1
|
Papageorgiou E, De Beukelaer N, Simon-Martinez C, Mailleux L, Van Campenhout A, Desloovere K, Ortibus E. Structural Brain Lesions and Gait Pathology in Children With Spastic Cerebral Palsy. Front Hum Neurosci 2020; 14:275. [PMID: 32733223 PMCID: PMC7363943 DOI: 10.3389/fnhum.2020.00275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The interaction between brain damage and motor function is not yet fully understood in children with spastic cerebral palsy (CP). Therefore, a semi-quantitative MRI (sqMRI) scale was used to explore whether identified brain lesions related to functional abilities and gait pathology in this population. A retrospective cohort of ambulatory children with spastic CP was selected [N = 104; 52 bilateral (bCP) and 52 unilateral (uCP)]. Extent and location-specific scores were defined according to the sqMRI scale guidelines. The gross motor function classification system (GMFCS), the gait profile score (GPS), GPSs per motion plane, gait variable scores (GVS) and multiple-joint (MJ) gait patterns were related to brain lesion scores. In all groups, the global total brain scores correlated to the GPS (total: rs = 0.404, p ≤ 0.001; bCP: rs = 0.335, p ≤ 0.05; uCP: rs = 0.493, p ≤ 0.001). The global total hemispheric scores correlated to the GMFCS (total: rs = 0.392, p ≤ 0.001; bCP: rs = 0.316, p ≤ 0.05; uCP: rs = 0.331, p ≤ 0.05). The laterality scores of the hemispheres in the total group correlated negatively to the GMFCS level (rs = −0.523, p ≤ 0.001) and the GVS-knee sagittal (rs = −0.311, p ≤ 0.01). Lesion location, for the total group demonstrated positive correlations between parietal lobe involvement and the GPS (rs = 0.321, p ≤ 0.001) and between periventricular layer damage and the GMFCS (rs = 0.348, p ≤ 0.001). Involvement of the anterior part of the corpus callosum (CC) was associated with the GVS-hip sagittal in all groups (total: rpb = 0.495, p ≤ 0.001; bCP: rpb = 0.357, p ≤ 0.05; uCP: rpb = 0.641, p ≤ 0.001). The global total hemispheric and laterality of the hemispheres scores differentiated between the minor and both the extension (p ≤ 0.001 and p ≤ 0.001) and flexion (p = 0.016 and p = 0.013, respectively) MJ patterns in the total group. Maximal periventricular involvement and CC intactness were associated with extension patterns (p ≤ 0.05 and p ≤ 0.001, respectively). Current findings demonstrated relationships between brain structure and motor function as well as pathological gait, in this cohort of children with CP. These results might facilitate the timely identification of gait pathology and, ultimately, guide individualized treatment planning of gait impairments in children with CP.
Collapse
Affiliation(s)
- Eirini Papageorgiou
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie De Beukelaer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Cristina Simon-Martinez
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Institute of Information Systems, University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland
| | - Lisa Mailleux
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Magnetic resonance imaging findings in patients with cerebral palsy in Duhok, Iraq: Case series. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.663221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
3
|
Alpay Savasan Z, Yilmaz A, Ugur Z, Aydas B, Bahado-Singh RO, Graham SF. Metabolomic Profiling of Cerebral Palsy Brain Tissue Reveals Novel Central Biomarkers and Biochemical Pathways Associated with the Disease: A Pilot Study. Metabolites 2019; 9:metabo9020027. [PMID: 30717353 PMCID: PMC6409919 DOI: 10.3390/metabo9020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
Cerebral palsy (CP) is one of the most common causes of motor disability in childhood, with complex and heterogeneous etiopathophysiology and clinical presentation. Understanding the metabolic processes associated with the disease may aid in the discovery of preventive measures and therapy. Tissue samples (caudate nucleus) were obtained from post-mortem CP cases (n = 9) and age- and gender-matched control subjects (n = 11). We employed a targeted metabolomics approach using both 1H NMR and direct injection liquid chromatography-tandem mass spectrometry (DI/LC-MS/MS). We accurately identified and quantified 55 metabolites using 1H NMR and 186 using DI/LC-MS/MS. Among the 222 detected metabolites, 27 showed significant concentration changes between CP cases and controls. Glycerophospholipids and urea were the most commonly selected metabolites used to develop predictive models capable of discriminating between CP and controls. Metabolomics enrichment analysis identified folate, propanoate, and androgen/estrogen metabolism as the top three significantly perturbed pathways. We report for the first time the metabolomic profiling of post-mortem brain tissue from patients who died from cerebral palsy. These findings could help to further investigate the complex etiopathophysiology of CP while identifying predictive, central biomarkers of CP.
