1
|
Mishra L, Mishra M. Recent progress towards the development of fluorescent probes for the detection of disease-related enzymes. J Mater Chem B 2024. [PMID: 39639834 DOI: 10.1039/d4tb01960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Normal physiological functions as well as regulatory mechanisms for various pathological conditions depend on the activity of enzymes. Thus, determining the in vivo activity of enzymes is crucial for monitoring the physiological metabolism and diagnosis of diseases. Traditional enzyme detection methods are inefficient for in vivo detection, which have different limitations, such as high cost, laborious, and inevitable invasive procedures, low spatio-temporal resolution, weak anti-interference ability, and restricted scope of application. Because of its non-destructive nature, ultra-environmental sensitivity, and high spatiotemporal resolution, fluorescence imaging technology has emerged as a potent tool for the real-time visualization of live cells, thereby imaging the motility of proteins and intracellular signalling networks in tissues and cells and evaluating the binding and attraction of molecules. In the last few years, significant advancements have been achieved in detecting and imaging enzymes in biological systems. In this regard, the high sensitivity and unparalleled spatiotemporal resolution of fluorescent probes in association with confocal microscopy have garnered significant interest. In this review, we focus on providing a concise summary of the latest developments in the design of fluorogenic probes used for monitoring disease-associated enzymes and their application in biological imaging. We anticipate that this study will attract considerable attention among researchers in the relevant field, encouraging them to pursue advances in the development and application of fluorescent probes for the real-time monitoring of enzyme activity in live cells and in vivo models while ensuring excellent biocompatibility.
Collapse
Affiliation(s)
- Lopamudra Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
2
|
Qiu L, Gao M, Li J, Xu G, Wei F, Yang J, Hu Q, Cen Y. Fluorometric Assay of Tyrosinase and Atrazine Based on the Use of Carbon Dots and the Inhibition of Tyrosinase Activity. J Fluoresc 2024; 34:765-774. [PMID: 37358758 DOI: 10.1007/s10895-023-03308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Sensitive and convenient strategy of tyrosinase (TYR) and its inhibitor atrazine is in pressing demand for essential research as well as pragmatic application. In this work, an exquisite label-free fluorometric assay with high sensitivity, convenience and efficiency was described for detecting TYR and the herbicide atrazine on the basis of fluorescent nitrogen-doped carbon dots (CDs). The CDs were prepared via one-pot hydrothermal reaction starting from citric acid and diethylenetriamine. TYR catalyzed the oxidation of dopamine to dopaquinone derivative which could quench the fluorescence of CDs through a fluorescence resonance energy transfer (FRET) process. Thus, a sensitive and selective quantitative evaluation of TYR can be constructed on the basis of the relationship between the fluorescence of CDs and TYR activity. Atrazine, a typical inhibitor of TYR, inhibited the catalytic activity of TYR, leading to the reduced dopaquinone and the fluorescence was retained. The strategy covered a broad linear range of 0.1-150 U/mL and 4.0-80.0 nM for TYR and atrazine respectively with a low detection limit of 0.02 U/mL and 2.4 nM/mL. It is also demonstrated that the assay can be applied to detect TYR and atrazine in spiked complex real samples, which provides infinite potential in application of disease monitoring along with environmental analysis.
