1
|
Toumi HR, Sallabi SM, Lubbad L, Al-Salam S, Hammad FT. The Effect of Nerolidol on Renal Dysfunction following Bilateral Ureteral Obstruction. Biomedicines 2024; 12:2285. [PMID: 39457599 PMCID: PMC11505435 DOI: 10.3390/biomedicines12102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Obstructive uropathy is a common cause of renal impairment. Recently, there has been a burgeoning interest in exploring natural products as potential alternative remedies for many conditions due to their low toxicity, affordability and wide availability. Methods: We investigated the effect of nerolidol in a rat model of bilateral ureteral obstruction (BUO) injury. Nerolidol, dissolved in a vehicle, was administered orally as a single daily dose of 200 mg/kg to Wistar rats. Sham group (n = 12) underwent sham surgery, whereas the BUO (n = 12) and BUO/NR groups (n = 12) underwent reversible 24-h BUO and received the vehicle or nerolidol, respectively. The treatment started 9 days prior to the BUO/sham surgery and continued for 3 days after reversal. Renal functions were assessed before starting the treatment, just prior to the intervention and 3 days after BUO reversal. Results: Neither nerolidol nor the vehicle affected the basal renal functions. Nerolidol resulted in a significant attenuation in the BUO-induced alterations in renal functional parameters such as serum creatinine and urea, creatinine clearance and urinary albumin-creatinine ratio. Nerolidol also attenuated the changes in several markers associated with renal injury, inflammation, apoptosis and oxidative stress and mitigated the histological alterations. Conclusions: The findings of this study demonstrated the potent reno-protective effects of nerolidol in mitigating the adverse renal effects of bilateral ureteral obstruction. This is attributed to its anti-inflammatory, anti-fibrotic, anti-apoptotic and anti-oxidant properties. These effects were reflected in the partial recovery of renal functions and histological features. These findings may have potential therapeutic implications.
Collapse
Affiliation(s)
- Harun R. Toumi
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Sundus M. Sallabi
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Loay Lubbad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Fayez T. Hammad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| |
Collapse
|
2
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Li L, Vijayalakshmi A. Protective effect of Pueraria lobata leaves on doxorubicin-induced myocardial infarction in experimental Wistar rats. Biotechnol Appl Biochem 2023; 70:1641-1651. [PMID: 36950801 DOI: 10.1002/bab.2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/28/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023]
Abstract
The present study intended to explore the preventive effects of Pueraria lobata leaves against doxorubicin (DOX)-induced myocardial infarction (MI) in Wistar rats. The rats were separated into four groups, with each group containing six rats. Group I control rats; group II received DOX-alone in six equivalent injections for 2 weeks; group III received DOX as abovementioned with P. lobata oral administration for 2 weeks; group IV received P. lobata alone for 2 weeks. At the end of the experiment, postcervical dislocation and MI induced by DOX were determined on the basis of the variations in the animal body and heart weight and further instabilities in cardiac marker enzymes aspartate transaminase, lactate dehydrogenase, creatine kinase, creatine kinase-myoglobin binding, and cardiac troponin I in the serum. At the same time, for group III animals, which were exposed to P. lobata, all the above-denoted marker levels were maintained. Levels of some crucial heart-binding proteins like heart fatty acid binding protein, monocyte chemoattractant protein-1, and transforming growth factor beta were elevated in DOX-alone treated rats. Additionally, group III animals treated with P. lobata showed some preventive downregulated expressions of these binding proteins. Histopathological observations also revealed the preventive effect of P. lobata. Ultimately proteins tangled in the phosphoinositide 3-kinase/protein kinase B pathway were studied by Western blot. P. lobata treatment downregulated the inflammatory markers. The findings suggest that P. lobata exhibits cardioprotective effect on MI.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiovascular, The First People's Hospital of Xianyang, Xianyang, Shaanxi, P. R. China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, India
| |
Collapse
|
4
|
The Effect of Nerolidol Renal Dysfunction following Ischemia-Reperfusion Injury in the Rat. Nutrients 2023; 15:nu15020455. [PMID: 36678327 PMCID: PMC9866594 DOI: 10.3390/nu15020455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Efforts to decrease the deleterious effects of renal ischemia-reperfusion injury (IRI) are ongoing. Recently, there has been increasing interest in using natural phytochemical compounds as alternative remedies in several diseases. Nerolidol is a natural product extracted from plants with floral odors and has been proven to be effective for the treatment of some conditions. We investigated the effect of nerolidol in a rat model of renal IRI. Nerolidol was dissolved in a vehicle and administered orally as single daily dose of 200 mg/kg for 5 days prior to IRI and continued for 3 days post IRI. G-Sham (n = 10) underwent sham surgery, whereas G-IRI (n = 10) and G-IRI/NR (n = 10) underwent bilateral warm renal ischemia for 30 min and received the vehicle/nerolidol, respectively. Renal functions and histological changes were assessed before starting the medication, just prior to IRI and 3 days after IRI. Nerolidol significantly attenuated the alterations in serum creatinine and urea, creatinine clearance, urinary albumin and the urinary albumin-creatinine ratio. Nerolidol also significantly attenuated the alterations in markers of kidney injury; proinflammatory, profibrotic and apoptotic cytokines; oxidative stress markers; and histological changes. We conclude that nerolidol has a renoprotective effect on IRI-induced renal dysfunction. These findings might have clinical implications.
