1
|
Kangari P, Roshangar L, Iraji A, Talaei-Khozani T, Razmkhah M. Accelerating effect of Shilajit on osteogenic property of adipose-derived mesenchymal stem cells (ASCs). J Orthop Surg Res 2022; 17:424. [PMID: 36153551 PMCID: PMC9509599 DOI: 10.1186/s13018-022-03305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Shilajit has been widely used remedy for treating a numerous of illness such as bone defects in Iran traditional folk medicine since hundreds of years ago. The aim of the present study was to explore the effect of Shilajit on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (ASCs) in two- (2D) and three-dimensional (3D) cultures. MATERIALS AND METHODS ASCs were seeded in 3D 1% alginate (Alg) hydrogel with or without Shilajit (500 µg/mL) and compared with 2D cultures. Then, characterization was done using electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), alkaline phosphatase (ALP) activity, alizarin red staining and Raman confocal microscopy. RESULTS Adding Shilajit had no impact on the Alg scaffold degradability. In the 3D hydrogel and in the presence of osteogenic medium (OM), Shilajit acted as enhancer to increase ALP activity and also showed osteoinductive property in the absence of OM compared to the 2D matched groups at all time points (days 7 and 21 both P = 0.0006, for 14 days P = 0.0006 and P = 0.002, respectively). In addition, calcium deposition was significantly increased in the cultures exposed to Shilajit compared to 2D matched groups on days 14 (P < 0.0001) and 21 (P = 0.0003 and P = 0.003, respectively). In both 3D and 2D conditions, Shilajit induced osteogenic differentiation, but Shilajit/Alg combination starts osteogenic differentiation in a short period of time. CONCLUSION As Shilajit accelerates the differentiation of ASCs into the osteoblasts, without changing the physical properties of the Alg hydrogel, this combination may pave the way for more promising remedies considering bone defects.
Collapse
Affiliation(s)
- Parisa Kangari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Alshubaily FA, Jambi EJ. Correlation between Antioxidant and Anti-Osteoporotic Activities of Shilajit Loaded into Chitosan Nanoparticles and Their Effects on Osteoporosis in Rats. Polymers (Basel) 2022; 14:polym14193972. [PMID: 36235920 PMCID: PMC9571855 DOI: 10.3390/polym14193972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Various therapies for osteoporosis successfully reduce bone loss and fractures, but they mostly do not contribute to new bone structures and adversely affect patients. Shilajit is a natural mineral substance comprised of multi-components, with proved efficacy to improve immunity, antioxidant activity, and disease resistance. In the present study, various effects of shilajit water extract (SWE) on bone development and its management were determined in experimental glucocorticoid-induced osteoporotic rats. The fabrication of nanochitosan (NCT) and NCT conjugation with SWE were conducted and evaluated as enhanced formulations for treating osteoporosis. NCT and SWE/NCT had mean particle diameters of 196.4 and 248.4 nm, respectively, with high positivity charging and stability. The biochemical and anti-osteoporotic effects of SWE and SWE/NCT conjugates were investigated on different groups of compromised rats. Five groups each including six adult albino female rats were formed and treated for a duration of eight weeks with SWE and SWE/NCT conjugate. Significantly improved serum calcium, phosphorus, osteocalcin, and calcitonin levels but decreased hydrogen peroxide, IL-6, and antioxidant biomarkers were recorded in all SWE- and SWE/NCT-treated groups; the SWE/NCT treatment was most effectual treatment. These results suggest that SWE and SWE/NCT may cause anti-osteoporotic activity by reducing oxidative stress, IL-6, and H2O2 while restoring antioxidant levels. The conjugation of SWE onto NCT is highly recommended for augmenting their activities.