Collapse
Affiliation(s)
- Lei Qiu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Department of Pharmacy, Jiuting hospital of Songjiang District, Shanghai, 201651, PR China
| | - Mingcong Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jiawei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
3
|
Li S, Zhang G, Peng Y, Chen P, Li J, Wang X, Wang Z. Tyrosinase-activated Nanocomposites for Double-Modals Imaging Guided Photodynamic and Photothermal Synergistic Therapy. Adv Healthc Mater 2023; 12:e2300327. [PMID: 37003298 DOI: 10.1002/adhm.202300327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Tyrosinase (TYR) is an important biomarker of melanoma. The exploration of fluorescent pr-obes-based composites is beneficial to build an integrative platform for the diagnosis and treatment of melanoma. Herein, a multifunctional nanocomposite IOBOH@BSA activated by TYR is developed for selective imaging and ablation of melanoma. The chemical structure of IOBOH enables the fluorescence (FL) imaging activated by TYR, photoacoustic (PA) imaging, and photodynamic-photothermal activity by regulating the balance between radiative decay and non-radiative decay. IOBOH combined with bovine serum albumin (IOBOH@BSA) presents the response to TYR and realizes FL imaging with mitochondria-targeting in melanoma. Moreover, IOBOH@BSA shows excellent photothermal ability and is applied for PA imaging. After IOBOH@BSA is activated by TYR, the singlet oxygen generation increases obviously. IOBOH@BSA can realize TYR-activated imaging and photodynamic-photothermal therapy of melanoma. The development of TYR-activated multifunctional nanocomposites promotes the precise imaging and improves the therapeutic effect of melanoma.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuefei Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Zhou Q, Zhou T, Tu Y, Yan J. Determination of tyrosinase activity with manganese dioxide nanosheet-assisted fluorescence. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Li S, Liu D, Wu B, Sun H, Liu X, Zhang H, Ding N, Wu L. One-pot synthesis of a peroxidase-like nanozyme and its application in visual assay for tyrosinase activity. Talanta 2021; 239:123088. [PMID: 34838324 DOI: 10.1016/j.talanta.2021.123088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/02/2023]
Abstract
Both single-atom nanozymes (SAzymes) and protein-template metal nanoparticles have attracted comprehensive attention in several respects owing to their excellent catalytic performance, green facile synthesis process, and robustness. Herein, the peroxidase-like activity of single-atom copper anchored on bovine hemoglobin-template gadolinium nanoparticles (Cu,Gd@BHbFITC NPs) were successfully synthesized and two sensitive turn-on fluorescence strategies for tyrosinase (TYR) activity sensing were proposed for the first time. For strategy Ⅰ, TYR sensing was carried out from 1.00 to 7.80 U/mL with the detection limit (LOD) of 0.20 U/mL based on the fluorescence resonance energy transfer (FRET) between the fluorescein isothiocyanate (FITC) and the in situ generated polydopamine dots (PDA-dots). For strategy Ⅱ, The LOD of TYR was 0.05 U/mL with the linear range of 0.40-19.70 U/mL based on the elimination of inner-filter effect (IEF) between FITC and the reaction product (RC) of phenol and 4-Aminoantipyrine (AAP). The smartphone-assisted sensing platform was applied to construct the on-site detection of TYR with both strategies. The developed probe possessed good selectivity and was successfully utilized to TYR detection in serum samples.
Collapse
Affiliation(s)
- Shuangqin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Di Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bingyan Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huipeng Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Nana Ding
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Lan Wu
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
7
|
Li H, Kim D, Yao Q, Ge H, Chung J, Fan J, Wang J, Peng X, Yoon J. Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haidong Li
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Dayeh Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jingyun Wang
- School of Bioengineering Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
8
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
9
|
Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed Engl 2021; 60:17268-17289. [DOI: 10.1002/anie.202009796] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 02/02/2023]
|
10
|
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K. Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134549. [PMID: 31810700 DOI: 10.1016/j.scitotenv.2019.134549] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
As a hepatotoxin, microcystin-LR (MC-LR) poses a great threat to aquatic organisms. In this research, the hepatopancreatic transcriptome, intestinal microbiota, and histopathology of Procambarus clarkii (P. clarkii) in response to acute MC-LR exposure were studied. RNA-seq analysis of hepatopancreas identified 372 and 781 differentially expressed genes (DEGs) after treatment with 10 and 40 μg/L MC-LR, respectively. Among the DEGs, 23 genes were immune-related and 21 genes were redox-related. GO functional enrichment analysis revealed that MC-LR could impact nuclear-transcribed mRNA catabolic process, cobalamin- and heme-related processes, and sirohydrochlorin cobaltochelatase activity of P. clarkii. In addition, the only significantly enriched KEGG pathway induced by MC-LR was galactose metabolism pathway. Meanwhile, sequencing of the bacterial 16S rRNA gene demonstrated that MC-LR decreased bacterial richness and diversity, and altered the intestinal microbiota composition. At the phylum level, after 96 h, the abundance of Verrucomicrobia decreased after treatment with 10 and 40 μg/L MC-LR, while Firmicutes increased in the 40 μg/L MC-LR-treated group. At the genus level, the abundances of 15 genera were significantly altered after exposure to MC-LR. Our research demonstrated that MC-LR exposure caused histological alterations such as structural damage of hepatopancreas and intestines. This research provides an insight into the mechanisms associated with MC-LR toxicity in aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sergey Kholodkevich
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia; Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia
| | - Andrey Sharov
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia; Papanin Institute for Biology of the Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Chen Y. Advances in fluorescent probes for detection and imaging of endogenous tyrosinase activity. Anal Biochem 2020; 594:113614. [DOI: 10.1016/j.ab.2020.113614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
|
12
|
Yan K, Wu J, Ji W, Wu J, Zhang J. Integration of redox cycling in a photoelectrochemical sensing platform for tyrosinase activity evaluation. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.106555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
Yan K, Ji W, Zhu Y, Chen F, Zhang J. Photofuel cell coupling with redox cycling as a highly sensitive and selective self-powered sensing platform for the detection of tyrosinase activity. Chem Commun (Camb) 2019; 55:12040-12043. [DOI: 10.1039/c9cc05649a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Redox cycling is successfully integrated in a photofuel cell to provide an amplified self-powered sensing signal for the specific detection of tyrosinase activity.
