1
|
Balcazar-Ochoa LG, Ventura-Martínez R, Ángeles-López GE, Gómez-Acevedo C, Carrasco OF, Sampieri-Cabrera R, Chavarría A, González-Hernández A. Clavulanic Acid and its Potential Therapeutic Effects on the Central Nervous System. Arch Med Res 2024; 55:102916. [PMID: 38039802 DOI: 10.1016/j.arcmed.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Clavulanic acid (CLAV) is a non-antibiotic β-lactam that has been used since the late 1970s as a β-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that β-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.
Collapse
Affiliation(s)
| | - Rosa Ventura-Martínez
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Claudia Gómez-Acevedo
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Francisco Carrasco
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl Sampieri-Cabrera
- Phyisiology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Experimental Medicine Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
2
|
Alhakamy NA, Caruso G, Eid BG, Fahmy UA, Ahmed OAA, Abdel-Naim AB, Alamoudi AJ, Alghamdi SA, Al Sadoun H, Eldakhakhny BM, Caraci F, Abdulaal WH. Ceftriaxone and Melittin Synergistically Promote Wound Healing in Diabetic Rats. Pharmaceutics 2021; 13:1622. [PMID: 34683915 PMCID: PMC8539663 DOI: 10.3390/pharmaceutics13101622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
High glucose levels in diabetic patients are implicated in delay wound healing that could lead to more serious clinical complications. The aim of the present work was to examine the formulation of ceftriaxone (CTX) and melittin (MEL) as nanoconjugate (nanocomplex)-loaded hydroxypropyl methylcellulose (HPMC) (1.5% w/v)-based hydrogel for healing of acute wounds in diabetic rats. The CTX-MEL nanoconjugate, formulated by ion-pairing at different molar ratio, was characterized for size and zeta potential and investigated by transmission electron microscopy. CTX-MEL nanoconjugate was prepared, and its preclinical efficacy evaluated in an in vivo model of acute wound. In particular, the potential ability of the innovative CTX-MEL formulation to modulate wound closure, oxidative status, inflammatory markers, and hydroxyproline was evaluated by ELISA, while the histopathological examination was obtained by using hematoxylin and eosin or Masson's trichrome staining techniques. Quantitative real-time PCR (qRT-PCR) of the excised tissue to measure collagen, type I, alpha 1 (Col1A1) expression and immunohistochemical assessment of vascular endothelial growth factor A (VEGF-A) and transforming growth factor beta 1 (TGF-β1) were also carried out to shed some light on the mechanism of wound healing. Our results show that the CTX-MEL nanocomplex has enhanced ability to regenerate epithelium, also giving better keratinization, epidermal proliferation, and granulation tissue formation, compared to MEL, CTX, or positive control. The nanocomplex also significantly ameliorated the antioxidant status by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) levels. The treatment of wounded skin with the CTX-MEL nanocomplex also showed a significant reduction in interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) pro-inflammatory cytokines combined with a substantial increase in hydroxyproline, VEFG-A, and TGF-β1 protein expression compared to individual components or negative control group. Additionally, the CTX-MEL nanocomplex showed a significant increase in mRNA expression levels of Col1A1 as compared to individual compounds. In conclusion, the ion-pairing nanocomplex of CTX-MEL represents a promising carrier that can be topically applied to improve wound healing.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (U.A.F.); (O.A.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (U.A.F.); (O.A.A.A.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (U.A.F.); (O.A.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Abdulmohsin J. Alamoudi
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Shareefa A. Alghamdi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.A.); (W.H.A.)
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Basmah M. Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.A.); (W.H.A.)
