1
|
Sykes EME, White D, McLaughlin S, Kumar A. Salicylic acids and pathogenic bacteria: new perspectives on an old compound. Can J Microbiol 2024; 70:1-14. [PMID: 37699258 DOI: 10.1139/cjm-2023-0123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Salicylic acids have been used in human and veterinary medicine for their anti-pyretic, anti-inflammatory, and analgesic properties for centuries. A key role of salicylic acid-immune modulation in response to microbial infection-was first recognized during studies of their botanical origin. The effects of salicylic acid on bacterial physiology are diverse. In many cases, they impose selective pressures leading to development of cross-resistance to antimicrobial compounds. Initial characterization of these interactions was in Escherichia coli, where salicylic acid activates the multiple antibiotic resistance (mar) operon, resulting in decreased antibiotic susceptibility. Studies suggest that stimulation of the mar phenotype presents similarly in closely related Enterobacteriaceae. Salicylic acids also affect virulence in many opportunistic pathogens by decreasing their ability to form biofilms and increasing persister cell populations. It is imperative to understand the effects of salicylic acid on bacteria of various origins to illuminate potential links between environmental microbes and their clinically relevant antimicrobial-resistant counterparts. This review provides an update on known effects of salicylic acid and key derivatives on a variety of bacterial pathogens, offers insights to possible potentiation of current treatment options, and highlights cellular regulatory networks that have been established during the study of this important class of medicines.
Collapse
Affiliation(s)
- Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Dawn White
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sydney McLaughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Borgogna JLC, Grace SG, Holm JB, Aviles Zuniga T, Kadriu H, He X, McCoski SR, Ravel J, Brotman RM, Yeoman CJ. Investigating the impact of condomless vaginal intercourse and lubricant use on the vaginal metabolome: a pre-post observational study. Sex Transm Infect 2023; 99:489-496. [PMID: 37258272 PMCID: PMC11174154 DOI: 10.1136/sextrans-2022-055667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE The vaginal metabolome is a significant factor in the vaginal microenvironment, and data are emerging on its independent role in urogenital health. Condomless vaginal intercourse and personal lubricant use are common practices that may affect the vaginal metabolome. The aim of the present study is to describe the associations between condomless intercourse and lubricant use on the vaginal metabolome. METHODS This study used archived mid-vaginal swabs from a 10-week observational cohort of reproductive age women who self-collected samples and recorded behavioural diaries daily. Cases and controls were defined as participants who self-reported condomless vaginal intercourse with or without lubricant use, respectively. Samples were drawn prior to and following condomless vaginal intercourse. Twenty-two case participants were race/ethnicity matched to 22 control participants. Mid-vaginal swabs were subjected to 16S rRNA gene amplicon sequencing and untargeted ultrahigh performance liquid chromatography tandem mass spectroscopy metabolomics. Bayesian mixed-effects regression (unadjusted and adjusted for the vaginal microbiota) was used to evaluate differences in metabolite concentration associated with vaginal intercourse and lubricant use. RESULTS Both condomless penile-vaginal intercourse and lubricant use were independently associated with higher (up to 8.3-fold) concentrations of metabolites indicative of epithelial damage (eg, sarcosine) and many host-produced antioxidants. Lubricant use was significantly associated with increases in lipids related to cellular damage, host-produced sphingolipids (antimicrobials), antioxidants and salicylate, a cooling agent common to lubricants, in a study design which controls for the independent effect of intercourse. Metabolites involved in oxidative stress and salicylate were strongly correlated with several molecular bacterial vaginosis-associated bacteria. CONCLUSIONS This study provides important foundational data on how condomless vaginal-penile intercourse and lubricant use affect the vaginal metabolome and may affect the protective mechanisms in the vaginal microenvironment.