Collapse
Affiliation(s)
- Kai Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Weihao Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Yuhan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Fang Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
14
|
Zhan C, Cheng J, Li B, Huang S, Zeng F, Wu S. A Fluorescent Probe for Early Detection of Melanoma and Its Metastasis by Specifically Imaging Tyrosinase Activity in a Mouse Model. Anal Chem 2018; 90:8807-8815. [DOI: 10.1021/acs.analchem.8b00594] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chenyue Zhan
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiatian Cheng
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bowen Li
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuailing Huang
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
15
|
Zhang J, Li Y, Slania S, Yadav NN, Liu J, Wang R, Zhang J, Pomper MG, van Zijl PC, Yang X, Liu G. Phenols as Diamagnetic T 2 -Exchange Magnetic Resonance Imaging Contrast Agents. Chemistry 2018; 24:1259-1263. [PMID: 29266443 PMCID: PMC5786484 DOI: 10.1002/chem.201705772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 01/03/2023]
Abstract
Although T2 -exchange (T2ex ) NMR phenomena have been known for decades, there has been a resurgence of interest to develop T2ex MRI contrast agents. One indispensable advantage of T2ex MR agents is the possibility of using non-toxic and/or bio-compatible diamagnetic compounds with intermediate exchangeable protons. Herein a library of phenol-based compounds is screened and their T2ex contrast (exchange relaxivity, r2ex ) at 9.4 T determined. The T2ex contrast of phenol protons allows direct detection by MRI at a millimolar concentration level. The effect of chemical modification of the phenol on the T2ex MRI contrast through modulation of exchange rate and chemical shift was also studied and provides a guideline for use of endogenous and exogenous phenols for T2ex MRI contrast. As a proof-of-principle application, phenol T2ex contrast can be used to detect enzyme activity in a tyrosinase-catalyzed catechol oxidation reaction.
Collapse
Affiliation(s)
- Jia Zhang
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Slania
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jing Liu
- Graduate College, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital Beijing, P. R. China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital Beijing, P. R. China
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C van Zijl
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xing Yang
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Nuclear Medicine, Peking University First Hospital Beijing, P. R. China
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Hu JJ, Bai XL, Liu YM, Liao X. Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis. Anal Chim Acta 2017; 995:99-105. [DOI: 10.1016/j.aca.2017.09.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
17
|
A fluorescent sensor for detecting dopamine and tyrosinase activity by dual-emission carbon dots and gold nanoparticles. Colloids Surf B Biointerfaces 2017; 162:212-219. [PMID: 29190472 DOI: 10.1016/j.colsurfb.2017.11.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/12/2017] [Accepted: 11/22/2017] [Indexed: 01/24/2023]
Abstract
In this work, we report a fluorescence strategy for detecting dopamine (DA) and sensing tyrosinase (TYR) activity on the basis of the dual-emission carbon dots (DECDs), which contain two emitters: the blue emitters (BE, maximum emission at 385nm) and yellow emitters (YE, maximum emission at 530nm). Gold nanoparticles (AuNPs) can effectively quench the two emissions of DECDs. The addition of DA aggregates AuNPs effectively, leading to the fluorescence recovery of dual emitters gradually. This strategy exhibits a high selectivity toward DA and shows good linear ranges, such as 0.5-3μM for BE and 0.1-3μM for YE. Additionally, the proposed method is successfully applied to the determination of DA in real samples with satisfactory recoveries. Subsequently, this DECDs-AuNPs platform is further taken advantage to assess TYR activity by the aid of TYR's capability for oxidation of DA into dopaquinone, which will not induce the agglomeration of AuNPs, so the fluorescence quenching of DECDs is associated with TYR activity. Finally, the mechanism of the reaction is discussed in detail, and the results suggest that both amine and phenolic hydroxyl groups of DA bring the aggregation of AuNPs.