Collapse
|
3
|
Aldakheel RK, Gondal MA, Alsayed HN, Almessiere MA, Nasr MM, Shemsi AM. Rapid Determination and Quantification of Nutritional and Poisonous Metals in Vastly Consumed Ayurvedic Herbal Medicine (Rejuvenator Shilajit) by Humans Using Three Advanced Analytical Techniques. Biol Trace Elem Res 2022; 200:4199-4216. [PMID: 34800280 DOI: 10.1007/s12011-021-03014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Shilajit is used commonly as Ayurvedic medicine worldwide which is Rasayana herbo-mineral substance and consumed to restore the energetic balance and to prevent diseases like cognitive disorders and Alzheimer. Locally, Shilajit is applied for patients diagnosed with bone fractures. For safety of the patients, the elemental analysis of Shilajit is imperative to evaluate its nutritional quality as well as contamination from heavy metals. The elemental composition of Shilajit was conducted using three advanced analytical techniques (LIBS, ICP, and EDX). For the comparative studies, the two Shilajit kinds mostly sold globally produced in India and Pakistan were collected. Our main focus is to highlight nutritional eminence and contamination of heavy metals to hinge on Shilajit therapeutic potential. In this work, laser-induced breakdown spectroscopy (LIBS) was applied for qualitative and quantitative analysis of the Shilajit. Our LIBS analysis revealed that Shilajit samples composed of several elements like Ca, S, K, Mg, Al, Na, Sr, Fe, P, Si, Mn, Ba, Zn, Ni, B, Cr, Co, Pb, Cu, As, Hg, Se, and Ti. Indian and Pakistani Shilajits were highly enriched with Ca, S, and K nutrients and contained Al, Sr, Mn, Ba, Zn, Ni, B, Cr, Pb, As, and Hg toxins in amounts that exceeded the standard permissible limit. Even though the content of most elements was comparable among both Shilajits, nutrients, and toxins, in general, were accentuated more in Indian Shilajit with the sole detection of Hg and Ti. The elemental quantification was done using self-developed calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method, and LIBS results are in well agreement with the concentrations determined by standard ICP-OES/MS method. To verify our results by LIBS and ICP-OES/MS techniques, EDX spectroscopy was also conducted which confirmed the presence above mentioned elements. This work is highly significant for creating awareness among people suffering due to overdose of this product and save many human lives.
Collapse
Affiliation(s)
- R K Aldakheel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M A Gondal
- Laser Research Group, Physics Department, IRC-Hydrogen & Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
- K.A. CARE Energy Research and Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Hasan N Alsayed
- Department of Orthopedic Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M M Nasr
- Physics Department, Riyadh Elm University, P.O. Box 321815, Riyadh, 11343, Saudi Arabia
| | - A M Shemsi
- Center for Environment and Marine Study, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Mishra T, Dhaliwal HS, Singh K, Singh N. Shilajit (Mumie): Current Status of Biochemical, Therapeutic and Clinical Advances. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666170823160217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: Shilajit (mumie), a natural multi-component herbomineral ethnomedicinal
food, is used as a traditional medicine for enhancing the quality of life and for management of health
ailments in many countries of the world. Use of Shilajit as an adaptogen, aphrodisiac, rejuvenator and
anti-aging substance is mentioned in many ancient texts. This review aims to provide comprehensive
insights into its biochemical aspects, microbial role in biosynthesis, bioactivities and to establish correlation
between traditional uses and scientifically validated research findings.
Methods:
Scientific literature and ethnopharmacological information were compiled from the published
peer-reviewed articles, unpublished materials, thesis, books, patent databases, clinical trial registries
and from the websites of research councils of traditional medicine. The scientific databases,
thesis repositories and books databases were searched with keywords Shilajit, mumie, mumijo,
salajeet, asphaltum, fulvic acid, dibenzo-alpha-pyrones etc.
Results:
Scientifically validated research and ancient texts suggest multifaceted benefits of Shilajit. It
is endowed with anti-stress, memory and energy enhancing, antioxidant, anti-inflammatory, antidiabetic,
spermatogenic, neuroprotective, antiulcer and wound healing activities. These pharmacological
effects are mainly attributed to the presence of humic acid, fulvic acid, dibenzo-α-pyrones, dibenzo-
α-pyrones chromoproteins and trace elements.