| |
Collapse
|
3
|
Kolahdouz M, Jafari F, Falanji F, Nazemi S, Mohammadzadeh M, Molavi M, Amin B. Clavulanic Acid Attenuating Effect on the Diabetic Neuropathic Pain in Rats. Neurochem Res 2021; 46:1759-1770. [PMID: 33846883 DOI: 10.1007/s11064-021-03308-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/24/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
Diabetic neuropathy is one of the most common complications of diabetes mellitus. Excess glutamate release and oxidative stress are hypothesized to be involved in the pathophysiology of diabetes-induced neuropathy. This study was designed to investigate the effect of clavulanic acid (CLAV), a competitive beta-lactamase inhibitor, on the streptozocin (STZ)-induced neuropathic pain and possible mechanisms in the spinal cord of rats. Male Wistar rats were divided into naive group; control group which got a single dose of STZ (50 mg/kg, i.p.), as a model of diabetic neuropathic pain; prophylactic groups: animals received CLAV (10, 20 and 40 mg/kg, i.p.) 1 week after STZ for 10 days; and therapeutic group: animals received 20 mg/kg CLAV, 21 days after STZ for 10 days. Study of pain behaviors was started on days 0, 7, 14, 21, 28, 35 and 42 after STZ. The expression of the glutamate transport 1 (GLT1), genes of oxidative stress including inducible nitric oxide synthase (iNOS), proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), as well as genes involved in the apoptosis including bcl2, bcl2-associated x (bax) were measured in the spinal cord tissue by Real Time PCR, on day 42. On day 21 post injection of STZ, diabetic animals showed significant mechanical allodynia, cold allodynia and thermal hyperalgesia. CLAV in all doses of 10, 20 and 40 mg/kg reduced symptoms of allodynia and hyperalgesia, in both prophylactic and therapeutic regimens. While iNOS, TNF-α, bax/bcl2 were found significantly overexpressed in spinal cord of diabetic animals, their expression in animals received CLAV had been reduced. In contrast, GLT1 that had decreased in the spinal cord of diabetic animals, significantly increased in those received CLAV. CLAV was found a promising candidate for reliving neuropathic pain in diabetes mellitus. Such beneficial effect of CLAV could be, in part, attributed to the increased expression of GLT 1, inhibition of nitrosative stress, anti-inflammation, and inhibition of some apoptotic mediators followed by administration into diabetic animals.
Collapse
Affiliation(s)
- Mahnoush Kolahdouz
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Faranak Jafari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mohammadzadeh
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehdi Molavi
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
4
|
Baeza-Flores GDC, Rodríguez-Palma EJ, Reyes-Pérez V, Guzmán-Priego CG, Torres-López JE. Antinociceptive effects of ceftriaxone in formalin-induced nociception. Drug Dev Res 2020; 81:728-735. [PMID: 32394536 DOI: 10.1002/ddr.21680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/06/2022]
Abstract
Ceftriaxone (CFX) is a β-lactam antibiotic with analgesic properties. However, its role in the formalin-induced nociception remains unknown. The purpose of this study was to investigate the antinociceptive effect of CFX in the 1% formalin test in rats. Formalin induced a typical nociceptive response (flinching behavior) of two phases. Local peripheral pretreatment (20 min) with CFX (400-800 μg/paw) slightly attenuated the flinching behavior in phase 2, but not phase 1. Acute intraperitoneal pretreatment (20 min) also reduced phase 2 of the formalin test. In both cases, CFX induced a dose-dependent antinociception. We also tested the effect of CFX 1 day after its administration and in two schedules of repeated administration. One-day pretreatment with CFX (50-400 mg/kg, ip) induced a dose-dependent antinociceptive effect in formalin-treated rats. Repeated administration (daily during 3 or 7 days) with CFX (50-400 mg/kg, ip) diminished formalin-induced nociception. Results suggest that local or systemic as well as single or repeated administration of CFX reduces formalin-induced nociception.