Collapse
Affiliation(s)
- Zeynep Alpay Savasan
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Beaumont Health System, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| | - Ali Yilmaz
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| | - Zafer Ugur
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| | - Buket Aydas
- Departments of Mathematics and Computer Sciences, Albion College, 611 E. Porter St., Albion, MI 49224, USA.
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Beaumont Health System, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| | - Stewart F Graham
- Oakland University-William Beaumont School of Medicine, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Beaumont Research Institute, Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| |
Collapse
|
4
|
Bakian AV, Bilder DA, Korgenski EK, Bonkowsky JL. Autism Spectrum Disorder and Neonatal Serum Magnesium Levels in Preterm Infants. Child Neurol Open 2018; 5:2329048X18800566. [PMID: 30246047 PMCID: PMC6144497 DOI: 10.1177/2329048x18800566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/22/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Premature birth is associated with increased risk of autism spectrum disorder. Antenatal maternal magnesium administration is known to reduce subsequent risk of cerebral palsy including among premature infants, suggesting a potentially broader neuroprotective role for magnesium. Our objective was to determine whether magnesium could be protective against autism spectrum disorders in premature infants. A cohort of 4855 preterm children was identified, magnesium levels from 24 to 48 hours of life recorded, and subsequent autism spectrum disorder status determined. Adjusted relative risk of autism spectrum disorder with each 1 mg/dL increase in neonatal magnesium level was 1.15 (95% confidence interval: 0.86-1.53). Analysis of variance indicated that magnesium levels varied by gestational age and maternal antenatal magnesium supplementation, but not autism spectrum disorder status (F1,4824 = 1.43, P = .23). We found that neonatal magnesium levels were not associated with decreased autism spectrum disorder risk. Future research into autism spectrum disorder risks and treatments in premature infants is needed.
Collapse
Affiliation(s)
- Amanda V Bakian
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Deborah A Bilder
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Stojanovska V, Atik A, Nitsos I, Skiöld B, Barton SK, Zahra VA, Rodgers K, Hooper SB, Polglase GR, Galinsky R. Effects of Intrauterine Inflammation on Cortical Gray Matter of Near-Term Lambs. Front Pediatr 2018; 6:145. [PMID: 29963540 PMCID: PMC6013568 DOI: 10.3389/fped.2018.00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/01/2018] [Indexed: 12/25/2022] Open
Abstract
Introduction: Ventilation causes cerebral white matter inflammation and injury, which is exacerbated by intrauterine inflammation. However, the effects on cortical gray matter are not well-known. Our aim was to examine the effect of ventilation on the cerebral cortex of near-term lambs exposed to intrauterine inflammation. Method:Pregnant ewes at 119 ± 1 days gestation received an intra-amniotic injection of saline or lipopolysaccharide (LPS; 10 mg). Seven days later, lambs were randomized to either a high tidal volume injurious ventilation strategy (INJSALN = 6, INJLPSN = 5) or a protective ventilation strategy (PROTSALN = 5, PROTLPSN = 6). Respiratory parameters, heart rate and blood gases were monitored during the neonatal period. At post-mortem, the brain was collected and processed for immunohistochemical assessment. Neuronal density (NeuN), apoptotic cell death (caspase 8 and TUNEL), microglial density (Iba-1), astrocytic density (GFAP), and vascular protein extravasation (sheep serum) were assessed within the frontal, parietal, temporal and occipital lobes of the cerebral cortex. Results:A significant reduction in the number of neurons in all cortical layers except 4 was observed in LPS-exposed lambs compared to controls (layer #1: p = 0.041; layers #2 + 3: p = 0.023; layers #5 + 6: p = 0.016). LPS treatment caused a significant increase in gray matter area, indicative of edema. LPS+ventilation did not cause apoptotic cell death in the gray matter. Astrogliosis was not observed following PROT or INJ ventilation, with or without LPS exposure. LPS exposure was associated with vascular protein extravasation. Conclusion:Ventilation had little effect on gray matter inflammation and injury. Intrauterine inflammation reduced neuronal cell density, caused edema of the cortical gray matter, and blood vessel extravasation in the brain of near-term lambs.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Anzari Atik
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Béatrice Skiöld
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Samantha K Barton
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Centre of Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Karyn Rodgers
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Inuggi A, Bassolino M, Tacchino C, Pippo V, Bergamaschi V, Campus C, De Franchis V, Pozzo T, Moretti P. Ipsilesional functional recruitment within lower mu band in children with unilateral cerebral palsy, an event-related desynchronization study. Exp Brain Res 2017; 236:517-527. [DOI: 10.1007/s00221-017-5149-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
|
7
|
Meyns P, Van Gestel L, Leunissen I, De Cock P, Sunaert S, Feys H, Duysens J, Desloovere K, Ortibus E. Macrostructural and Microstructural Brain Lesions Relate to Gait Pathology in Children With Cerebral Palsy. Neurorehabil Neural Repair 2016; 30:817-33. [DOI: 10.1177/1545968315624782] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background. Even though lower-limb motor disorders are core features of spastic cerebral palsy (sCP), the relationship with brain lesions remains unclear. Unraveling the relation between gait pathology, lower-limb function, and brain lesions in sCP is complex for several reasons; wide heterogeneity in brain lesions, ongoing brain maturation, and gait depends on a number of primary motor functions/deficits (eg, muscle strength, spasticity). Objective. To use a comprehensive approach combining conventional MRI and diffusion tensor imaging (DTI) in children with sCP above 3 years old to relate quantitative parameters of brain lesions in multiple brain areas to gait performance. Methods. A total of 50 children with sCP (25 bilateral, 25 unilateral involvement) were enrolled. The investigated neuroradiological parameters included the following: (1) volumetric measures of the corpus callosum (CC) and lateral ventricles (LVs), and (2) DTI parameters of the corticospinal tract (CST). Gait pathology and primary motor deficits, including muscle strength and spasticity, were evaluated by 3D gait analysis and clinical examination. Results. In bilateral sCP (n = 25), volume of the LV and the subparts of the CC connecting frontal, (pre)motor, and sensory areas were most related to lower-limb functioning and gait pathology. DTI measures of the CST revealed additional relations with the primary motor deficits (n = 13). In contrast, in unilateral sCP, volumetric (n = 25) and diffusion measures (n = 14) were only correlated to lower-limb strength. Conclusions. These results indicate that the combined influence of multiple brain lesions and their impact on the primary motor deficits might explain a large part of the gait pathology in sCP.