Conclusion:
This review summarizes the traditional importance of Shilajit for the treatment and prevention
of several acute and chronic diseases and health ailments. Despite numerous health claims,
there are still major gaps in our understanding of its mechanism of action, variability in efficacy and
toxicity profile. Therefore, a coordinated interdisciplinary approach is needed to establish the underlying
mechanisms of action, comprehensive toxicological profile, pharmacokinetics parameters and effects
on different organ systems. Regulatory and governmental impetus to basic and clinical research,
safety testing and formulations quality control is warranted.
Collapse
Affiliation(s)
- Tanuja Mishra
- Department of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India
| | - Harcharan S. Dhaliwal
- Department of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India
| | - Karan Singh
- Chemistry, Eternal University, Baru Sahib-173101, Himachal Pradesh, India
| | - Nasib Singh
- Department of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India
| |
Collapse
|
5
|
Musthafa MS, Jawahar Ali AR, Hyder Ali AR, Mohamed MJ, War M, Naveed MS, Al-Sadoon MK, Paray BA, Rani KU, Arockiaraj J, Balasundaram C, Harikrishnan R. Effect of Shilajit enriched diet on immunity, antioxidants, and disease resistance in Macrobrachium rosenbergii (de Man) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2016; 57:293-300. [PMID: 27546551 DOI: 10.1016/j.fsi.2016.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
The effect of diet supplemented with Shilajit, a multi-component natural mineral substance on the antioxidant activity, immune response, and disease resistance in freshwater prawn, Macrobrachium rosenbergii (de Man) against Aeromonas hydrophila is reported. The total hemocyte count (THC) and phagocytic activity significantly increased with 2 g kg(-1) supplemented diet on first week and with other enriched diets on weeks 2 and 4. The respiratory burst (RB) activity and glutathione peroxidase (GPx) activity were significantly increased with 2 g kg(-1) supplemented diet on weeks 1 and 2 whereas 2 and 4 g kg(-1) diets on week 4. The phenoloxidase (PO) activity increased significantly with 2 g kg(-1) diet only on second week and with other enriched diets only on fourth week. The superoxide dismutase (SOD) activity increased significantly with any enriched diet during the experimental period except with 6 g kg(-1) diets on first week. However, the glutathione reductase (GR) activity was enhanced significantly only with 2 g kg(-1) enriched diets on weeks 2 and 4. The cumulative mortality of the prawn fed with 2 and 4 g kg(-1) enriched diets was 10% and 15% whereas with 6 g kg(-1) diet the mortality was 20%. The results suggest that diet enriched with Shilajit at 2 g kg(-1) or 4 g kg(-1) positively enhances the antioxidant activity, immunity, and disease resistance in M. rosenbergii against A. hydrophila.
Collapse
Affiliation(s)
| | | | | | - Mohamed Jamal Mohamed
- P.G. & Research Department of Zoology, The New College, Chennai 600 014, Tamil Nadu, India
| | - Mehrajuddin War
- P.G. & Research Department of Zoology, The New College, Chennai 600 014, Tamil Nadu, India
| | - Mohamed Saquib Naveed
- P.G. & Research Department of Zoology, The New College, Chennai 600 014, Tamil Nadu, India
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Kuppusamy Umaa Rani
- Department of Biotechnology, Sri Sankara Arts and Science College, Kancheepuram 631 561, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur 613 005, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India.