Collapse
Affiliation(s)
- Guadalupe Del Carmen Baeza-Flores
- Pain Mechanisms Laboratory, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Erick J Rodríguez-Palma
- Neurobiology of Pain, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | | | - Crystell G Guzmán-Priego
- Pain Mechanisms Laboratory, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Jorge E Torres-López
- Pain Mechanisms Laboratory, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.,Department of Anaesthetics, Hospital Regional de Alta Especialidad "Dr. Juan Graham Casasús", Villahermosa, Mexico
| |
Collapse
|
5
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
Yimer EM, Hishe HZ, Tuem KB. Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review. Front Neurosci 2019; 13:236. [PMID: 30971875 PMCID: PMC6444273 DOI: 10.3389/fnins.2019.00236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
To date, there is no cure or disease-modifying agents available for most well-known neurological disorders. Current therapy is typically focused on relieving symptoms and supportive care in improving the quality of life of affected patients. Furthermore, the traditional de novo drug discovery technique is more challenging, particularly for neurological disorders. Therefore, the repurposing of existing drugs for these conditions is believed to be an efficient and dynamic approach that can substantially reduce the investments spent on drug development. Currently, there is emerging evidence that suggests the potential effect of a beta-lactam antibiotic, ceftriaxone (CEF), to alleviate the symptoms of different experimentally-induced neurological disorders: Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, epileptic-seizure, brain ischemia, traumatic brain injuries, and neuropathic pain. CEF also affects the markers of oxidative status and neuroinflammation, glutamatergic systems as well as various aggregated toxic proteins involved in the pathogenesis of different neurological disorders. Moreover, it was found that CEF administration to drug dependent animal models improved the withdrawal symptoms upon drug discontinuation. Thus, this review aimed to describe the effects of CEF against multiple models of neurological illnesses, drug dependency, and withdrawal. It also emphasizes the possible mechanisms of neuroprotective actions of CEF with respective neurological maladies.
Collapse
Affiliation(s)
- Ebrahim M Yimer
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hailemichael Zeru Hishe
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
7
|
Sałat K, Furgała A, Sałat R. Interventional and preventive effects of aripiprazole and ceftriaxone used alone or in combination on oxaliplatin-induced tactile and cold allodynia in mice. Biomed Pharmacother 2019; 111:882-890. [PMID: 30841467 DOI: 10.1016/j.biopha.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) is a pharmacoresistant neurological complication induced by some antitumor drugs. This study aimed to assess antiallodynic properties of aripiprazole and ceftriaxone used alone or in combination to attenuate neuropathic pain related to CIPN caused by oxaliplatin. METHODS Neuropathic pain was induced in mice by a single intraperitoneal dose of oxaliplatin (10 mg/kg). Aripiprazole and ceftriaxone were used in a single- or repeated dosing protocol. Their antiallodynic activity was assessed using von Frey and cold plate tests on the day of oxaliplatin injection and after 7 days. The influence of aripiprazole and ceftriaxone on animals' locomotor activity and motor coordination was also assessed. RESULTS Single-dose and repeated-dose aripiprazole 10 mg/kg and ceftriaxone 200 mg/kg used alone and in combination attenuated early-phase and late-phase tactile allodynia in oxaliplatin-treated mice. Repeated administrations of ceftriaxone 200 mg/kg prevented the development of late-phase tactile allodynia. Both drugs showed no antiallodynic properties in the cold plate test. Single-dose aripiprazole 1 and 10 mg/kg but not its repeated administration significantly decreased locomotor activity of oxaliplatin-treated mice. Single-dose aripiprazole 1 and 10 mg/kg, aripiprazole 1 mg/kg + ceftriaxone 50 mg/kg and aripiprazole 1 mg/kg + ceftriaxone 200 mg/kg impaired motor coordination in the rotarod test. CONCLUSIONS In mice, neither ceftriaxone nor aripiprazole attenuated cold allodynia. Ceftriaxone alone could attenuate tactile allodynia caused by oxaliplatin without inducing motor adverse effects. Although the administration of aripiprazole reduced tactile allodynia, this effect seems to be limited considering severe motor deficits induced by this drug.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Anna Furgała
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Robert Sałat
- Faculty of Production Engineering, Warsaw University of Life Sciences, 164 Nowoursynowska St., 02-787 Warsaw, Poland
| |
Collapse
|
8
|
Ochoa-Aguilar A, Ventura-Martinez R, Sotomayor-Sobrino MA, Jaimez R, Coffeen U, Jiménez-González A, Balcázar-Ochoa LG, Pérez-Medina-Carballo R, Rodriguez R, Plancarte-Sánchez R. Ceftriaxone and clavulanic acid induce antiallodynia and anti-inflammatory effects in rats using the carrageenan model. J Pain Res 2018; 11:977-985. [PMID: 29861639 PMCID: PMC5968784 DOI: 10.2147/jpr.s154661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Ceftriaxone (CFX) and clavulanic acid (CA) are 2 β-lactam molecules widely used as antibiotics. However, several reports of their antiallodynic properties have been published in recent years. Although this effect has been considered mostly due to a GLT1 overexpression, these molecules have also been proven to induce direct immunomodulation. In this work, we determine the acute analgesic effect of CFX and CA in an inflammatory pain model and assess if their administration may induce anti-inflammatory effects. Methods The carrageenan (Carr) test was used as an inflammatory pain model. Both mechanical and thermal responses were analyzed after CFX and CA administration at different times. A plethysmometer was used to determine inflammation. Also, TNF-α and IL-10 serum concentrations were determined by enzyme-linked immunosorbent assay. Results Both CFX and CA induced a significant thermal antiallodynic effect 3 and 24 h after administration. Furthermore, CA induced a mechanical antiallodynic effect 30, 60, and 90 min after administration. Moreover, a significant anti-inflammatory effect was found for both molecules 24 h after Carr injection. Also, both CA and CFX modulated TNF-α and IL-10 serum concentrations at different times. Conclusion Our results provide evidence that both CFX and CA cause an analgesic effect on a Carr inflammatory pain model and that said analgesic effect differs between each β-lactam molecule. Furthermore, this effect may be related to an anti-inflammatory effect of both molecules and a direct TNF-α and IL-10 serum concentration modulation.