Collapse
Affiliation(s)
- Joanna-Lynn C Borgogna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Savannah G Grace
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Johanna B Holm
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tadeo Aviles Zuniga
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Herlin Kadriu
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Xin He
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Carl J Yeoman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
3
|
Shcherbakova A, Strömstedt AA, Göransson U, Gnezdilov O, Turanov A, Boldbaatar D, Kochkin D, Ulrich-Merzenich G, Koptina A. Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates. World J Microbiol Biotechnol 2021; 37:129. [PMID: 34232401 PMCID: PMC8263414 DOI: 10.1007/s11274-021-03099-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Lichens are symbiotic organisms formed by a fungus and one or more photosynthetic partners which are usually alga or cyanobacterium. Their diverse and scarcely studied metabolites facilitate adaptability to extreme living conditions. We investigated Evernia prunastri (L.) Ach., a widely distributed lichen, for its antimicrobial and antioxidant potential. E. prunastri was sequentially extracted by hexane (Hex), dichloromethane (DCM) and acetonitrile (ACN) that were screened for their antioxidant and antimicrobial (against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans) activities. The Hex extract possessed the highest antioxidant capacity (87 mg ascorbic acid/g extract) corresponding to the highest content of phenols (73 mg gallic acid/g extract). The DCM and Hex extracts were both active against S. aureus (MICs of 4 and 21 µg/ml, respectively) but were less active against Gram-negative bacteria and yeast. The ACN extract exhibited activity on both S. aureus (MIC 14 µg/ml) and C. albicans (MIC 38 µg/ml) and was therefore further fractionated by silica gel column chromatography. The active compound of the most potent fraction was subsequently characterized by 1H and 13C-NMR spectroscopy and identified as evernic acid. Structural similarity analyses were performed between compounds from E. prunastri and known antibiotics from different classes. The structural similarity was not present. Antioxidant and antimicrobial activities of E. prunastri extracts originate from multiple chemical compounds; besides usnic acid, most notably evernic acid and derivatives thereof. Evernic acid and its derivatives represent possible candidates for a new class of antibiotics.
Collapse
Affiliation(s)
- A Shcherbakova
- Volga State University of Technology, Lenin Sq., 3, Yoshkar-Ola, Russia, 424000
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
- Medical Clinic III, AG Synergy Research and Experimental Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - A A Strömstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
| | - U Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
| | - O Gnezdilov
- FRC Kazan Scientific Center, Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Sibirsky Tract, 10/7, Kazan, Russia, 420029
| | - A Turanov
- FRC Kazan Scientific Center, Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Sibirsky Tract, 10/7, Kazan, Russia, 420029
| | - D Boldbaatar
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
- The Liver Center, Dalai Tower, Unesco Street 31, Sukhbaatar District, Ulaanbaatar, 14230, Mongolia
| | - D Kochkin
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, 1-12 Leninskiye Gory, Moscow, Russia, 119234
| | - G Ulrich-Merzenich
- Medical Clinic III, AG Synergy Research and Experimental Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - A Koptina
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| |
Collapse
|
4
|
Mandal R, Cano R, Davis CD, Hayashi D, Jackson SA, Jones CM, Lampe JW, Latulippe ME, Lin NJ, Lippa KA, Piotrowski P, Da Silva SM, Swanson KS, Wishart DS. Workshop report: Toward the development of a human whole stool reference material for metabolomic and metagenomic gut microbiome measurements. Metabolomics 2020; 16:119. [PMID: 33164148 PMCID: PMC7649161 DOI: 10.1007/s11306-020-01744-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To date, there has been little effort to develop standards for metabolome-based gut microbiome measurements despite the significant efforts toward standard development for DNA-based microbiome measurements. OBJECTIVES The National Institute of Standards and Technology (NIST), The BioCollective (TBC), and the North America Branch of the International Life Sciences Institute (ILSI North America) are collaborating to extend NIST's efforts to develop a Human Whole Stool Reference Material for the purpose of method harmonization and eventual quality control. METHODS The reference material will be rationally designed for adequate quality assurance and quality control (QA/QC) for underlying measurements in the study of the impact of diet and nutrition on functional aspects of the host gut microbiome and relationships of those functions to health. To identify which metabolites deserve priority in their value assignment, NIST, TBC, and ILSI North America jointly conducted a workshop on September 12, 2019 at the NIST campus in Gaithersburg, Maryland. The objective of the workshop was to identify metabolites for which evidence indicates relevance to health and disease and to decide on the appropriate course of action to develop a fit-for-purpose reference material. RESULTS This document represents the consensus opinions of workshop participants and co-authors of this manuscript, and provides additional supporting information. In addition to developing general criteria for metabolite selection and a preliminary list of proposed metabolites, this paper describes some of the strengths and limitations of this initiative given the current state of microbiome research. CONCLUSIONS Given the rapidly evolving nature of gut microbiome science and the current state of knowledge, an RM (as opposed to a CRM) measured for multiple metabolites is appropriate at this stage. As the science evolves, the RM can evolve to match the needs of the research community. Ultimately, the stool RM may exist in sequential versions. Beneficial to this evolution will be a clear line of communication between NIST and the stakeholder community to ensure alignment with current scientific understanding and community needs.