Collapse
|
18
|
OCT4 impedes cell fate redirection by the melanocyte lineage master regulator MITF in mouse ESCs. Nat Commun 2017; 8:1022. [PMID: 29044103 PMCID: PMC5647326 DOI: 10.1038/s41467-017-01122-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 08/19/2017] [Indexed: 11/09/2022] Open
Abstract
Ectopic expression of lineage master regulators induces transdifferentiation. Whether cell fate transitions can be induced during various developmental stages has not been systemically examined. Here we discover that amongst different developmental stages, mouse embryonic stem cells (mESCs) are resistant to cell fate conversion induced by the melanocyte lineage master regulator MITF. By generating a transgenic system we exhibit that in mESCs, the pluripotency master regulator Oct4, counteracts pro-differentiation induced by Mitf by physical interference with MITF transcriptional activity. We further demonstrate that mESCs must be released from Oct4-maintained pluripotency prior to ectopically induced differentiation. Moreover, Oct4 induction in various differentiated cells represses their lineage identity in vivo. Alongside, chromatin architecture combined with ChIP-seq analysis suggest that Oct4 competes with various lineage master regulators for binding promoters and enhancers. Our analysis reveals pluripotency and transdifferentiation regulatory principles and could open new opportunities in the field of regenerative medicine.
Collapse
|
19
|
El Harrad L, Amine A. Chronoamperometric Biosensor for Protease Activity Assay and Inhibitor Screening. ELECTROANAL 2017. [DOI: 10.1002/elan.201700340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Loubna El Harrad
- Laboratoire de Génie des Procédés et Environnement, Faculty of Science and Techniques; Hassan II University of Casablanca; B.P.146 Mohammedia Morocco
| | - Aziz Amine
- Laboratoire de Génie des Procédés et Environnement, Faculty of Science and Techniques; Hassan II University of Casablanca; B.P.146 Mohammedia Morocco
| |
Collapse
|
20
|
Chen J, Zhao GC. Nano-encapsulant of ascorbic acid-loaded apoferritin-assisted photoelectrochemical sensor for protease detection. Talanta 2017; 168:62-66. [DOI: 10.1016/j.talanta.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
|
21
|
Wang J, Lee TS, Zhang Z, Tung CH. A Bioluminogenic Probe for Monitoring Tyrosinase Activity. Chem Asian J 2017; 12:397-400. [PMID: 28052521 DOI: 10.1002/asia.201601659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/29/2016] [Indexed: 11/10/2022]
Abstract
A bioluminogenic probe based on luciferin was designed and synthesized to monitor tyrosinase activity. This probe was efficient in assessing tyrosinase activity in a buffered aqueous solution and in measuring endogenous tyrosinase activity in melanoma cells.