Collapse
|
5
|
Yin Y, Wang L, Chen G, You H. Effect of Fraxetin on Oxidative Damage Caused by Isoproterenol-Induced Myocardial Infarction in Rats. Appl Biochem Biotechnol 2022; 194:5666-5679. [PMID: 35802243 DOI: 10.1007/s12010-022-04019-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
At present, cardiovascular disorders are the most prominent factors for the high morbidity rate globally. The occurrence of myocardial infarction followed by myocardial ischemia is the important cause of high death rates. Various medical treatments are available, yet the mortality and morbidity rate is high. In the present investigation, the cardioprotective property of fraxetin (Fx) is evaluated in myocardial infarction-induced experimental rats. Fraxetin, a phytochemical known as coumarin isolated from Fraxinus rhynchophylla. Fraxetin has numerous pharmacological activities including antioxidant, apoptosis inhibitor, anti-inflammatory, and antimicrobial agent. The experimental mice were split into 4 groups each comprising six animals. Group I was considered the control group; 0.1% NaCl solution was given as dosage. Group II received only Fx; group III was treated with ISO. Group IV was treated with Fx followed by ISO to induce myocardial infarction. In ISO administrated rats, there were changes in the heart weight, activities of cardiac markers, transmembrane protein activity, antioxidant enzymes, pro-inflammatory proteins, lipid profile, and myocardial structures. Pre-treatment of fraxetin in group IV experimental rats resulted in decreased cardiac weight, diminished level of cardiac markers (cardiac troponin T (cTnT), creatine kinase, creatine kinase-MB, and cardiac troponin I (cTnI)), reduced level of oxidative stress biomarkers (LOOH and TBARS) in the plasma and cardiac tissue, amplified level of enzymes in antioxidant defense system (catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GPx)) in the plasma and heart tissue, and elevated level of ATPase activities. The histopathological studies also revealed the potent activity of fraxetin in protecting the cardiac tissues from inflammation and damage. ISO-administrated experimental rats treated with fraxetin exhibit increased antioxidants activity and decreased free radicals. Our study revealed that the administration of fraxetin significantly reduced the extent of myocardial damage during myocardial infarction in rats caused by isoproterenol. Thus, the results prove the cardioprotective effect of fraxetin in MI-induced rats.
Collapse
Affiliation(s)
- Yu Yin
- Department of Medical Insurance, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Lihui Wang
- Department of Internal Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Guifang Chen
- Department of Integrated Traditional Chinese and Western Medicine & Rheumatology and Immunology, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Hongwen You
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwuweiqi Road, Jinan City, 250021, Shandong Province, China.
| |
Collapse
|
6
|
Ahmad RM, Greish YE, El-Maghraby HF, Lubbad L, Makableh Y, Hammad FT. Preparation and Characterization of Blank and Nerolidol-Loaded Chitosan–Alginate Nanoparticles. NANOMATERIALS 2022; 12:nano12071183. [PMID: 35407300 PMCID: PMC9000846 DOI: 10.3390/nano12071183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Recently, there has been a growing interest in using natural products as treatment alternatives in several diseases. Nerolidol is a natural product which has been shown to have protective effects in several conditions. The low water solubility of nerolidol and many other natural products limits their delivery to the body. In this research, a drug delivery system composed of alginate and chitosan was fabricated and loaded with nerolidol to enhance its water solubility. The chitosan–alginate nanoparticles were fabricated using a new method including the tween 80 pre-gelation, followed by poly-ionic crosslinking between chitosan negative and alginate positive groups. Several characterization techniques were used to validate the fabricated nanoparticles. The molecular interactions between the chitosan, alginate, and nerolidol molecules were confirmed using the Fourier transform infrared spectroscopy. The ultraviolet spectroscopy showed an absorbance peak of the blank nanoparticles at 200 nm and for the pure nerolidol at 280 nm. Using both scanning and transmission electron microscopy, the nanoparticles were found to be spherical in shape with an average size of 12 nm and 35 nm for the blank chitosan–alginate nanoparticles and the nerolidol-loaded chitosan–alginate nanoparticles, respectively. The nanoparticles were also shown to have a loading capacity of 51.7% and an encapsulation efficiency of 87%. A controlled release profile of the loaded drug for up to 28 h using an in vitro model was also observed, which is more efficient than the free form of nerolidol. In conclusion, chitosan–alginate nanoparticles and nerolidol loaded chitosan–alginate nanoparticles were successfully fabricated and characterized to show potential encapsulation and delivery using an in vitro model.
