically investigated socio-demographic and clinical correlates of early-onset depression (EOD) and LOD (age of onset ≥ 50 years) in 1410 adult in- and outpatients of both sexes receiving adequate psychopharmacotherapy. In a total of 1329 patients (94.3%) with known age of disease onset, LOD was identified in 23.2% and was associated with unemployment, an ongoing relationship, single major depressive episodes, lower current suicidal risk and higher occurrence of comorbid hypertension. In contrast, EOD was related to higher rates of comorbid migraine and additional psychotherapy. Although the applied study design does not allow to draw any causal conclusions, the present results reflect broad clinical settings and emphasize easily obtainable features which might be characteristic for EOD and LOD. A thoughtful consideration of age of onset might, hence, contribute to optimized diagnostic and therapeutic processes in terms of the globally intended precision medicine, ideally enabling early and adequate treatment allocations and implementation of respective prevention programs.
Collapse
Affiliation(s)
- Lucie Bartova
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gernot Fugger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria; Psychiatric Day Hospital University Hospital St. Poelten, Karl Landsteiner Private University of Health Sciences, Krems an der Donau, Austria
| | - Markus Dold
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Isabella Bairhuber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Philipp Kloimstein
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria; Center for Addiction Medicine, Foundation Maria Ebene, Frastanz, Austria
| | - Giuseppe Fanelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Raffaella Zanardi
- Vita-Salute San Raffaele University, Milano, Italy; Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Ana Weidenauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Daniel Souery
- PsyPluriel - Outpatient Department EPSYLON asbl - Epsylon Caring from Mental Health Brussels, Brussels, Belgium
| | | | - Joseph Zohar
- Psychiatric Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Stuart Montgomery
- Imperial College School of Medicine, University of London, London, United Kingdom
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria; Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Hou X, Liu R, Zhou Y, Guan L, Zhou J, Liu J, Liu M, Yuan X, Feng Y, Chen X, Yu A. Shared and unique alterations of large-scale network connectivity in drug-free adolescent-onset and adult-onset major depressive disorder. Transl Psychiatry 2024; 14:255. [PMID: 38866779 PMCID: PMC11169372 DOI: 10.1038/s41398-024-02974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Differences in clinical manifestations and biological underpinnings between Major Depressive Disorder (MDD) onset during adolescence and adulthood have been posited in previous studies, implying an influential role of age of onset (AOO) in the clinical subtyping and therapeutic approaches to MDD. However, direct comparisons between the two cohorts and their age-matched controls have been lacking in extant investigations. In this investigation, 156 volunteers participated, comprising 46 adolescents with MDD (adolescent-onset group), 35 adults with MDD (adult-onset group), 19 healthy adolescents, and 56 healthy adults. Resting-state functional MRI scans were undergone by all participants. Large-scale network analyses were applied. Subsequently, a 2 × 2 ANOVA was employed to analyze the main effects of diagnosis, age, and their interaction effect on functional connectivity (FC). Furthermore, regression analysis was employed to scrutinize the association between anomalous FC and HAMD sub-scores. Increased FC in visual network (VN), limbic network (LN), VN-dorsal attention network (DAN), VN-LN, and LN-Default Mode (DMN) was found in both adolescent-onset and adult-onset MDD; however, the increased FC in DAN and LN were only found in adult-onset MDD and the decreased FC in DAN was only found in adolescent-onset MDD. Additionally, the relationship between HAMD factor 1 anxiety somatization and altered FC of DAN, VN, and VN-DAN was moderated by AOO. In conclusion, shared and distinctive large-scale network alterations in adolescent-onset and adult-onset MDD patients were suggested by our findings, providing valuable contributions towards refining clinical subtyping and treatment approaches for MDD.