Collapse
Affiliation(s)
- Jianguang Wang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10065, USA.,Current address: School of Chemical and Environmental Engineering, Anyang Institute of Technology, West of HuangHe Road, Anyang, 455000, PR China
| | - Tae Sup Lee
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10065, USA.,Current address: Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Zhe Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10065, USA
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10065, USA
| |
Collapse
|
22
|
Liu JW, Wang YM, Xu L, Duan LY, Tang H, Yu RQ, Jiang JH. Melanin-Like Nanoquencher on Graphitic Carbon Nitride Nanosheets for Tyrosinase Activity and Inhibitor Assay. Anal Chem 2016; 88:8355-8. [DOI: 10.1021/acs.analchem.6b01667] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jin-Wen Liu
- Institute
of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Yu-Min Wang
- Institute
of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Liu Xu
- Institute
of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Lu-Ying Duan
- Institute
of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Hao Tang
- Institute
of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Ru-Qin Yu
- Institute
of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Jian-Hui Jiang
- Institute
of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| |
Collapse
|
23
|
Zhou J, Shi W, Li L, Gong Q, Wu X, Li X, Ma H. Detection of Misdistribution of Tyrosinase from Melanosomes to Lysosomes and Its Upregulation under Psoralen/Ultraviolet A with a Melanosome-Targeting Tyrosinase Fluorescent Probe. Anal Chem 2016; 88:4557-64. [DOI: 10.1021/acs.analchem.6b00742] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jin Zhou
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Shi
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lihong Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuyu Gong
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofeng Wu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Chen J, Liu Y, Zhao GC. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection. SENSORS 2016; 16:s16010135. [PMID: 26805846 PMCID: PMC4732168 DOI: 10.3390/s16010135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/19/2022]
Abstract
A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates.
Collapse
Affiliation(s)
- Jiexia Chen
- Anhui Key Laboratory of Chem-Biosensing, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
- Departement of Chemistry, Wannan Medical College, Wuhu 241002, China.
| | - Yifan Liu
- Anhui Key Laboratory of Chem-Biosensing, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Guang-Chao Zhao
- Anhui Key Laboratory of Chem-Biosensing, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
25
|
Zhao XE, Lei CH, Wang YH, Qu F, Zhu SY, Wang H, You JM. A fluorometric assay for tyrosinase activity and its inhibitor screening based on graphene quantum dots. RSC Adv 2016. [DOI: 10.1039/c6ra13325h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pristine graphene quantum dots (GQDs) without any functionalization were used as probes to develop a sensitive and selective fluorescence sensing platform for the detection of tyrosinase (TYR) activity and its inhibitor screening for the first time.
Collapse
Affiliation(s)
- X. E. Zhao
- Shandong Provincial Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - C. H. Lei
- Shandong Provincial Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Y. H. Wang
- Shandong Provincial Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - F. Qu
- Shandong Provincial Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - S. Y. Zhu
- Shandong Provincial Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - H. Wang
- Shandong Provincial Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - J. M. You
- Shandong Provincial Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| |
Collapse
|
26
|
Chai L, Zhou J, Feng H, Tang C, Huang Y, Qian Z. Functionalized Carbon Quantum Dots with Dopamine for Tyrosinase Activity Monitoring and Inhibitor Screening: In Vitro and Intracellular Investigation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23564-23574. [PMID: 26440479 DOI: 10.1021/acsami.5b06711] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sensitive assay of tyrosinase (TYR) activity is in urgent demand for both fundamental research and practical application, but the exploration of functional materials with good biocompatibility for its activity evaluation at the intracellular level is still challenging until now. In this work, we develop a convenient and real-time assay with high sensitivity for TYR activity/level monitoring and its inhibitor screening based on biocompatible dopamine functionalized carbon quantum dots (Dopa-CQDs). Dopamine with redox property was functionalized on the surface of carbon quantum dots to construct a Dopa-CQDs conjugate with strong bluish green fluorescence. When the dopamine moiety in Dopa-CQDs conjugate was oxidized to a dopaquinone derivative under specific catalysis of TYR, an intraparticle photoinduced electron transfer (PET) process between CQDs and dopaquinone moiety took place, and then the fluorescence of the conjugate could be quenched simultaneously. Quantitative evaluation of TYR activity was established in terms of the relationship between fluorescence quenching efficiency and TYR activity. The assay covered a broad linear range of up to 800 U/L with a low detection limit of 7.0 U/L. Arbutin, a typical inhibitor of TYR, was chosen as an example to assess its function of inhibitor screening, and positive results were observed that fluorescence quenching extent of the probe was reduced in the presence of arbutin. It is also demonstrated that Dopa-CQD conjugate possesses excellent biocompatibility, and can sensitively monitor intracellular tyrosinase level in melanoma cells and intracellular pH changes in living cells, which provides great potential in application of TYR/pH-associated disease monitoring and medical diagnostics.