Collapse
Affiliation(s)
- Rahaf M. Ahmad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates or (R.M.A.); (L.L.)
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Yaser E. Greish
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (Y.E.G.); (H.F.E.-M.)
- Department of Ceramics, National Research Centre, NRC, Cairo 12622, Egypt
| | - Hesham F. El-Maghraby
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (Y.E.G.); (H.F.E.-M.)
- Department of Ceramics, National Research Centre, NRC, Cairo 12622, Egypt
| | - Loay Lubbad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates or (R.M.A.); (L.L.)
| | - Yahia Makableh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Fayez T. Hammad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates or (R.M.A.); (L.L.)
- Correspondence: or ; Tel.: +971-50-4880021 or +971-3-7137-590
| |
Collapse
|
7
|
Khodir SA, Sweed E, Gadallah M, Shabaan A. Astaxanthin attenuates cardiovascular dysfunction associated with deoxycorticosterone acetate-salt-induced hypertension in rats. Clin Exp Hypertens 2022; 44:382-395. [PMID: 35322744 DOI: 10.1080/10641963.2022.2055764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypertension is a major global health problem. It is a major risk factor of cardiovascular disease. One of the most used experimental models in studying antihypertensive action is the deoxycorticosterone acetate (DOCA)-salt hypertensive rat. This study aimed to investigate the cardiovascular protective effect of astaxanthin (ASX) in DOCA-salt-induced hypertension and its possible underlying mechanisms. METHODS A total of 48 adult male Wistar albino rats were divided into three groups: control, DOCA, and DOCA + ASX. Blood pressure, serum cardiac enzyme levels, some oxidative stress and inflammatory biomarker levels, and lipid profile levels were measured. The weight of the left ventricle to tibial length ratio was calculated. Apoptosis detection and total genomic DNA extraction in aortic and cardiac tissues were investigated. The apoptotic marker BAX was also immunohistochemically assessed in the heart and aorta. RESULTS Compared to the control group, the DOCA group was associated with a significant increase in blood pressure, serum cardiac enzyme levels, oxidative stress and inflammatory biomarker levels, lipid profile except serum high-density lipoprotein (HDL), weight of the left ventricle to tibial length, and total released DNA fragmentation level of the left ventricle and aorta and a significant decrease in reduced glutathione (GSH) and HDL. Compared to the DOCA group, the DOCA + ASX group significantly improved the DOCA-induced changes. CONCLUSION ASX has beneficial protective effects on DOCA-salt-induced hypertension via DNA fragmentation protection, apoptosis inhibition, antioxidant, anti-inflammatory, and its effects on lipid levels.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman Sweed
- Clinical pharmacology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Marwa Gadallah
- Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Anwaar Shabaan
- Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
8
|
Balakrishnan V, Ganapathy S, Veerasamy V, Duraisamy R, Sathiavakoo VA, Krishnamoorthy V, Lakshmanan V. Anticancer and antioxidant profiling effects of Nerolidol against DMBA induced oral experimental carcinogenesis. J Biochem Mol Toxicol 2022; 36:e23029. [PMID: 35243731 DOI: 10.1002/jbt.23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022]
Abstract
The objective of this study is to examine the chemopreventive effects of Nerolidol (NER) on hamster buccal pouch carcinogenesis (HBC) induced by 7,12-dimethylbenz(a)anthracene (DMBA) in male golden Syrian hamsters. In this study, oral squamous cell carcinoma was developed in the buccal pouch of an oral painted hamster with 0.5% DMBA in liquid paraffin three times weekly for 12 weeks. To assess DMBA-induced hamster buccal tissue carcinogenesis, biochemical endpoints such as Phase I and II detoxification enzymes, antioxidants, lipid peroxidation (LPO) by-products, and renal function markers, as well as histopathological examinations, were used. Furthermore, the immunohistochemical studies of interleukin-6 were investigated to find the inflammatory link in the HBC carcinogenesis. In our results, DMBA alone exposed hamsters showed 100% tumor growth, altered levels of antioxidants, detoxification agents, LPO, and renal function identifiers as compared to the control hamsters. The outcome in present biochemical, histopathological, and immunohistochemistry studies has been found a reverse in NER-treated hamsters against the tumor. This study concluded that NER modulated the biochemical profiles (antioxidants, detoxification, LPO, and renal function markers) and inhibited tumor development in DMBA induced oral carcinogenesis.