Collapse
Affiliation(s)
- Ximan Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rui Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Guan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jing Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mengqi Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaofei Yuan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xu Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Aihong Yu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Han S, Fang K, Zheng R, Li S, Zhou B, Sheng W, Wen B, Liu L, Wei Y, Chen Y, Chen H, Cui Q, Cheng J, Zhang Y. Gray matter atrophy is constrained by normal structural brain network architecture in depression. Psychol Med 2024; 54:1318-1328. [PMID: 37947212 DOI: 10.1017/s0033291723003161] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND There is growing evidence that gray matter atrophy is constrained by normal brain network (or connectome) architecture in neuropsychiatric disorders. However, whether this finding holds true in individuals with depression remains unknown. In this study, we aimed to investigate the association between gray matter atrophy and normal connectome architecture at individual level in depression. METHODS In this study, 297 patients with depression and 256 healthy controls (HCs) from two independent Chinese dataset were included: a discovery dataset (105 never-treated first-episode patients and matched 130 HCs) and a replication dataset (106 patients and matched 126 HCs). For each patient, individualized regional atrophy was assessed using normative model and brain regions whose structural connectome profiles in HCs most resembled the atrophy patterns were identified as putative epicenters using a backfoward stepwise regression analysis. RESULTS In general, the structural connectome architecture of the identified disease epicenters significantly explained 44% (±16%) variance of gray matter atrophy. While patients with depression demonstrated tremendous interindividual variations in the number and distribution of disease epicenters, several disease epicenters with higher participation coefficient than randomly selected regions, including the hippocampus, thalamus, and medial frontal gyrus were significantly shared by depression. Other brain regions with strong structural connections to the disease epicenters exhibited greater vulnerability. In addition, the association between connectome and gray matter atrophy uncovered two distinct subgroups with different ages of onset. CONCLUSIONS These results suggest that gray matter atrophy is constrained by structural brain connectome and elucidate the possible pathological progression in depression.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Huafu Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| |
Collapse
|
4
|
Long Y, Li X, Cao H, Zhang M, Lu B, Huang Y, Liu M, Xu M, Liu Z, Yan C, Sui J, Ouyang X, Zhou X. Common and distinct functional brain network abnormalities in adolescent, early-middle adult, and late adult major depressive disorders. Psychol Med 2024; 54:582-591. [PMID: 37553976 DOI: 10.1017/s0033291723002234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
BACKGROUND The age-related heterogeneity in major depressive disorder (MDD) has received significant attention. However, the neural mechanisms underlying such heterogeneity still need further investigation. This study aimed to explore the common and distinct functional brain abnormalities across different age groups of MDD patients from a large-sample, multicenter analysis. METHODS The analyzed sample consisted of a total of 1238 individuals including 617 MDD patients (108 adolescents, 12-17 years old; 411 early-middle adults, 18-54 years old; and 98 late adults, > = 55 years old) and 621 demographically matched healthy controls (60 adolescents, 449 early-middle adults, and 112 late adults). MDD-related abnormalities in brain functional connectivity (FC) patterns were investigated in each age group separately and using the whole pooled sample, respectively. RESULTS We found shared FC reductions among the sensorimotor, visual, and auditory networks across all three age groups of MDD patients. Furthermore, adolescent patients uniquely exhibited increased sensorimotor-subcortical FC; early-middle adult patients uniquely exhibited decreased visual-subcortical FC; and late adult patients uniquely exhibited wide FC reductions within the subcortical, default-mode, cingulo-opercular, and attention networks. Analysis of covariance models using the whole pooled sample further revealed: (1) significant main effects of age group on FCs within most brain networks, suggesting that they are decreased with aging; and (2) a significant age group × MDD diagnosis interaction on FC within the default-mode network, which may be reflective of an accelerated aging-related decline in default-mode FCs. CONCLUSIONS To summarize, these findings may deepen our understanding of the age-related biological and clinical heterogeneity in MDD.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Manqi Zhang
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Bing Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Xu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhening Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chaogan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Sui