Collapse
Affiliation(s)
- Lujing Chai
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, China
| | - Jin Zhou
- Beijing National laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Bejing 100190, China
| | - Hui Feng
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, China
| | - Cong Tang
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, China
| | - Yuanyuan Huang
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, China
| | - Zhaosheng Qian
- College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004, China
| |
Collapse
|
27
|
Yan X, Li H, Zheng W, Su X. Visual and Fluorescent Detection of Tyrosinase Activity by Using a Dual-Emission Ratiometric Fluorescence Probe. Anal Chem 2015; 87:8904-9. [DOI: 10.1021/acs.analchem.5b02037] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xu Yan
- Department
of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Hongxia Li
- School
of Pharmacy, Jilin University, Changchun 130021, P.R. China
| | - Weishi Zheng
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xingguang Su
- Department
of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
28
|
Novel synthesis of gold nanoclusters templated with l-tyrosine for selective analyzing tyrosinase. Anal Chim Acta 2014; 840:87-92. [DOI: 10.1016/j.aca.2014.05.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/11/2014] [Accepted: 05/31/2014] [Indexed: 11/24/2022]
|
29
|
Freeman R, Girsh J, Willner B, Willner I. Sensing and Biosensing with Semiconductor Quantum Dots. Isr J Chem 2012. [DOI: 10.1002/ijch.201200079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
|
31
|
Liu CH, Yu CJ, Tseng WL. Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal Chim Acta 2012; 745:143-8. [DOI: 10.1016/j.aca.2012.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 12/01/2022]
|
32
|
Li S, Mao L, Tian Y, Wang J, Zhou N. Spectrophotometric detection of tyrosinase activity based on boronic acid-functionalized gold nanoparticles. Analyst 2012; 137:823-5. [DOI: 10.1039/c2an16085d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Kim TI, Park J, Park S, Choi Y, Kim Y. Visualization of tyrosinase activity in melanoma cells by a BODIPY-based fluorescent probe. Chem Commun (Camb) 2011; 47:12640-2. [DOI: 10.1039/c1cc15061h] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Xu Q, Yoon J. Visual detection of dopamine and monitoring tyrosinase activity using a pyrocatechol violet–Sn4+ complex. Chem Commun (Camb) 2011; 47:12497-9. [DOI: 10.1039/c1cc15587c] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Feng F, Liu L, Yang Q, Wang S. Water-Soluble Conjugated Polymers for Fluorescent-Enzyme Assays. Macromol Rapid Commun 2010; 31:1405-21. [DOI: 10.1002/marc.201000020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/25/2010] [Indexed: 11/08/2022]
|
36
|
Feng X, Feng F, Yu M, He F, Xu Q, Tang H, Wang S, Li Y, Zhu D. Synthesis of a New Water-Soluble Oligo(phenylenevinylene) Containing a Tyrosine Moiety for Tyrosinase Activity Detection. Org Lett 2008; 10:5369-72. [DOI: 10.1021/ol802210s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuli Feng
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fude Feng
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Minghui Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fang He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qingling Xu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongwei Tang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
37
|
Yildiz HB, Freeman R, Gill R, Willner I. Electrochemical, Photoelectrochemical, and Piezoelectric Analysis of Tyrosinase Activity by Functionalized Nanoparticles. Anal Chem 2008; 80:2811-6. [DOI: 10.1021/ac702401v] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huseyin Bekir Yildiz
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ronit Freeman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Gill
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
38
|
Freeman R, Elbaz J, Gill R, Zayats M, Willner I. Analysis of Dopamine and Tyrosinase Activity on Ion-Sensitive Field-Effect Transistor (ISFET) Devices. Chemistry 2007; 13:7288-93. [PMID: 17685382 DOI: 10.1002/chem.200700734] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dopamine (1) and tyrosinase (TR) activities were analyzed by using chemically modified ion-sensitive field-effect transistor (ISFET) devices. In one configuration, a phenylboronic acid functionalized ISFET was used to analyze 1 or TR. The formation of the boronate-1 complex on the surface of the gate altered the electrical potential associated with the gate, and thus enabled 1 to be analyzed with a detection limit of 7x10(-5) M. Similarly, the TR-induced formation of 1, and its association with the boronic acid ligand allowed a quantitative assay of TR to be performed. In another configuration, the surface of the ISFET gate was modified with tyramine or 1 to form functional surfaces for analyzing TR activities. The TR-induced oxidation of the tyramine- or 1-functionalized ISFETs resulted in the formation of the redox-active dopaquinone units. The control of the gate potential by the redox-active dopaquinone units allowed a quantitative assay of TR to be performed. The dopaquinone-functionalized ISFETs could be regenerated to give the 1-modified sensing devices by treatment with ascorbic acid.