Collapse
Affiliation(s)
- Vaitheeswari Balakrishnan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Sindhu Ganapathy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India.,Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Ramachandhiran Duraisamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Vigil Anbiah Sathiavakoo
- Central Animal House, Rajah Muthiah Medical College, Annamalai University, Chidambaram, Tamilnadu, India
| | | | - Vennila Lakshmanan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| |
Collapse
|
9
|
Gonçalves MSS, Silva EAP, Santos DM, Santana IR, Souza DS, Araujo AM, Heimfarth L, Vasconcelos CML, Santos VCO, Santos MRV, de S S Barreto R, Quintans Júnior LJ, Barreto AS. Nerolidol attenuates isoproterenol-induced acute myocardial infarction in rats. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:353-363. [PMID: 35050389 DOI: 10.1007/s00210-022-02202-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Cardiovascular diseases have high morbidity and mortality rates, and their treatment is not effective in reducing the damage caused by myocardial infarction (MI). This study aimed to investigate whether nerolidol (NRD), a sesquiterpene alcohol, could attenuate MI in an isoproterenol-treated rat model. MI was induced by the administration of two doses of isoproterenol (ISO, 100 mg/kg, i.p.) with an interval of 24 h between doses.The animals were divided into four groups: control (CTR) (vehicle - NaCl 0.9% + Tween 80 0.2%), MI (ISO + vehicle), MI + NRD (50 mg/kg) and MI + NRD (100 mg/kg). An electrocardiogram was performed, and contractile parameters, cardiac enzymes, infarction size, and antioxidant parameters in the heart were measured to evaluate the effects of NRD. The ISO group showed a significant rise in ST segment, QTc, and heart rate associated with a reduction in left ventricular developed pressure (LVDP), + dP/dt, and -dP/dt. In addition, there were increases in levels of creatine kinase (CK), creatine kinase-myocardial band (CK-MB), lactate dehydrogenase (LDH), and thiobarbituric acid (TBARS); reductions in superoxide dismutase (SOD) and catalase (CAT) activities; and an increase in the infarction size. Interestingly, NRD significantly attenuated almost all the parameters of ISO-induced MI mentioned above. Our results suggest that nerolidol attenuates MI caused by ISO by a marked reduction in myocardial infarct size and suppression of oxidative stress. CK total, creatine kinase total; CK-MB, creatine kinase myocardial band; LDH, lactate dehydrogenase; SOD, superoxide dismutase; CAT, catalase. CTR (vehicle group), MI (100 mg/kg of isoproterenol), ISO + NRD 50 (50 mg/kg of nerolidol), and ISO + NRD 100 (100 mg/kg of nerolidol).
Collapse
Affiliation(s)
- Meire S S Gonçalves
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil.,Biotechnology Graduate Program (PROBIO), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Eric Aian P Silva
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil
| | - Danillo M Santos
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil
| | - Izabel R Santana
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil
| | - Diego S Souza
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Andreza M Araujo
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil
| | - Carla M L Vasconcelos
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil.
| | - Vinícius C O Santos
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil
| | - Márcio R V Santos
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil
| | - Rosana de S S Barreto
- Department of Health Education, Federal University of Sergipe, Marcelo Deda Avenue, Centro, Lagarto, Sergipe, 49400-000, Brazil
| | - Lucindo J Quintans Júnior
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, SN, Rosa Elze, São Cristóvão, Sergipe, Brazil
| | - André S Barreto
- Biotechnology Graduate Program (PROBIO), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. .,Department of Health Education, Federal University of Sergipe, Marcelo Deda Avenue, Centro, Lagarto, Sergipe, 49400-000, Brazil.
| |
Collapse
|
10
|
TÜRKMEN NB, YÜCE H, TAŞLIDERE A, ŞAHİN Y, ÇİFTÇİ O. The Ameliorate Effects of Nerolidol on Thioasteamide-induced Oxidative Damage in Heart and Kidney Tissue. Turk J Pharm Sci 2022; 19:1-8. [DOI: 10.4274/tjps.galenos.2021.30806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Jiang N, Zhang Y. Antidiabetic effects of nerolidol through promoting insulin receptor signaling in high-fat diet and low dose streptozotocin-induced type 2 diabetic rats. Hum Exp Toxicol 2022; 41:9603271221126487. [PMID: 36169646 DOI: 10.1177/09603271221126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study was designed to investigate the antidiabetic effect of nerolidol on high-fat diet and streptozotocin-induced diabetic rats. Type 2 diabetes was induced in animals by feeding them a high-fat diet for 4 weeks and administering a single intraperitoneal dose of streptozotocin (35 mg/kg body weight). Diabetic rats were treated with nerolidol (25 mg/kg BW) for 28 days. Results showed that nerolidol treatment significantly reduced (p < 0.05) the level of elevated glucose, glycosylated hemoglobin and improved (p < 0.05) the body weight and insulin level. Nerolidol also considerably improved (p < 0.05) the carbohydrate metabolic enzyme activities and increased the glycogen storage in the liver of diabetic rats. Increased serum triglycerides, total cholesterol (C), low-density lipoproteins-C and very low-density lipoproteins-C levels were significantly lowered (p < 0.05), while reduction of serum high-density lipoprotein-C was alleviated after administration of nerolidol. In addition, nerolidol attenuated oxidative stress markers by significantly increasing (p < 0.05) the levels of superoxide dismutase, catalase, reduced glutathione, and lowering (p < 0.05) the level of thiobarbituric acid reactive substances, and lipid hydroperoxide. Similarly, nerolidol showed its pharmacological effects against hepatic markers via restoring (p < 0.05) the alleviated level of alanine transaminase, aspartate aminotransferase, and alkaline phosphatase. Finally, it improved insulin-dependent glucose transport in skeletal muscle by enhancing and activating glucose transporter protein-4. These findings confirmed the antidiabetic potential of nerolidol in type 2 diabetic rats. This may be related to a high antioxidant capacity, the restoration of plasma insulin and lipid levels, and the activation of insulin signaling in STZ/HFD-induced diabetic rats.