Collapse
Affiliation(s)
- Pieter Meyns
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Belgium
- Movement control and neuroplasticity, Department of Kinesiology, KU Leuven, Belgium
| | - Leen Van Gestel
- Neuromotor Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Belgium
- The Scottish Centre for Children with Motor Impairments, Cumbernauld, United Kingdom
| | - Inge Leunissen
- Movement control and neuroplasticity, Department of Kinesiology, KU Leuven, Belgium
| | - Paul De Cock
- Center for Developmental Disabilities, University Hospitals Leuven, Belgium
- Department of Public Health, Faculty of Medicine, KU Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Belgium
| | - Hilde Feys
- Neuromotor Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Belgium
| | - Jacques Duysens
- Movement control and neuroplasticity, Department of Kinesiology, KU Leuven, Belgium
| | - Kaat Desloovere
- Neuromotor Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Belgium
- Clinical Motion Analysis Laboratory, CERM, University Hospital Leuven, KU Leuven, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Belgium
| |
Collapse
|
8
|
Pagnozzi AM, Shen K, Doecke JD, Boyd RN, Bradley AP, Rose S, Dowson N. Using ventricular modeling to robustly probe significant deep gray matter pathologies: Application to cerebral palsy. Hum Brain Mapp 2016; 37:3795-3809. [PMID: 27257958 DOI: 10.1002/hbm.23276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 11/11/2022] Open
Abstract
Understanding the relationships between the structure and function of the brain largely relies on the qualitative assessment of Magnetic Resonance Images (MRIs) by expert clinicians. Automated analysis systems can support these assessments by providing quantitative measures of brain injury. However, the assessment of deep gray matter structures, which are critical to motor and executive function, remains difficult as a result of large anatomical injuries commonly observed in children with Cerebral Palsy (CP). Hence, this article proposes a robust surrogate marker of the extent of deep gray matter injury based on impingement due to local ventricular enlargement on surrounding anatomy. Local enlargement was computed using a statistical shape model of the lateral ventricles constructed from 44 healthy subjects. Measures of injury on 95 age-matched CP patients were used to train a regression model to predict six clinical measures of function. The robustness of identifying ventricular enlargement was demonstrated by an area under the curve of 0.91 when tested against a dichotomised expert clinical assessment. The measures also showed strong and significant relationships for multiple clinical scores, including: motor function (r2 = 0.62, P < 0.005), executive function (r2 = 0.55, P < 0.005), and communication (r2 = 0.50, P < 0.005), especially compared to using volumes obtained from standard anatomical segmentation approaches. The lack of reliance on accurate anatomical segmentations and its resulting robustness to large anatomical variations is a key feature of the proposed automated approach. This coupled with its strong correlation with clinically meaningful scores, signifies the potential utility to repeatedly assess MRIs for clinicians diagnosing children with CP. Hum Brain Mapp 37:3795-3809, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia. .,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Kaikai Shen
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - James D Doecke
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, School of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew P Bradley
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Nicholas Dowson
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
9
|
Optimization of MRI-based scoring scales of brain injury severity in children with unilateral cerebral palsy. Pediatr Radiol 2016; 46:270-9. [PMID: 26554854 DOI: 10.1007/s00247-015-3473-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/01/2015] [Accepted: 10/07/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Several scoring systems for measuring brain injury severity have been developed to standardize the classification of MRI results, which allows for the prediction of functional outcomes to help plan effective interventions for children with cerebral palsy. OBJECTIVE The aim of this study is to use statistical techniques to optimize the clinical utility of a recently proposed template-based scoring method by weighting individual anatomical scores of injury, while maintaining its simplicity by retaining only a subset of scored anatomical regions. MATERIALS AND METHODS Seventy-six children with unilateral cerebral palsy were evaluated in terms of upper limb motor function using the Assisting Hand Assessment measure and injuries visible on MRI using a semiquantitative approach. This cohort included 52 children with periventricular white matter injury and 24 with cortical and deep gray matter injuries. A subset of the template-derived cerebral regions was selected using a data-driven region selection algorithm. Linear regression was performed using this subset, with interaction effects excluded. RESULTS Linear regression improved multiple correlations between MRI-based and Assisting Hand Assessment scores for both periventricular white matter (R squared increased to 0.45 from 0, P < 0.0001) and cortical and deep gray matter (0.84 from 0.44, P < 0.0001) cohorts. In both cohorts, the data-driven approach retained fewer than 8 of the 40 template-derived anatomical regions. CONCLUSION The equal or better prediction of the clinically meaningful Assisting Hand Assessment measure using fewer anatomical regions highlights the potential of these developments to enable enhanced quantification of injury and prediction of patient motor outcome, while maintaining the clinical expediency of the scoring approach.
