1
|
Mashoodh R, Habrylo IB, Gudsnuk K, Champagne FA. Sex-specific effects of chronic paternal stress on offspring development are partially mediated via mothers. Horm Behav 2023; 152:105357. [PMID: 37062113 DOI: 10.1016/j.yhbeh.2023.105357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Paternal stress exposure is known to impact the development of stress-related behaviors in offspring. Previous work has highlighted the importance of sperm mediated factors, such as RNAs, in transmitting the effects of parental stress. However, a key unanswered question is whether mothers behavior could drive or modulate the transmission of paternal stress effects on offspring development. Here we investigate how chronic variable stress in Balb/C mice influences the sex-specific development of anxiety- and depression-like neural and behavioral development in offspring. Moreover, we examined how stressed fathers influenced mate maternal investment towards their offspring and how this may modulate the transmission of paternal stress effects on offspring. We show that paternal stress leads to sex-specific effects on offspring behavior. Males that are chronically stressed sire female offspring that show increased anxiety and depression-like behaviors. However, male offspring of stressed fathers show reductions in anxiety- and depression-behaviors and are generally more exploratory. Moreover, we show that females mated with stressed males gain less weight during pregnancy and provide less care towards their offspring which additionally influenced offspring development. These data indicate that paternal stress can influence offspring development both directly and indirectly via changes in mothers, with implications for sex-specific offspring development.
Collapse
Affiliation(s)
- Rahia Mashoodh
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| | - Ireneusz B Habrylo
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America
| | - Kathryn Gudsnuk
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America
| | - Frances A Champagne
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Schermerhorn Hall, New York, NY 10027, United States of America; University of Texas Austin, Department of Psychology, 108 Dean Keeton, Austin, TX 78712, United States of America
| |
Collapse
|
2
|
Points of divergence on a bumpy road: early development of brain and immune threat processing systems following postnatal adversity. Mol Psychiatry 2023; 28:269-283. [PMID: 35705633 DOI: 10.1038/s41380-022-01658-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
Lifelong indices of maladaptive behavior or illness often stem from early physiological aberrations during periods of dynamic development. This is especially true when dysfunction is attributable to early life adversity (ELA), when the environment itself is unsuitable to support development of healthy behavior. Exposure to ELA is strongly associated with atypical sensitivity and responsivity to potential threats-a characteristic that could be adaptive in situations where early adversity prepares individuals for lifelong danger, but which often manifests in difficulties with emotion regulation and social relationships. By synthesizing findings from animal research, this review will consider threat sensitivity through the lenses of associated corticolimbic brain circuitry and immune mechanisms, both of which are immature early in life to maximize adaptation for protection against environmental challenges to an individual's well-being. The forces that drive differential development of corticolimbic circuits include caretaking stimuli, physiological and psychological stressors, and sex, which influences developmental trajectories. These same forces direct developmental processes of the immune system, which bidirectionally communicates with sensory systems and emotion regulation circuits within the brain. Inflammatory signals offer a further force influencing the timing and nature of corticolimbic plasticity, while also regulating sensitivity to future threats from the environment (i.e., injury or pathogens). The early development of these systems programs threat sensitivity through juvenility and adolescence, carving paths for probable function throughout adulthood. To strategize prevention or management of maladaptive threat sensitivity in ELA-exposed populations, it is necessary to fully understand these early points of divergence.