Collapse
Affiliation(s)
- Nengmei Jiang
- Department of Endocrinology, 146225Haimen People's Hospital, Nantong, China
| | - Yuanyuan Zhang
- Department of Pharmacy, 146225Haimen People's Hospital, Nantong, China
| |
Collapse
|
12
|
Dietary supplementation with nerolidol improves the antioxidant capacity and muscle fatty acid profile of Brycon amazonicus exposed to acute heat stress. J Therm Biol 2021; 99:103003. [PMID: 34420634 DOI: 10.1016/j.jtherbio.2021.103003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/06/2021] [Accepted: 05/16/2021] [Indexed: 01/18/2023]
Abstract
An increase in water temperature in the Amazon River has elicited concerns about commercially important fish species associated with food security, such as matrinxã (Brycon amazonicus). Studies have demonstrated the positive effects of diets supplemented with plant-based products that combat heat stress-induced oxidative damage. The aim of this study was to determine whether dietary supplementation with nerolidol prevents or reduces muscle oxidative damage and impairment of the fillet fatty acid profile of matrinxã exposed to heat stress. Plasma and muscle reactive oxygen species (ROS) and lipid peroxidation (LPO) levels were significantly higher in fish exposed to heat stress compared to fish not exposed to heat stress, while plasma superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity was significantly lower. The total content of saturated fatty acids (SFA) in fillets was significantly higher in fish exposed to heat stress compared to fish not exposed to heat stress, while he total content of polyunsaturated fatty acids (PUFA) was significantly lower. Nerolidol prevented the increase of muscle LPO and plasma ROS and LPO levels in fish exposed to heat stress, and partially prevented the increase in muscle ROS levels. Diets containing nerolidol prevented the inhibition of muscle GPx activity in fish exposed to heat stress, and partially prevented the decrease of plasma GPx activity. The nerolidol-supplemented diet prevented the increase of fillet SFA in fish exposed to heat stress, while partially preventing the decrease of PUFA. We conclude that acute heat stress at 34 °C for 72 h causes plasma and muscular oxidative damage, and that homeoviscous adaptation to maintain membrane fluidity can represent a negative impact for fish consumers. A nerolidol diet can be considered a strategy to prevent heat stress-induced oxidative damage and impairment of muscle fatty acid profiles.
Collapse
|
13
|
Huang J, Lei Y, Lei S, Gong X. Cardioprotective effects of corilagin on doxorubicin induced cardiotoxicity via P13K/Akt and NF-κB signaling pathways in rats model. Toxicol Mech Methods 2021; 32:79-86. [PMID: 34369273 DOI: 10.1080/15376516.2021.1965274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Even though doxorubicin (DOX) is a potential chemotherapeutic drug, its usage is restricted due to its ability to induce cardiac damage. In order to prevent this damage, a potent cardioprotective agent should be associated with DOX treatment. Corilagin is a natural polyphenol tannic acid which unveils enormous pharmacological activities predominantly as an antitumor agent. Hence, the current work is designed to study the precise mechanisms of corilagin upon administration in doxorubicin induced cardiotoxicity in experimental rats. DOX treated rats showed diminished level of blood pressures and heart rate, whereas corilagin along with DOX treatment improved the status. Cardiotoxicity enzymes and biomarkers were found to be increased in the serum of DOX induced rats. Upon treatment, corilagin could reduce the cardiotoxicity enzymes and biomarkers in serum. Histopathological examination of cardiac tissue also revealed the anti-toxic effects of corilagin in contrast to DOX. Injection of DOX in rats showed inflammatory cells infiltration, necrosis and fragmented myofibrils. Corilagin treatment reverted the cardiac histology to near normal. Inflammatory mediators and P13K, Akt, and NF-κB were upregulated in DOX administered rats. Corilagin repressed the levels of P13K, Akt, and NF-κB in DOX induced rats. In the present investigations, corilagin improved cardiac function via reducing injury, inflammation and promoting apoptosis thereby suggesting that corilagin would be recommended for DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacy, Wuxi No.2 People's Hospital, Wuxi, 214000, China
| | - Ying Lei
- Department of Cardiology, Ankang Hospital of Traditional Chinese Medicine, Ankang, 725000, China
| | - Shengping Lei
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Xinwen Gong
- Department of Cardiology, Ankang Hospital of Traditional Chinese Medicine, Ankang, 725000, China
| |
Collapse
|
14
|