| |
Collapse
|
6
|
Douglas TEL, Krawczyk G, Pamula E, Declercq HA, Schaubroeck D, Bucko MM, Balcaen L, Van Der Voort P, Bliznuk V, van den Vreken NMF, Dash M, Detsch R, Boccaccini AR, Vanhaecke F, Cornelissen M, Dubruel P. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. J Tissue Eng Regen Med 2014; 10:938-954. [PMID: 24616374 DOI: 10.1002/term.1875] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 11/06/2013] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
Abstract
Mineralization of hydrogels, desirable for bone regeneration applications, may be achieved enzymatically by incorporation of alkaline phosphatase (ALP). ALP-loaded gellan gum (GG) hydrogels were mineralized by incubation in mineralization media containing calcium and/or magnesium glycerophosphate (CaGP, MgGP). Mineralization media with CaGP:MgGP concentrations 0.1:0, 0.075:0.025, 0.05:0.05, 0.025:0.075 and 0:0.1 (all values mol/dm3 , denoted A, B, C, D and E, respectively) were compared. Mineral formation was confirmed by IR and Raman, SEM, ICP-OES, XRD, TEM, SAED, TGA and increases in the the mass fraction of the hydrogel not consisting of water. Ca was incorporated into mineral to a greater extent than Mg in samples mineralized in media A-D. Mg content and amorphicity of mineral formed increased in the order A < B < C < D. Mineral formed in media A and B was calcium-deficient hydroxyapatite (CDHA). Mineral formed in medium C was a combination of CDHA and an amorphous phase. Mineral formed in medium D was an amorphous phase. Mineral formed in medium E was a combination of crystalline and amorphous MgP. Young's moduli and storage moduli decreased in dependence of mineralization medium in the order A > B > C > D, but were significantly higher for samples mineralized in medium E. The attachment and vitality of osteoblastic MC3T3-E1 cells were higher on samples mineralized in media B-E (containing Mg) than in those mineralized in medium A (not containing Mg). All samples underwent degradation and supported the adhesion of RAW 264.7 monocytic cells, and samples mineralized in media A and B supported osteoclast-like cell formation. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy E L Douglas
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Belgium
| | - Grzegorz Krawczyk
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| | - Elzbieta Pamula
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| | - Heidi A Declercq
- Department of Basic Medical Science - Histology Group, Ghent University, Belgium
| | - David Schaubroeck
- Centre for Microsystems Technology (CMST), ELIS, Imec, Ghent, Belgium
| | - Miroslaw M Bucko
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| | - Lieve Balcaen
- Department of Analytical Chemistry, Ghent University, Belgium
| | | | - Vitaliy Bliznuk
- Department of Materials Science and Engineering, Zwijnaarde, Belgium
| | | | - Mamoni Dash
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Belgium
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials (WW7), University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials (WW7), University of Erlangen-Nuremberg, Erlangen, Germany
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University, Belgium
| | - Maria Cornelissen
- Department of Basic Medical Science - Histology Group, Ghent University, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Belgium
| |
Collapse
|
7
|
Schepetkin IA, Xie G, Jutila MA, Quinn MT. Complement-fixing activity of fulvic acid from Shilajit and other natural sources. Phytother Res 2009; 23:373-84. [PMID: 19107845 PMCID: PMC2650748 DOI: 10.1002/ptr.2635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Shilajit has been used traditionally in folk medicine for the treatment of a variety of disorders, including syndromes involving excessive complement activation. Extracts of Shilajit contain significant amounts of fulvic acid (FA), and it has been suggested that FA is responsible for many therapeutic properties of Shilajit. However, little is known regarding the physical and chemical properties of Shilajit extracts, and nothing is known about their effects on the complement system. To address this issue, extracts of commercial Shilajit were fractionated using anion exchange and size-exclusion chromatography. One neutral (S-I) and two acidic (S-II and S-III) fractions were isolated, characterized and compared with standardized FA samples. The most abundant fraction (S-II) was further fractionated into three sub-fractions (S-II-1 to S-II-3). The van Krevelen diagram showed that the Shilajit fractions are the products of polysaccharide degradation, and all fractions, except S-II-3, contained type II arabinogalactan. All Shilajit fractions exhibited dose-dependent complement-fixing activity in vitro with high potency. Furthermore, a strong correlation was found between the complement-fixing activity and carboxylic group content in the Shilajit fractions and other FA sources. These data provide a molecular basis to explain at least part of the beneficial therapeutic properties of Shilajit and other humic extracts.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Gang Xie
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Mark A. Jutila
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| | - Mark T. Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|