1
|
Hao X, Guo W, Li F, Cui L, Kang W. Analysis of the liver-gut axis including metabolomics and intestinal flora to determine the protective effects of kiwifruit seed oil on CCl 4-induced acute liver injury. Food Funct 2024; 15:9149-9164. [PMID: 39157920 DOI: 10.1039/d4fo02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The hepatoprotective effects of kiwifruit seed oil (KSO) were evaluated on acute liver injury (ALI) induced by carbon tetrachloride (CCl4) in vivo. Network pharmacology was used to predict active compounds and targets. Metabolomics and gut microbiota analyses were used to discover the activity mechanism of KSO. KSO improved the liver histological structure, significantly reduced serum proinflammatory cytokine levels, and increased liver antioxidant capacity. The metabolomics analysis showed that KSO may have hepatoprotective effects by controlling metabolites through its participation in signaling pathways like tryptophan metabolism, glycolysis/gluconeogenesis, galactose metabolism, and bile secretion. The gut microbiota analysis demonstrated that KSO improved the composition and quantity of the gut flora. Network pharmacological investigations demonstrated that KSO operated by altering Ptgs2, Nos2, Ppara, Pparg and Serpine1 mRNA levels. All evidence shows that KSO has a hepatoprotective effect, and the mechanism is connected to the regulation of metabolic disorders and intestinal flora.
Collapse
Affiliation(s)
- Xuting Hao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Wenjing Guo
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Fangfang Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- College of Agriculture, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- College of Agriculture, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| |
Collapse
|
2
|
Deng Q, Yang Y, Liu Y, Zou M, Huang G, Yang S, Li L, Qu Y, Luo Y, Zhang X. Assessing immune hepatotoxicity of troglitazone with a versatile liver-immune-microphysiological-system. Front Pharmacol 2024; 15:1335836. [PMID: 38873410 PMCID: PMC11169855 DOI: 10.3389/fphar.2024.1335836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug-induced liver injury is a prevalent adverse event associated with pharmaceutical agents. More significantly, there are certain drugs that present severe hepatotoxicity only during the clinical phase, consequently leading to the termination of drug development during clinical trials or the withdrawal from the market after approval. The establishment of an evaluation model that can sensitively manifest such hepatotoxicity has always been a challenging aspect in drug development. In this study, we build a liver-immune-microphysiological-system (LIMPS) to fully demonstrate the liver injury triggered by troglitazone (TGZ), a drug that was withdrawn from the market due to hepatotoxicity. Leveraging the capabilities of organ-on-chip technology allows for the dynamic modulation of cellular immune milieu, as well as the synergistic effects between drugs, hepatocytes and multiple immune cells. Through the LIMPS, we discovered that 1) TGZ can promote neutrophils to adhered hepatocytes, 2) the presence of TGZ enhances the crosstalk between macrophages and neutrophils, 3) the induction of damage in hepatocytes by TGZ at clinically relevant blood concentrations not observed in other in vitro experiments, 4) no hepatotoxicity was observed in LIMPS when exposed to rosiglitazone and pioglitazone, structurally similar analogs of TGZ, even at the higher multiples of blood drug concentration levels. As an immune-mediated liver toxicity assessment method, LIMPS is simple to operate and can be used to test multiple drug candidates to detect whether they will cause severe liver toxicity in clinical settings as early as possible.