Arunachalam S, Nagoor Meeran MF, Azimullah S, Sharma C, Goyal SN, Ojha S. Nerolidol Attenuates Oxidative Stress, Inflammation, and Apoptosis by Modulating Nrf2/MAPK Signaling Pathways in Doxorubicin-Induced Acute Cardiotoxicity in Rats. Antioxidants (Basel) 2021; 10:984. [PMID: 34205494 PMCID: PMC8235529 DOI: 10.3390/antiox10060984] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The clinical usage of doxorubicin (DOX), a potent anthracycline antineoplastic drug, is often limited by its cardiotoxic effects. Thus, for improving usage of DOX, the aim of this study was to assess the cardioprotective effects of nerolidol (NERO) in a rat model of DOX-induced acute cardiotoxicity and examine underlying molecular mechanisms that contribute to these effects. To induce acute cardiotoxicity male albino Wistar rats were injected with single dose intraperitoneal DOX (12.5 mg/kg). The rats were treated with NERO (50 mg/kg, orally) for five days. DOX-injected rats showed elevated levels of cardiac marker enzymes and enhanced oxidative stress markers along with altered Nrf2/Keap1/HO-1 signaling pathways. DOX administration also induced the activation of NF-κB/MAPK signaling and increased the levels and expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) as well as expression of inflammatory mediators (iNOS and COX-2) in the heart. DOX also triggered DNA damage and apoptotic cell death in the myocardium. Additionally, histological studies revealed structural alterations of the myocardium. NERO treatment exhibited protection against the deleterious results of DOX on myocardium, as evidenced by the restoration of altered biochemical parameters, mitigated oxidative stress, inflammation, and apoptosis. The findings of the present study demonstrate that NERO provides cardioprotective effects against DOX-induced acute cardiotoxicity attributed to its potent antioxidant, anti-inflammatory, and antiapoptotic activities through modulating cellular signaling pathways.
Collapse
Affiliation(s)
- Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, India;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| |
Collapse
|
15
|
Lin YM, Badrealam KF, Kuo WW, Lai PF, Shao-Tsu Chen W, Hsuan Day C, Ho TJ, Viswanadha VP, Shibu MA, Huang CY. Nerolidol improves cardiac function in spontaneously hypertensive rats by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-κB signalling cascade. Food Chem Toxicol 2021; 147:111837. [PMID: 33212213 DOI: 10.1016/j.fct.2020.111837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 4 (TLR4) is an important mediator of hypertension and AngII induced cardiac inflammation and remodelling. In this study, the potential of nerolidol to ameliorate hypertension induced cardiac injuries and the underlying mechanism of action was explored by using in vitro and in vivo models. The in vitro analysis was performed on AngII challenged H9c2 cells and their ability to overcome cardiac inflammation and cardiac remodelling effects was determined by evaluating TLR4/NF-κB signalling cascade using Western blot analysis and immunofluorescence. The results were further ascertained using in vivo experiments. Eighteen week old male rats were randomly allocated into different groups i.e. Wistar Kyoto (WKY) rats, hypertensive SHRs, SHRs treated with a low-dose (75 mg/kg b.w) and high-dose of nerolidol (150 mg/kg b.w) and SHRs treated with captopril (50 mg/kg b.w) through oral gauge and finally analysed through echocardiography, histopathological techniques and molecular analysis. The results show that nerilodol target TLR4/NF-κB signalling and thereby attenuate hypertension associated inflammation and oxidative stress thereby provides effective cardioprotection. Echocardiography analysis showed that nerolidol improved cardiac functional characteristics including Ejection Fraction and Fractional Shortening in the SHRs. Collectively, the data of the study demonstrates nerolidol as a cardio-protective agent against hypertension induced cardiac remodelling.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Khan Farheen Badrealam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Pei Fang Lai
- Emergency Department, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, 707, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan; School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Post‑Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
| | | | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
16
|
Liu C, Yan Q, Gao C, Lin L, Wei J. Study on antioxidant effect of recombinant glutathione peroxidase 1. Int J Biol Macromol 2020; 170:503-513. [PMID: 33383079 DOI: 10.1016/j.ijbiomac.2020.12.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Abstract
Glutathione peroxidase 1 (GPx1) is an important antioxidant selenium enzyme and has a good prospect for drug development. However, the expression of GPx1 requires a complex expression mechanism, which makes the drug development of recombinant GPx1 (rGPx1) difficult. In the previous study, we expressed highly active rhGPx1 in amber-less Escherichia coli by using a novel chimeric tRNAUTuT6. However, the antioxidant effect of rhGPx1 at the cellular and animal levels has not been verified. In this study, we established isoproterenol (ISO)-induced oxidative stress injury models to study the antioxidant effect of rhGPx1 at the cellular and animal levels. Meanwhile, in order to more accurately reflect the antioxidant effect of rGPx1 in mice, we used the same method to express recombinant mouse GPx1 (rmGPx1) as a control for rhGPx1. The results of a study showed that rhGPx1 has a good antioxidant effect at the cellular and animal levels. However, due to species differences, rhGPx1 had immunogenicity in mice and antibodies of rhGPx1 could inhibit its antioxidant activity, so the antioxidant effect of rhGPx1 was not as good as rmGPx1 in mice. Nevertheless, this study provides a reliable theoretical basis for the development of rhGPx1 as an antioxidant drug.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Qi Yan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Chao Gao
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Liangru Lin
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130000, PR China.