Collapse
|
10
|
Pagnozzi AM, Gal Y, Boyd RN, Fiori S, Fripp J, Rose S, Dowson N. The need for improved brain lesion segmentation techniques for children with cerebral palsy: A review. Int J Dev Neurosci 2015; 47:229-46. [DOI: 10.1016/j.ijdevneu.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Affiliation(s)
- Alex M. Pagnozzi
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
- The University of QueenslandSchool of MedicineSt. LuciaBrisbaneAustralia
| | - Yaniv Gal
- The University of QueenslandCentre for Medical Diagnostic Technologies in QueenslandSt. LuciaBrisbaneAustralia
| | - Roslyn N. Boyd
- The University of QueenslandQueensland Cerebral Palsy and Rehabilitation Research CentreSchool of MedicineBrisbaneAustralia
| | - Simona Fiori
- Department of Developmental NeuroscienceStella Maris Scientific InstitutePisaItaly
| | - Jurgen Fripp
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Stephen Rose
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Nicholas Dowson
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| |
Collapse
|
11
|
Peterson D, Mahajan R, Crocetti D, Mejia A, Mostofsky S. Left-hemispheric microstructural abnormalities in children with high-functioning autism spectrum disorder. Autism Res 2014; 8:61-72. [PMID: 25256103 DOI: 10.1002/aur.1413] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 08/12/2014] [Indexed: 12/18/2022]
Abstract
Current theories of the neurobiological basis of autism spectrum disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used diffusion tensor imaging to investigate the microstructural properties of the white matter (WM) that mediates interregional connectivity in 36 high-functioning children with ASD (HF-ASD) as compared with 37 controls. By employing an atlas-based analysis using large deformation diffeometric morphic mapping registration, a widespread but left-lateralized pattern of abnormalities was revealed. The mean diffusivity (MD) of water in the WM of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical WM. Across diagnostic groups, there was a significant effect of age on left-hemisphere MD, with a similar reduction in MD during childhood in both typically developing and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination and may reflect increased short-range cortico-cortical connections subsequent to early WM overgrowth. These findings also highlight left-hemispheric connectivity as relevant to the pathophysiology of ASD and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD.
Collapse
Affiliation(s)
- Daniel Peterson
- Center for Neurodevelopment and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
12
|
McIntyre S, Morgan C, Walker K, Novak I. Cerebral Palsy-Don't Delay. ACTA ACUST UNITED AC 2013; 17:114-29. [DOI: 10.1002/ddrr.1106] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/05/2012] [Indexed: 11/08/2022]
|
13
|
Scheck SM, Boyd RN, Rose SE. New insights into the pathology of white matter tracts in cerebral palsy from diffusion magnetic resonance imaging: a systematic review. Dev Med Child Neurol 2012; 54:684-96. [PMID: 22646844 DOI: 10.1111/j.1469-8749.2012.04332.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIM Structural connectivity analysis using diffusion magnetic resonance imaging (dMRI) and tractography has become the method of choice for studying white matter pathology and reorganization in children with congenital hemiplegia. To evaluate its role in the research domain, we systematically reviewed the literature about children with cerebral palsy (CP) to document common findings and identify strengths and possible limitations of this neuroimaging technology. METHOD A literature search was performed for peer-reviewed studies pertaining to dMRI and CP. RESULTS Twenty-two studies met the inclusion criteria. The corticospinal tract was studied in greatest detail (18/22). The most common finding was decreased fractional anisotropy and/or increased mean diffusivity, indicating significant loss in the integrity of these corticomotor pathways. Fewer studies assessed ascending sensorimotor pathways including the posterior and superior thalamic radiations, which also showed decreased fractional anisotropy. Anisotropy indices (fractional anisotropy, mean diffusivity) obtained for both corticomotor and sensorimotor tracts were repeatedly shown to correlate with clinical measures. Other tracts studied included commissural and association fibres, which showed conflicting results. INTERPRETATION There is sound evidence that dMRI-based connectivity techniques are useful for improving our understanding of the structure-function relationships of corticomotor and sensorimotor neural networks in CP.
Collapse
Affiliation(s)
- Simon M Scheck
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|