3
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Duchateau L, Küҫükali F, De Roeck A, Wittens MMJ, Temmerman J, Weets I, Timmers M, Engelborghs S, Bjerke M, Sleegers K. CSF biomarker analysis of ABCA7 mutation carriers suggests altered APP processing and reduced inflammatory response. Alzheimers Res Ther 2023; 15:195. [PMID: 37946268 PMCID: PMC10634183 DOI: 10.1186/s13195-023-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The Alzheimer's disease (AD) risk gene ABCA7 has suggested functions in lipid metabolism and the immune system. Rare premature termination codon (PTC) mutations and an expansion of a variable number of tandem repeats (VNTR) polymorphism in the gene, both likely cause a lower ABCA7 expression and hereby increased risk for AD. However, the exact mechanism of action remains unclear. By studying CSF biomarkers reflecting different types of AD-related pathological processes, we aim to get a better insight in those processes and establish a biomarker profile of mutation carriers. METHODS The study population consisted of 229 AD patients for whom CSF was available and ABCA7 sequencing and VNTR genotyping had been performed. This included 28 PTC mutation and 16 pathogenic expansion carriers. CSF levels of Aβ1-42, Aβ1-40, P-tau181, T-tau, sAPPα, sAPPβ, YKL-40, and hFABP were determined using ELISA and Meso Scale Discovery assays. We compared differences in levels of these biomarkers and the Aβ ratio between AD patients with or without an ABCA7 PTC mutation or expansion using linear regression on INT-transformed data with APOE-status, age and sex as covariates. RESULTS Carriers of ABCA7 expansion mutations had significantly lower Aβ1-42 levels (P = 0.022) compared with non-carrier patients. The effect of the presence of ABCA7 mutations on CSF levels was especially pronounced in APOE ε4-negative carriers. In addition, VNTR expansion carriers had reduced Aβ1-40 (P = 0.023), sAPPα (P = 0.047), sAPPβ (P = 0.016), and YKL-40 (P = 0.0036) levels. CONCLUSIONS Our results are suggestive for an effect on APP processing by repeat expansions given the changes in the amyloid-related CSF biomarkers that were found in carriers. The decrease in YKL-40 levels in expansion carriers moreover suggests that these patients potentially have a reduced inflammatory response to AD damage. Moreover, our findings suggest the existence of a mechanism, independent of lowered expression, affecting neuropathology in expansion carriers.
Collapse
Affiliation(s)
- Lena Duchateau
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Fahri Küҫükali
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Arne De Roeck
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Present Address: Argenx, Ghent, Belgium
| | - Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Joke Temmerman
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Ilse Weets
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Experimental Pharmacology (EFAR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Maarten Timmers
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Sebastiaan Engelborghs
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Department of Neurology and Bru-BRAIN, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium.
| |
Collapse
|
6
|
Nemes S, Logan PE, Manchella MK, Mundada NS, Joie RL, Polsinelli AJ, Hammers DB, Koeppe RA, Foroud TM, Nudelman KN, Eloyan A, Iaccarino L, Dorsant-Ardón V, Taurone A, Maryanne Thangarajah, Dage JL, Aisen P, Grinberg LT, Jack CR, Kramer J, Kukull WA, Murray ME, Rumbaugh M, Soleimani-Meigooni DN, Toga A, Touroutoglou A, Vemuri P, Atri A, Day GS, Duara R, Graff-Radford NR, Honig LS, Jones DT, Masdeu J, Mendez MF, Musiek E, Onyike CU, Riddle M, Rogalski E, Salloway S, Sha SJ, Turner RS, Wingo TS, Womack KB, Wolk DA, Rabinovici GD, Carrillo MC, Dickerson BC, Apostolova LG. Sex and APOE ε4 carrier effects on atrophy, amyloid PET, and tau PET burden in early-onset Alzheimer's disease. Alzheimers Dement 2023; 19 Suppl 9:S49-S63. [PMID: 37496307 PMCID: PMC10811272 DOI: 10.1002/alz.13403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION We used sex and apolipoprotein E ε4 (APOE ε4) carrier status as predictors of pathologic burden in early-onset Alzheimer's disease (EOAD). METHODS We included baseline data from 77 cognitively normal (CN), 230 EOAD, and 70 EO non-Alzheimer's disease (EOnonAD) participants from the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS). We stratified each diagnostic group by males and females, then further subdivided each sex by APOE ε4 carrier status and compared imaging biomarkers in each stratification. Voxel-wise multiple linear regressions yielded statistical brain maps of gray matter density, amyloid, and tau PET burden. RESULTS EOAD females had greater amyloid and tau PET burdens than males. EOAD female APOE ε4 non-carriers had greater amyloid PET burdens and greater gray matter atrophy than female ε4 carriers. EOnonAD female ε4 non-carriers also had greater gray matter atrophy than female ε4 carriers. DISCUSSION The effects of sex and APOE ε4 must be considered when studying these populations. HIGHLIGHTS Novel analysis examining the effects of biological sex and apolipoprotein E ε4 (APOE ε4) carrier status on neuroimaging biomarkers among early-onset Alzheimer's disease (EOAD), early-onset non-AD (EOnonAD), and cognitively normal (CN) participants. Female sex is associated with greater pathology burden in the EOAD cohort compared to male sex. The effect of APOE ε4 carrier status on pathology burden was the most impactful in females across all cohorts.
Collapse
Affiliation(s)
- Sára Nemes
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Paige E. Logan
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Mohit K. Manchella
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Department of Chemistry, University of Southern Indiana, Evansville, Indiana, 47712, USA
| | - Nidhi S. Mundada
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Renaud La Joie
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Angelina J. Polsinelli
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, Indiana, 46202 USA
| | - Dustin B. Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Kelly N. Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Leonardo Iaccarino
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Valérie Dorsant-Ardón
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Alexander Taurone
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Maryanne Thangarajah
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Jeffery L. Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Paul Aisen
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego, CA, 92121, USA
| | - Lea T. Grinberg
- Department of Neurology, University of California, San Francisco, California, 94158, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Joel Kramer
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, Washington, USA, 98195, USA
| | - Melissa E. Murray
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Malia Rumbaugh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | | | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, California, 90033, USA
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, 85315, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Ranjan Duara
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women’s Hospital & Harvard Medical School, Boston, Massachusetts, 02115, USA
- Wein Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | | | - Lawrence S. Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - David T. Jones
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, 559095, USA
| | - Joseph Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, Texas, 77030, USA
| | - Mario F. Mendez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Chiadi U. Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, 02906, USA
| | - Emily Rogalski
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island, 02906, USA
| | - Sharon J. Sha
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, 94304, USA
| | - Raymond S. Turner
- Department of Neurology, Georgetown Universit, Washington, DC, 20007, USA
| | - Thomas S. Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kyle B. Womack
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - David A. Wolk
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,19104, USA
| | - Gil D. Rabinovici
- Department of Neurology, University of California, San Francisco, California, 94158, USA
| | - Maria C. Carrillo
- Medical & Scientific Relations Division, Alzheimer’s Association, Chicago, Illinois, 60603, USA
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, Indiana, 46202 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | | |
Collapse
|