| |
Collapse
|
17
|
Iqubal A, Syed MA, Najmi AK, Azam F, Barreto GE, Iqubal MK, Ali J, Haque SE. Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity - Probable role of NLRP3 inflammasome and caspase-1. Exp Neurol 2020; 334:113464. [PMID: 32941795 DOI: 10.1016/j.expneurol.2020.113464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Neuroinflammation is one of the most common etiology in various neurological disorders and responsible for multi-array neurotoxic manifestations such as neurodegeneration, neurotransmitters alteration and cognitive dysfunction. NR (Nerolidol) is a natural bioactive molecule which possesses significant antioxidant and anti-inflammatory potential, but suffers from glitches of low solubility, low bioavailability and fast hepatic metabolism. In the current study, we fabricated nano-engineered lipid carrier of nerolidol (NR-NLC) for its effective delivery into the brain and explored its effect on neuroinflammation, neurotransmitters level and on dysfunctional behavioral attributes induced by CYC (cyclophosphamide). The binding affinity of nerolidol with NLRP3 and TLR-4 was performed which showed stong interaction between them. NR-NLC was prepared by the ultrasonication methods and particle size was determined by Zeta-sizer. Swiss Albino mice were divided into 5 groups (n = 6), assessed for behavioral dysfunction, and sacrificed on the fifteenth day following cyclophosphamide treatment. Brains were then removed and used for biochemical, histopathological, immunohistochemical and fluorescence microscopic analysis. Biochemical analysis showed increased levels of MDA, TNF-α, IL-6, IL-1β, acetylcholine esterase, BDNF, 5-HT and dopamine, and reduced levels of SOD, CAT, GSH, IL-10, along with significant behavioral dysfunction in cyclophosphamide-treated animals. Significant neuronal damage was also observed in the histological study. Immunohistochemical analysis demonstrated increased expression of NLRP3 and caspase-1. Fluorescence microscopic analysis showed significant availability of NR-NLC in the hippocampus and cortex region. In contrast, treatment with NR-NLC effectively mitigated the aforementioned neurotoxic manifestation as compared to NR suspension. Our results showed potent neuroprotective effect of NR-NLC via modulation of oxidative stress, NLRP3 inflammasome, caspase-1 and neurotransmitter status.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Sivasangari S, Asaikumar L, Vennila L. Arbutin prevents alterations in mitochondrial and lysosomal enzymes in isoproterenol-induced myocardial infarction: An in vivo study. Hum Exp Toxicol 2020; 40:100-112. [DOI: 10.1177/0960327120945790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study demonstrated the protective effects of arbutin (ARB) on hyperlipidemia, mitochondrial, and lysosomal membrane damage and on the DNA damage in rats with isoproterenol (ISO)-induced myocardial infarction (MI). Rats were pretreated with ARB (25 and 50 mg/kg body weight (bw)) for 21 days. After pretreatment with ARB, MI was induced by subcutaneous injection of ISO (60 mg/kg bw) for two consecutive days at an interval of 24 h. The levels of TC, TG, and FFA were increased and decreased the level of PL in the heart tissue of ISO-induced MI rats. Very-low-density lipoprotein cholesterol and low-density lipoprotein cholesterol were increased while high-density lipoprotein cholesterol was decreased in the plasma of ISO-administered rats. A heart mitochondrial fraction of the ISO rats showed a significant decrease in the activities of mitochondrial enzymes isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase. The activities of lysosomal enzymes (β-glucosidase, β-glucuronidase, α-galactosidase, β-galactosidase, cathepsin-B, and cathepsin-D) were increased significantly in the heart tissue homogenate of disease control rats. In ISO-induced MI, rat’s significant increase in the percentage of tail DNA and tail length, and a decrease in the level of head DNA were also observed. ARB administration to MI rats brought all these parameters to near normality, showing the protective effect of ARB against MI in rats. The results of this study demonstrated that the 50 mg/kg bw of ARB shows higher protection than 25 mg/kg bw against ISO-induced damage.