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xuan Ouyang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Lv R, Cai M, Tang N, Shi Y, Zhang Y, Liu N, Han T, Zhang Y, Wang H. Active versus sham DLPFC-NAc rTMS for depressed adolescents with anhedonia using resting-state functional magnetic resonance imaging (fMRI): a study protocol for a randomized placebo-controlled trial. Trials 2024; 25:44. [PMID: 38218932 PMCID: PMC10787505 DOI: 10.1186/s13063-023-07814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/21/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Anhedonia, which is defined as the inability to feel pleasure, is considered a core symptom of major depressive disorder (MDD). It can lead to several adverse outcomes in adolescents, including heightened disease severity, resistance to antidepressants, recurrence of MDD, and even suicide. Specifically, patients who suffer from anhedonia may exhibit a limited response to selective serotonin reuptake inhibitors (SSRIs) and cognitive behavioral therapy (CBT). Previous researches have revealed a link between anhedonia and abnormalities within the reward circuitry, making the nucleus accumbens (NAc) a potential target for treatment. However, since the NAc is deep within the brain, repetitive transcranial magnetic stimulation (rTMS) has the potential to modulate this specific region. Recent advances have enabled treatment technology to precisely target the left dorsolateral prefrontal cortex (DLPFC) and modify the functional connectivity (FC) between DLPFC and NAc in adolescent patients with anhedonia. Therefore, we plan to conduct a study to explore the safety and effectiveness of using resting-state functional connectivity magnetic resonance imaging (fcMRI)-guided rTMS to alleviate anhedonia in adolescents diagnosed with MDD. METHODS The aim of this article is to provide a study protocol for a parallel-group randomized, double-blind, placebo-controlled experiment. The study will involve 88 participants who will be randomly assigned to receive either active rTMS or sham rTMS. The primary object is to measure the percentage change in the severity of anhedonia, using the Snaith-Hamilton Pleasure Scale (SHAPS). The assessment will be conducted from the baseline to 8-week post-treatment period. The secondary outcome includes encompassing fMRI measurements, scores on the 17-item Hamilton Rating Scale for Depression (HAMD-17), the Montgomery Asberg Depression Rating Scale (MADRS), the Chinese Version of Temporal Experience of Pleasure Scale (CV-TEPS), and the Chinese Version of Beck Scale for Suicide Ideation (BSI-CV). The Clinical Global Impression (CGI) scores will also be taken into account, and adverse events will be monitored. These evaluations will be conducted at baseline, as well as at 1, 2, 4, and 8 weeks. DISCUSSION If the hypothesis of the current study is confirmed, (fcMRI)-guided rTMS could be a powerful tool to alleviate the core symptoms of MDD and provide essential data to explore the mechanism of anhedonia. TRIAL REGISTRATION ClinicalTrials.gov NCT05544071. Registered on 16 September 2022.
Collapse
Affiliation(s)
- Runxin Lv
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Min Cai
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Nailong Tang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
- Department of Psychiatry, 907 Hospital, No. 99 Binjiang North Road, Yanping District, Nanping City, Fujian Province, China
| | - Yifan Shi
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Yuyu Zhang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Nian Liu
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Tianle Han
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Yaochi Zhang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Huaning Wang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China.
| |
Collapse
|
6
|
Zhou E, Wang W, Ma S, Xie X, Kang L, Xu S, Deng Z, Gong Q, Nie Z, Yao L, Bu L, Wang F, Liu Z. Prediction of anxious depression using multimodal neuroimaging and machine learning. Neuroimage 2024; 285:120499. [PMID: 38097055 DOI: 10.1016/j.neuroimage.2023.120499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023] Open
Abstract
Anxious depression is a common subtype of major depressive disorder (MDD) associated with adverse outcomes and severely impaired social function. It is important to clarify the underlying neurobiology of anxious depression to refine the diagnosis and stratify patients for therapy. Here we explored associations between anxiety and brain structure/function in MDD patients. A total of 260 MDD patients and 127 healthy controls underwent three-dimensional T1-weighted structural scanning and resting-state functional magnetic resonance imaging. Demographic data were collected from all participants. Differences in gray matter volume (GMV), (fractional) amplitude of low-frequency fluctuation ((f)ALFF), regional homogeneity (ReHo), and seed point-based functional connectivity were compared between anxious MDD patients, non-anxious MDD patients, and healthy controls. A random forest model was used to predict anxiety in MDD patients using neuroimaging features. Anxious MDD patients showed significant differences in GMV in the left middle temporal gyrus and ReHo in the right superior parietal gyrus and the left precuneus than HCs. Compared with non-anxious MDD patients, patients with anxious MDD showed significantly different GMV in the left inferior temporal gyrus, left superior temporal gyrus, left superior frontal gyrus (orbital part), and left dorsolateral superior frontal gyrus; fALFF in the left middle temporal gyrus; ReHo in the inferior temporal gyrus and the superior frontal gyrus (orbital part); and functional connectivity between the left superior temporal gyrus(temporal pole) and left medial superior frontal gyrus. A diagnostic predictive random forest model built using imaging features and validated by 10-fold cross-validation distinguished anxious from non-anxious MDD with an AUC of 0.802. Patients with anxious depression exhibit dysregulation of brain regions associated with emotion regulation, cognition, and decision-making, and our diagnostic model paves the way for more accurate, objective clinical diagnosis of anxious depression.