Collapse
Affiliation(s)
- Ronit Freeman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
39
|
Baron R, Zayats M, Willner I. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 2007; 77:1566-71. [PMID: 15762558 DOI: 10.1021/ac048691v] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neurotransmitters dopamine (1), L-DOPA (2), adrenaline (3), and noradrenaline (4) mediate the generation and growth of Au nanoparticles (Au-NPs). The plasmon absorbance of the Au-NPs allows the quantitative colorimetric detection of the neurotransmitters. Neurotransmitters 1, 2, and 4 are sensed with a detection limit of 2.5 x 10(-6) M, whereas the detection limit for analyzing 3 corresponds to 2 x 10(-5) M. The neurotransmitter-mediated growth of the Au-NPs is also used to probe the activity of tyrosinase. The later biocatalyst oxidizes tyrosine to L-DOPA that mediates the growth of the Au-NPs. The analysis of tyrosinase activity is important for detecting melanoma cells and Parkinson disease.
Collapse
Affiliation(s)
- Ronan Baron
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
40
|
Baron R, Willner B, Willner I. Biomolecule–nanoparticle hybrids as functional units for nanobiotechnology. Chem Commun (Camb) 2007:323-32. [PMID: 17220964 DOI: 10.1039/b610721b] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomolecule-metal or semiconductor nanoparticle (NP) hybrid systems combine the recognition and catalytic properties of biomolecules with the unique electronic and optical properties of NPs. This enables the application of the hybrid systems in developing new electronic and optical biosensors, to synthesize nanowires and nanocircuits, and to fabricate new devices. Metal NPs are employed as nano-connectors that activate redox enzymes, and they act as electrical or optical labels for biorecognition events. Similarly, semiconductor NPs act as optical probes for biorecognition processes. Double-stranded DNA or protein chains that are modified with metallic nanoclusters act as templates for the synthesis of metallic nanowires. The nanowires are used as building blocks to assemble nano-devices such as a transistor or a nanotransporter.
Collapse
Affiliation(s)
- Ronan Baron
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | |
Collapse
|
41
|
Abstract
Biomolecule-nanoparticle (NP) [or quantum-dot (QD)] hybrid systems combine the recognition and biocatalytic properties of biomolecules with the unique electronic, optical, and catalytic features of NPs and yield composite materials with new functionalities. The biomolecule-NP hybrid systems allow the development of new biosensors, the synthesis of metallic nanowires, and the fabrication of nanostructured patterns of metallic or magnetic NPs on surfaces. These advances in nanobiotechnology are exemplified by the development of amperometric glucose sensors by the electrical contacting of redox enzymes by means of AuNPs, and the design of an optical glucose sensor by the biocatalytic growth of AuNPs. The biocatalytic growth of metallic NPs is used to fabricate Au and Ag nanowires on surfaces. The fluorescence properties of semiconductor QDs are used to develop competitive maltose biosensors and to probe the biocatalytic functions of proteases. Similarly, semiconductor NPs, associated with electrodes, are used to photoactivate bioelectrocatalytic cascades while generating photocurrents.
Collapse
Affiliation(s)
- Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel.
| | | | | |
Collapse
|
42
|
Li D, Gill R, Freeman R, Willner I. Probing of enzyme reactions by the biocatalyst-induced association or dissociation of redox labels linked to monolayer-functionalized electrodes. Chem Commun (Camb) 2006:5027-9. [PMID: 17146516 DOI: 10.1039/b614141b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activities of the enzymes tyrosinase and thrombin are probed by the association of the ferrocene boronic acid label to the enzyme-generated catechol ligand, and by the cleavage of the ligand-redox complex tethered to a peptide, respectively.