Collapse
Affiliation(s)
- Quanfeng Deng
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Youlong Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuangui Liu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengting Zou
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Guiyuan Huang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Shiqi Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lingyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yueyang Qu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Xiuli Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Zhang Y, Zhang X, Han J, Guo Y, Yang F, Li F, Zhu H, Shen Z, Huang Y, Mao R, Zhang J. Downregulated VISTA enhances Th17 differentiation and aggravates inflammation in patients with acute-on-chronic liver failure. Hepatol Int 2023; 17:1000-1015. [PMID: 36944807 DOI: 10.1007/s12072-023-10505-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND AIMS Persistent inflammatory response and immune activation are the core mechanisms underlying acute-on-chronic liver failure (ACLF). Previous studies have shown that deficiency of V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) exacerbates the progression of inflammatory diseases. We aimed to clarify the role of VISTA in the pathogenesis of ACLF. METHODS Blood and liver samples were collected from healthy subjects, stable cirrhosis, and ACLF patients to characterize VISTA expression and function. An ACLF mouse model was used to ascertain potential benefits of anti-VISTA monoclonal antibody (mAb) treatment. RESULTS VISTA expression was significantly reduced in the naïve and central memory CD4+ T cells from patients with ACLF. The expression of VISTA on CD4+ T cells was associated with disease severity and prognosis. VISTA downregulation contributed to the activation and proliferation of CD4+ T cells and enhanced the differentiation of T helper 17 cells (Th17) and secretion of inflammatory cytokines through the activated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Moreover, agonistic anti-VISTA mAb treatment inhibited the activation and cytokine production of CD4+ T cells and reduced mortality and liver inflammation of the ACLF mice. CONCLUSIONS The decreased expression of VISTA may facilitate development of Th17 cells and promote the progression of inflammation in ACLF patients. These findings are helpful for elucidating the pathogenesis of ACLF and for the identification of new drug targets.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Fahong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Department of Hepatitis Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Ahmed AR, Ahmed M, Vun-Sang S, Iqbal M. Is Glyceryl Trinitrate, a Nitric Oxide Donor Responsible for Ameliorating the Chemical-Induced Tissue Injury In Vivo? Molecules 2022; 27:molecules27144362. [PMID: 35889233 PMCID: PMC9318303 DOI: 10.3390/molecules27144362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress induced by well-known toxins including ferric nitrilotriacetate (Fe-NTA), carbon tetrachloride (CCl4) and thioacetamide (TAA) has been attributed to causing tissue injury in the liver and kidney. In this study, the effect of glyceryl trinitrate (GTN), a donor of nitric oxide and NG-nitroarginine methyl ester (l-NAME), a nitric oxide inhibitor on TAA-induced hepatic oxidative stress, GSH and GSH-dependent enzymes, serum transaminases and tumor promotion markers such as ornithine decarboxylase (ODC) activity and [3H]-thymidine incorporation in rats were examined. The animals were divided into seven groups consisting of six healthy rats per group. The six rats were injected intraperitoneally with TAA to evaluate its toxic effect, improvement in its toxic effect if any, or worsening in its toxic effect if any, when given in combination with GTN or l-NAME. The single necrogenic dose of TAA administration caused a significant change in the levels of both hepatic and serum enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), γ-glutamyl transpeptidase (GGT), glucose 6-phosphate dehydrogenase (G6PD), alanine aminotransferase (AST) and aspartate aminotransferase (ALT). In addition, treatment with TAA also augmented malondialdehyde (MDA), ornithine decarboxylase (ODC) activity and [3H]-thymidine incorporation in rats liver. Concomitantly, TAA treatment depleted the levels of GSH. However, most of these changes were alleviated by the treatment of animals with GTN dose-dependently. The protective effect of GTN against TAA was also confirmed histopathologically. The present data confirmed our earlier findings with other oxidants including Fe-NTA and CCl4. The GTN showed no change whatsoever when administered alone, however when it was given along with TAA then it showed protection thereby contributing towards defending the role against oxidants-induced organ toxicity. Overall, GTN may contribute to protection against TAA-induced oxidative stress, toxicity, and proliferative response in the liver, according to our findings.
Collapse
Affiliation(s)
- Ayesha Rahman Ahmed
- Department of Medical Elementology and Toxicology, Faculty of Science, Hamdard University, New Delhi 110062, India;
| | - Mahiba Ahmed
- Voiland School of Chemical Engineering and Bioengineering, Pullman, WA 99164, USA;
| | - Senty Vun-Sang
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Mohammad Iqbal
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: or
| |
Collapse
|