Collapse
Affiliation(s)
- Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zipeng Deng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihong Bu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Zhu W, Ou L, Zhang L, Clark IH, Zhang Y, Zhu XH, Whitley CB, Hackett PB, Low WC, Chen W. Mapping brain networks in MPS I mice and their restoration following gene therapy. Sci Rep 2023; 13:12716. [PMID: 37543633 PMCID: PMC10404260 DOI: 10.1038/s41598-023-39939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disorder that causes syndromes characterized by physiological dysfunction in many organs and tissues. Despite the recognizable morphological and behavioral deficits associated with MPS I, neither the underlying alterations in functional neural connectivity nor its restoration following gene therapy have been shown. By employing high-resolution resting-state fMRI (rs-fMRI), we found significant reductions in functional neural connectivity in the limbic areas of the brain that play key roles in learning and memory in MPS I mice, and that adeno-associated virus (AAV)-mediated gene therapy can reestablish most brain connectivity. Using logistic regression in MPS I and treated animals, we identified functional networks with the most alterations. The rs-fMRI and statistical methods should be translatable into clinical evaluation of humans with neurological disorders.
Collapse
Affiliation(s)
- Wei Zhu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li Ou
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Genemagic Biosciences, Media, PA, 19063, USA
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Isaac H Clark
- Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chester B Whitley
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Perry B Hackett
- Department of Genetics, Cell Biology Development, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Walter C Low
- Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA.
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Wei Chen
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Radiology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Mo D, Guo P, Hu S, Tao R, Zhong H, Liu H. Characteristics and correlation of gray matter volume and somatic symptoms in adolescent patients with depressive disorder. Front Psychiatry 2023; 14:1197854. [PMID: 37559918 PMCID: PMC10407247 DOI: 10.3389/fpsyt.2023.1197854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background Adolescent patients with depressive disorders commonly exhibit somatic symptoms, which have a significant negative impact on their treatment and prognosis. Despite this, specific brain imaging characteristics of these symptoms have been poorly studied. Methods The Hamilton Depression Rating scale (HAMD-17), Children's Functional Somatization scale (CSI), and Toronto Alexithymia scale (TAS) were used to evaluate the clinical symptoms of adolescent depression. We analyzed the correlation between brain gray matter volume (GMV) and clinical symptoms in adolescent patients with depression and somatic symptoms. Results The depression subgroups with and without functional somatic symptoms (FSS) had higher scores on the HAMD-17, CSI, and TAS than the normal control group. The group with FSS had higher HAMD-17, CSI, and TAS scores than the depression group without FSS (p < 0.05). CSI and TAS scores were positively correlated (r = 0.378, p < 0.05). The GMV of the right supplementary motor area was higher in the depression groups with and without FSSs than in the normal control group, and the GMV was higher in the group without FSS than in the group with FSS (F = 29.394, p < 0.05). The GMV of the right supplementary motor area was negatively correlated with CSI in the depressed group with FSS (r = -0.376, p < 0.05). In the group with depression exhibiting FSS, CSI scores were positively correlated with GMV of the middle occipital gyrus (pr = 0.665, p = 0.0001), and TAS scores were positively correlated with GMV of the caudate nucleus (pr = 0.551, p = 0.001). Conclusion Somatic symptoms of adolescent depressive disorder are associated with alexithymia; moreover, somatic symptoms and alexithymia in adolescent patients with depressive disorders are correlated with GMV changes in different brain regions.
Collapse
Affiliation(s)
- Daming Mo
- Department of Psychiatry, Chao hu Hospital of Anhui Medical University, Hefei, China
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Pengfei Guo
- Department of Psychiatry, Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Shuwen Hu
- Clinical Psychological Science, Anhui Provincial Children’s Hospital, Hefei, China
| | - Rui Tao
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chao hu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Han S, Cui Q, Zheng R, Li S, Zhou B, Fang K, Sheng W, Wen B, Liu L, Wei Y, Chen H, Chen Y, Cheng J, Zhang Y. Parsing altered gray matter morphology of depression using a framework integrating the normative model and non-negative matrix factorization. Nat Commun 2023; 14:4053. [PMID: 37422463 PMCID: PMC10329663 DOI: 10.1038/s41467-023-39861-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
The high inter-individual heterogeneity in individuals with depression limits neuroimaging studies with case-control approaches to identify promising biomarkers for individualized clinical decision-making. We put forward a framework integrating the normative model and non-negative matrix factorization (NMF) to quantitatively assess altered gray matter morphology in depression from a dimensional perspective. The proposed framework parses altered gray matter morphology into overlapping latent disease factors, and assigns patients distinct factor compositions, thus preserving inter-individual variability. We identified four robust disease factors with distinct clinical symptoms and cognitive processes in depression. In addition, we showed the quantitative relationship between the group-level gray matter morphological differences and disease factors. Furthermore, this framework significantly predicted factor compositions of patients in an independent dataset. The framework provides an approach to resolve neuroanatomical heterogeneity in depression.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China.