Collapse
Affiliation(s)
- Di Li
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | |
Collapse
|
43
|
Gill R, Freeman R, Xu JP, Willner I, Winograd S, Shweky I, Banin U. Probing Biocatalytic Transformations with CdSe−ZnS QDs. J Am Chem Soc 2006; 128:15376-7. [PMID: 17131995 DOI: 10.1021/ja066636t] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CdSe/ZnS QDs enable the optical probing of the biocatalytic oxidation of tyrosine derivatives and of the scission of peptides by thrombin. CdSe/ZnS QDs were modified with tyrosine methyl ester or with a tyrosine-containing peptide. The tyrosine units were reacted with tyrosinase/O2 to yield the respective l-DOPA and quinone derivatives. The luminescence of QDs modified by the enzyme-generated quinone units is quenched. The quinone-functionalized peptide associated with the QDs was cleaved by thrombin, a process that restored the luminescence of the QDs.
Collapse
Affiliation(s)
- Ron Gill
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
44
|
Willner I, Baron R, Willner B. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 2006; 22:1841-52. [PMID: 17071070 DOI: 10.1016/j.bios.2006.09.018] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 08/18/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
The similar dimensions of biomolecules such as enzymes, antibodies or DNA, and metallic or semiconductor nanoparticles (NPs) enable the synthesis of biomolecule-NP hybrid systems where the unique electronic, photonic and catalytic properties of NPs are combined with the specific recognition and biocatalytic properties of biomolecules. The unique functions of biomolecule-NP hybrid systems are discussed with several examples: (i) the electrical contacting of redox enzymes with electrodes is the basis for the development of enzymatic electrodes for amperometric biosensors or biofuel cell elements. The reconstitution of the apo-glucose oxidase or apo-glucose dehydrogenase on flavin adenine dinucleotide (FAD)-functionalized Au NPs (1.4 nm) associated with electrodes, or on pyrroloquinoline quinone (PQQ)-functionalized Au NPs (1.4 nm) associated with electrodes, respectively, yields electrically contacted enzyme electrodes. The aligned, reconstituted enzymes on the electrode surfaces reveal effective electrical contacting, and the glucose oxidase and glucose dehydrogenase reveal turnover rates of 5000 and 11,800 s(-1), respectively. (ii) The photoexcitation of semiconductor nanoparticles yields fluorescence with a wavelength controlled by the size of the NPs. The fluorescence functions of semiconductor NPs are used to develop a fluorescence resonance energy transfer (FRET) assay for nucleic acids, and specifically, for analyzing telomerase activity in cancer cells. CdSe-ZnS NPs are functionalized by a primer recognized by telomerase, and this is elongated by telomerase extracted from HeLa cancer cells in the presence of dNTPs and Texas-red-functionalized dUTP. The dye integrated into the telomers allows the FRET process that is intensified as telomerization proceeds. Also, the photoexcited electron-hole pair generated in semiconductor NPs is used to generate photocurrents in a CdS-DNA hybrid system associated with an electrode. A redox-active intercalator, methylene blue, was incorporated into a CdS-duplex DNA monolayer associated with a Au electrode, and this facilitated the electron transfer between the electrode and the CdS NPs. The direction of the photocurrent was controlled by the oxidation state of the intercalator. (iii) Biocatalysts grow metallic NPs, and the absorbance of the NPs provides a means to assay the biocatalytic transformations. This is exemplified with the glucose oxidase-induced growth of Au NPs and with the tyrosinase-stimulated growth of Au NPs, in the presence of glucose or tyrosine, respectively. The biocatalytic growth of the metallic NPs is used to grow nanowires on surfaces. Glucose oxidase or alkaline phosphatase functionalized with Au NPs (1.4 nm) acted as 'biocatalytic inks' for the synthesis of metallic nanowires. The deposition of the Au NP-modified glucose oxidase, or the Au NP-modified alkaline phosphatase on Si surfaces by dip-pen nanolithography led to biocatalytic templates, that after interaction with glucose/AuCl4- or p-aminophenolphosphate/Ag+, allowed the synthesis of Au nanowires or Ag nanowires, respectively.
Collapse
Affiliation(s)
- Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|