Collapse
Affiliation(s)
- S Sivasangari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - L Asaikumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - L Vennila
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| |
Collapse
|
19
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
20
|
Astaxanthin Protects Ochratoxin A-Induced Oxidative Stress and Apoptosis in the Heart via the Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7639109. [PMID: 32190177 PMCID: PMC7073479 DOI: 10.1155/2020/7639109] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/18/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
This study assessed the protective mechanism of astaxanthin (ASX) against ochratoxin A- (OTA-) induced cardiac injury in mice. Four groups of mice were established: control group (0.1 mL olive oil + 0.1 mL NaHCO2), OTA group (0.1 mL OTA 5 mg/kg body weight), ASX group (0.1 mL ASX 100 mg/kg body weight), and ASX + OTA group (0.1 mL ASX 100 mg/kg body weight, 2 h later, 0.1 mL OTA 5 mg/kg body weight). The test period lasted for 27 days (7 days of dosing, 2 days of rest). Electrocardiogram, body weight, heart weight, tissue pathology, oxidative markers (malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH)), biochemical markers (creatine kinase (CK), creatine kinase isoenzyme (CK-MB), and lactate dehydrogenase (LDH)), electron microscopy, TUNEL, and Western blot tests were used to examine the effects of OTA on myocardial injury and ASX detoxification. The results showed that OTA exposure significantly decreased both body weight and heart weight. OTA induced a decrease in heart rate in mice and decreased tissue concentrations of SOD, CAT, and GSH, while increasing serum concentrations of cardiac enzymes (CK, CK-MB, and LDH) and tissue MDA. ASX improved heart rate, cardiac enzymes, and antioxidant levels in mice. The results of tissue pathology and TUNEL assay showed that ASX protects against OTA-induced myocardial injury. In addition, Western blot results showed that the OTA group upregulated Keap1, Bax, Caspase3, and Caspase9, while it downregulated Nrf2, HO-1, and Bcl-2 protein expression. ASX played a protective role by changing the expression of Keap1, Nrf2, HO-1, Bax, Bcl-2, Caspase3, and Caspase9 proteins. These results indicate that the protective mechanism of ASX on the myocardium works through the Keap1-Nrf2 signaling pathway and mitochondria-mediated apoptosis pathway. This study provides a molecular rationale for the mechanism underlying OTA-induced myocardial injury and the protective effect of ASX on the myocardium.
Collapse
|
21
|
Bei W, Jing L, Chen N. Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation. Colloids Surf B Biointerfaces 2019; 185:110635. [PMID: 31744760 DOI: 10.1016/j.colsurfb.2019.110635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/23/2023]
Abstract
Wogonin, one of the main active ingredients of Scutellaria radix, is a kind of flavonoid compound. In the present study, we report that wogonin nanoparticles (Wog np) protect Isoproterenol (ISO) induced Myocardial Infarction (MI) rats. Nanoparticles of sizes less than 200 nm with spherical shape were prepared using Polylactic-co-glycolic acid (PLGA) and Polyvinyl alcohol (PVA) respectively as polymer and stabilizer. Male Wistar rats were divided into 4 groups. Group 1 as a control group administered with physiological saline solution with 0.5 % carboxymethylcellulose (1 mL/day). Group 2 served as toxic group; rats received physiological saline solution with 0.5 % carboxymethylcellulose (1 mL/day) orally for 21 days Groups 3 and 4 received Wog np (25 and 50 mg/kg/day) orally for 21 days and on the 20th and 21 st days group 2, 3, and 4 were administered with ISO (85 mg/kg) through s.c. route at 24 h interval. pre-treatment with Wog np (25 and 50 mg/kg) could significantly reduce the cardiac infarct size, serum cardiac markers, lipid peroxidation product (MDA) and inflammatory markers as well as markedly upregulated the protein expression of nuclear factor erythroid 2-related factor (Nrf2)and heme oxygenase-1 (HO-1) to confer its strong cardioprotective activity against ISO induced myocardial damage.
Collapse
Affiliation(s)
- Wan Bei
- Department of Cardiology, Central Hospital of Wuhan, Affiliated to Huazhong University of Science and Technology, Hubei Province, 4320000, China
| | - Li Jing
- Department of Cardiology, Central Hospital of Wuhan, Affiliated to Huazhong University of Science and Technology, Hubei Province, 4320000, China
| | - Nie Chen
- Department of Cardiology, Central Hospital of Wuhan, Affiliated to Huazhong University of Science and Technology, Hubei Province, 4320000, China.
| |
Collapse
|