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China.
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China.
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China.
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China.
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China.
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China.
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China.
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Henan Province, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Province, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China
| | - Huafu Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China.
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China.
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China.
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China.
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China.
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China.
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China.
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China.
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China.
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China.
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China.
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China.
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China.
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China.
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China.
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan Province, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Henan Province, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Henan Province, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Henan Province, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Henan Province, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Henan Province, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Henan Province, China
- Henan Engineering Research Center of Brain Function Development and Application, Henan Province, China
| |
Collapse
|
10
|
Rohrsetzer F, Balardin JB, Picon F, Sato JR, Battel L, Viduani A, Manfro PH, Yoon L, Kohrt BA, Fisher HL, Mondelli V, Swartz JR, Kieling C. An MRI-based morphometric and structural covariance network study of Brazilian adolescents stratified by depression risk. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2023; 45. [PMID: 37243979 PMCID: PMC10668308 DOI: 10.47626/1516-4446-2023-3037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/29/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To explore differences in regional cortical morphometric structure between adolescents at risk for depression or with current depression. METHODS We analyzed cross-sectional structural neuroimaging data from a sample of 150 Brazilian adolescents classified as low-risk (n=50) or high-risk for depression (n=50) or with current depression (n=50) through a vertex-based approach with measurements of cortical volume, surface area and thickness. Differences between groups in subcortical volumes and in the organization of networks of structural covariance were also explored. RESULTS No significant differences in brain structure between groups were observed in whole-brain vertex-wise cortical volume, surface area or thickness. Also, no significant differences in subcortical volume were observed between risk groups. In relation to the structural covariance network, there was an indication of an increase in the hippocampus betweenness centrality index in the high-risk group network compared to the low-risk and current depression group networks. However, this result was only statistically significant when applying false discovery rate correction for nodes within the affective network. CONCLUSION In an adolescent sample recruited using an empirically based composite risk score, no major differences in brain structure were detected according to the risk and presence of depression.
Collapse
Affiliation(s)
- Fernanda Rohrsetzer
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Serviço de Psiquiatria da Infância e Adolescência, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Joana Bisol Balardin
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Serviço de Psiquiatria da Infância e Adolescência, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Felipe Picon
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Serviço de Psiquiatria da Infância e Adolescência, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - João Ricardo Sato
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP, Brazil
| | - Lucas Battel
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Serviço de Psiquiatria da Infância e Adolescência, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Anna Viduani
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Serviço de Psiquiatria da Infância e Adolescência, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Pedro Henrique Manfro
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Serviço de Psiquiatria da Infância e Adolescência, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Leehyun Yoon
- Department of Human Ecology, University of California, Davis, CA, USA
| | - Brandon A. Kohrt
- Division of Global Mental Health, Department of Psychiatry, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Helen L. Fisher
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Economic and Social Research Council, Centre for Society and Mental Health, King’s College London, London, United Kingdom
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health Research Mental Health, Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust, King’s College London, London, United Kingdom