Collapse
Affiliation(s)
- Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Raul Cano
- The BioCollective, LLC, 5650 N Washington St, Denver, CO, 80216, USA
| | - Cindy D Davis
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, 20852, USA
| | | | - Scott A Jackson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Christina M Jones
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Johanna W Lampe
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, M4-B802, PO Box 19024, Seattle, WA, 98109, USA
| | - Marie E Latulippe
- North American Branch of the International Life Sciences Institute (ILSI North America), 740 15th Street NW, Suite 600, Washington, DC, 20005, USA.
| | - Nancy J Lin
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Katrice A Lippa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Paulina Piotrowski
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Sandra M Da Silva
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Kelly S Swanson
- University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
5
|
In Silico Comparison Shows that the Pan-Genome of a Dairy-Related Bacterial Culture Collection Covers Most Reactions Annotated to Human Microbiomes. Microorganisms 2020; 8:microorganisms8070966. [PMID: 32605102 PMCID: PMC7409220 DOI: 10.3390/microorganisms8070966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
The diversity of the human microbiome is positively associated with human health. However, this diversity is endangered by Westernized dietary patterns that are characterized by a decreased nutrient variety. Diversity might potentially be improved by promoting dietary patterns rich in microbial strains. Various collections of bacterial cultures resulting from a century of dairy research are readily available worldwide, and could be exploited to contribute towards this end. We have conducted a functional in silico analysis of the metagenome of 24 strains, each representing one of the species in a bacterial culture collection composed of 626 sequenced strains, and compared the pathways potentially covered by this metagenome to the intestinal metagenome of four healthy, although overweight, humans. Remarkably, the pan-genome of the 24 strains covers 89% of the human gut microbiome’s annotated enzymatic reactions. Furthermore, the dairy microbial collection covers biological pathways, such as methylglyoxal degradation, sulfate reduction, γ-aminobutyric (GABA) acid degradation and salicylate degradation, which are differently covered among the four subjects and are involved in a range of cardiometabolic, intestinal, and neurological disorders. We conclude that microbial culture collections derived from dairy research have the genomic potential to complement and restore functional redundancy in human microbiomes.
Collapse
|
6
|
Kokoska L, Kloucek P, Leuner O, Novy P. Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care. Curr Med Chem 2019; 26:5501-5541. [PMID: 30182844 DOI: 10.2174/0929867325666180831144344] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023]
Abstract
A number of papers reporting antimicrobial properties of extracts, essential oils, resins and various classes of compounds isolated from higher plants have been published in recent years; however, a comprehensive analysis of plant-derived antimicrobial agents currently applied in practice for the improvement of human health is still lacking. This review summarizes data on clinical efficacy, antimicrobial effects and the chemistry of commercially available antibacterial and antifungal agents of plant origin currently used in the prevention and treatment of gastrointestinal, oral, respiratory, skin, and urinary infections. As a result of an analysis of the literature, more than 40 plant-derived over-the-counter pharmaceuticals, dietary supplements, cosmetics, herbal medicines, and functional foods containing complex mixtures (e.g. Glycyrrhiza glabra extract, Melaleuca alternifolia essential oil, and Pistacia lentiscus resin), pure compounds (e.g. benzoic acid, berberine, eucalyptol, salicylic acid and thymol) as well as their derivatives and complexes (e.g. bismuth subsalicylate and zinc pyrithione) have been identified. The effectiveness of many of these products is illustrated by results of clinical trials and supported by data on there in vitro antimicrobial activity. A broad spectrum of various commercial products currently available on the market and their welldocumented clinical efficacy suggests that plants are prospective sources for the identification of new types of antimicrobial agents in future. Innovative approaches and methodologies for effective proof-of-concept research and the development of new types of plant-derived products effective against recently emerging problems related to human microbial diseases (e.g. antimicrobial resistance) are also proposed in this review.
Collapse
Affiliation(s)
- Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Pavel Kloucek
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Pavel Novy
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| |
Collapse
|
7
|
Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol 2016; 9:606-25. [PMID: 27366227 PMCID: PMC4913337 DOI: 10.1177/1756283x16644242] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We discuss the tripartite pathophysiological circuit of inflammatory bowel disease (IBD), involving the intestinal microbiota, barrier function, and immune system. Dysfunction in each of these physiological components (dysbiosis, leaky gut, and inflammation) contributes in a mutually interdependent manner to IBD onset and exacerbation. Genetic and environmental risk factors lead to disruption of gut homeostasis: genetic risks predominantly affect the immune system, environmental risks predominantly affect the microbiota, and both affect barrier function. Multiple genetic and environmental 'hits' are likely necessary to establish and exacerbate disease. Most conventional IBD therapies currently target only one component of the pathophysiological circuit, inflammation; however, many patients with IBD do not respond to immune-modulating therapies. Hope lies in new classes of therapies that target the microbiota and barrier function.
Collapse
Affiliation(s)
- Stephen M. Vindigni
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy L. Zisman
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David L. Suskind
- Department of Pediatrics, Seattle Children’s Hospital and University of Washington, Seattle, WA, USA
| | | |
Collapse
|