Collapse
Affiliation(s)
- Abraham Ochoa-Aguilar
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México.,Research Department, Mexican Faculty of Medicine, La Salle University, Mexico City, México
| | - Rosa Ventura-Martinez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | | | - Ruth Jaimez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | - Ulises Coffeen
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México
| | | | | | | | - Rodolfo Rodriguez
- Pharmacology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, México
| | | |
Collapse
|
9
|
Kristensen PJ, Gegelashvili G, Munro G, Heegaard AM, Bjerrum OJ. The β-lactam clavulanic acid mediates glutamate transport-sensitive pain relief in a rat model of neuropathic pain. Eur J Pain 2017; 22:282-294. [PMID: 28984398 DOI: 10.1002/ejp.1117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Following nerve injury, down-regulation of astroglial glutamate transporters (GluTs) with subsequent extracellular glutamate accumulation is a key factor contributing to hyperexcitability within the spinal dorsal horn. Some β-lactam antibiotics can up-regulate GluTs, one of which, ceftriaxone, displays analgesic effects in rodent chronic pain models. METHODS Here, the antinociceptive actions of another β-lactam clavulanic acid, which possesses negligible antibiotic activity, were compared with ceftriaxone in rats with chronic constriction injury (CCI)-induced neuropathic pain. In addition, the protein expression of glutamate transporter-1 (GLT1), its splice variant GLT1b and glutamate-aspartate transporter (GLAST) was measured in the spinal cord of CCI rats. Finally, protein expression of the same GluTs was evaluated in cultured astrocytes obtained from rodents and humans. RESULTS Repeated injection of ceftriaxone or clavulanic acid over 10 days alleviated CCI-induced mechanical hypersensitivity, whilst clavulanic acid was additionally able to affect the thermal hypersensitivity. In addition, clavulanic acid up-regulated expression of GLT1b within the spinal cord of CCI rats, whereas ceftriaxone failed to modulate expression of any GluTs in this model. However, both clavulanic acid and ceftriaxone up-regulated GLT1 expression in rat cortical and human spinal astrocyte cultures. Furthermore, clavulanic acid increased expression of GLT1b and GLAST in rat astrocytes in a dose-dependent manner. CONCLUSIONS Thus, clavulanic acid up-regulates GluTs in cultured rodent- and human astroglia and alleviates CCI-induced hypersensitivity, most likely through up-regulation of GLT1b in spinal dorsal horn. SIGNIFICANCE Chronic dosing of clavulanic acid alleviates neuropathic pain in rats and up-regulates glutamate transporters both in vitro and in vivo. Crucially, a similar up-regulation of glutamate transporters in human spinal astrocytes by clavulanic acid supports the development of novel β-lactam-based analgesics, devoid of antibacterial activity, for the clinical treatment of chronic pain.
Collapse
Affiliation(s)
- P J Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Department of In Vivo Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | - G Gegelashvili
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - G Munro
- Department of In Vivo Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | - A M Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - O J Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|