| | - Johnna R. Swartz
- Department of Human Ecology, University of California, Davis, CA, USA
| | - Christian Kieling
- Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Serviço de Psiquiatria da Infância e Adolescência, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Han S, Xu Y, Fang K, Guo HR, Wei Y, Liu L, Wen B, Liu H, Zhang Y, Cheng J. Mapping the neuroanatomical heterogeneity of OCD using a framework integrating normative model and non-negative matrix factorization. Cereb Cortex 2023:7153879. [PMID: 37150510 DOI: 10.1093/cercor/bhad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a spectrum disorder with high interindividual heterogeneity. We propose a comprehensible framework integrating normative model and non-negative matrix factorization (NMF) to quantitatively estimate the neuroanatomical heterogeneity of OCD from a dimensional perspective. T1-weighted magnetic resonance images of 98 first-episode untreated patients with OCD and matched healthy controls (HCs, n = 130) were acquired. We derived individualized differences in gray matter morphometry using normative model and parsed them into latent disease factors using NMF. Four robust disease factors were identified. Each patient expressed multiple factors and exhibited a unique factor composition. Factor compositions of patients were significantly correlated with severity of symptom, age of onset, illness duration, and exhibited sex differences, capturing sources of clinical heterogeneity. In addition, the group-level morphological differences obtained with two-sample t test could be quantitatively derived from the identified disease factors, reconciling the group-level and subject-level findings in neuroimaging studies. Finally, we uncovered two distinct subtypes with opposite morphological differences compared with HCs from factor compositions. Our findings suggest that morphological differences of individuals with OCD are the unique combination of distinct neuroanatomical patterns. The proposed framework quantitatively estimating neuroanatomical heterogeneity paves the way for precision medicine in OCD.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Keke Fang
- Department of Pharmacy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Hao Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| |
Collapse
|
12
|
Rosemann S, Rauschecker JP. Neuroanatomical alterations in middle frontal gyrus and the precuneus related to tinnitus and tinnitus distress. Hear Res 2022; 424:108595. [DOI: 10.1016/j.heares.2022.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/04/2022]
|
13
|
Deng Z, Jiang X, Liu W, Zhao W, Jia L, Sun Q, Xie Y, Zhou Y, Sun T, Wu F, Kong L, Tang Y. The aberrant dynamic amplitude of low-frequency fluctuations in melancholic major depressive disorder with insomnia. Front Psychiatry 2022; 13:958994. [PMID: 36072459 PMCID: PMC9441487 DOI: 10.3389/fpsyt.2022.958994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Insomnia is considered one of the manifestations of sleep disorders, and its intensity is linked to the treatment effect or suicidal thoughts. Major depressive disorder (MDD) is classified into various subtypes due to heterogeneous symptoms. Melancholic MDD has been considered one of the most common subtypes with special sleep features. However, the brain functional mechanisms in melancholic MDD with insomnia remain unclear. MATERIALS AND METHODS Melancholic MDD and healthy controls (HCs, n = 46) were recruited for the study. Patients were divided into patients with melancholic MDD with low insomnia (mMDD-LI, n = 23) and patients with melancholic MDD with high insomnia (mMDD-HI, n = 30), according to the sleep disturbance subscale of the 17-item Hamilton Depression Rating Scale. The dynamic amplitude of low-frequency fluctuation was employed to investigate the alterations of brain activity among the three groups. Then, the correlations between abnormal dALFF values of brain regions and the severity of symptoms were investigated. RESULTS Lower dALFF values were found in the mMDD-HI group in the right middle temporal gyrus (MTG)/superior temporal gyrus (STG) than in the mMDD-LI (p = 0.014) and HC groups (p < 0.001). Melancholic MDD groups showed decreased dALFF values than HC in the right middle occipital gyri (MOG)/superior occipital gyri (SOG), the right cuneus, the bilateral lingual gyrus, and the bilateral calcarine (p < 0.05). Lower dALFF values than HC in the left MOG/SOG and the left cuneus in melancholic MDD groups were found, but no significant difference was found between the mMDD-LI group and HC group (p = 0.079). Positive correlations between the dALFF values in the right MTG/STG and HAMD-SD scores (the sleep disturbance subscale of the HAMD-17) in the mMDD-HI group (r = 0.41, p = 0.042) were found. In the pooled melancholic MDD, the dALFF values in the right MOG/SOG and the right cuneus (r = 0.338, p = 0.019), the left MOG/SOG and the left cuneus (r = 0.299, p = 0.039), and the bilateral lingual gyrus and the bilateral calcarine (r = 0.288, p = 0.047) were positively correlated with adjusted HAMD scores. CONCLUSION The occipital cortex may be related to depressive symptoms in melancholic MDD. Importantly, the right MTG/STG may play a critical role in patients with melancholic MDD with more severe insomnia.
Collapse
Affiliation(s)
- Zijing Deng
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen Liu
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenhui Zhao
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Jia
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Xie
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Sun
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|