Collapse
|
3
|
Zhang N, Gao M, Yu J, Zhang Q, Wang W, Zhou C, Liu L, Sun T, Liao X, Wang J. Understanding the association between adverse childhood experiences and subsequent attention deficit hyperactivity disorder: A systematic review and meta-analysis of observational studies. Brain Behav 2022; 12:e32748. [PMID: 36068993 PMCID: PMC9575611 DOI: 10.1002/brb3.2748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in childhood, which may be related to adverse childhood experiences (ACEs). Our study aims to explore the association between ACEs and subsequent ADHD, and analyze the potential moderators. METHODS Literature search was conducted by a combined computer-assisted and manual method. Studies were included if they had reported the association between ACEs and subsequent ADHD. Overall estimates of odds ratios (ORs) were obtained using random-effects meta-analyses, meta-regressions and further stratified analyses were conducted to examine potential moderator variables. RESULTS Totals of 70 studies involving nearly 4 million participants from among 6,452 unique articles were included. In the primary analyses, ACEs were found to be associated with subsequent ADHD (OR = 1.68, 95% CI: 1.54-1.83), and the negative effects of different forms of ACEs for ADHD were nonequivalent. Such as lived in the stepfamily, been adopted or fostered, and experienced sexual abuse were more deleterious than others. It was found that individuals who had experienced multiple ACEs or who are female were more vulnerable to ADHD. CONCLUSIONS The findings provide critical evidence for understanding the association between ACEs and ADHD. ACEs could increase the susceptibility of ADHD, especially for individuals who ever experienced multiple ACEs and females.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Man Gao
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinglong Yu
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Zhang
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weiguang Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Congxiao Zhou
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingjia Liu
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Sun
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Liao
- Center of Evidence Based Traditional Chinese Medicine, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junhong Wang
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Kent MH, Jacob JC, Bowen G, Bhalerao J, Desinor S, Vavra D, Leserve D, Ott KR, Angeles B, Martis M, Sciandra K, Gillenwater K, Glory C, Meisel E, Choe A, Olivares-Navarrete R, Puetzer JL, Lambert K. Disrupted development from head to tail: Pervasive effects of postnatal restricted resources on neurobiological, behavioral, and morphometric outcomes. Front Behav Neurosci 2022; 16:910056. [PMID: 35990727 PMCID: PMC9389412 DOI: 10.3389/fnbeh.2022.910056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
When a maternal rat nurtures her pups, she relies on adequate resources to provide optimal care for her offspring. Accordingly, limited environmental resources may result in atypical maternal care, disrupting various developmental outcomes. In the current study, maternal Long-Evans rats were randomly assigned to either a standard resource (SR) group, provided with four cups of bedding and two paper towels for nesting material or a limited resource (LR) group, provided with a quarter of the bedding and nesting material provided for the SR group. Offspring were monitored at various developmental phases throughout the study. After weaning, pups were housed in same-sex dyads in environments with SRs for continued observations. Subsequent behavioral tests revealed a sex × resource interaction in play behavior on PND 28; specifically, LR reduced play attacks in males while LR increased play attacks in females. A sex × resource interaction was also observed in anxiety-related responses in the open field task with an increase in thigmotaxis in LR females and, in the social interaction task, females exhibited more external rears oriented away from the social target. Focusing on morphological variables, tail length measurements of LR males and females were shorter on PND 9, 16, and 21; however, differences in tail length were no longer present at PND 35. Following the behavioral assessments, animals were perfused at 56 days of age and subsequent immunohistochemical assays indicated increased glucocorticoid receptors in the lateral habenula of LR offspring and higher c-Fos immunoreactivity in the basolateral amygdala of SR offspring. Further, when tail vertebrae and tail tendons were assessed via micro-CT and hydroxyproline assays, results indicated increased trabecular separation, decreased bone volume fraction, and decreased connectivity density in bones, along with reduced collagen concentration in tendons in the LR animals. In sum, although the restricted resources only persisted for a brief duration, the effects appear to be far-reaching and pervasive in this early life stress animal model.
Collapse
Affiliation(s)
- Molly H. Kent
- Department of Biology, Virginia Military Institute, Lexington, VA, United States
| | - Joanna C. Jacob
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Gabby Bowen
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Janhavi Bhalerao
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Stephanie Desinor
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Dylan Vavra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Danielle Leserve
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Kelly R. Ott
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamin Angeles
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Martis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Katherine Sciandra
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | | | - Clark Glory
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Eli Meisel
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Allison Choe
- Department of Psychology, University of Richmond, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer L. Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, VA, United States
- *Correspondence: Kelly Lambert,
| |
Collapse
|
5
|
Chelini G, Pangrazzi L, Bozzi Y. At the Crossroad Between Resiliency and Fragility: A Neurodevelopmental Perspective on Early-Life Experiences. Front Cell Neurosci 2022; 16:863866. [PMID: 35465609 PMCID: PMC9023311 DOI: 10.3389/fncel.2022.863866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal development of the brain is characterized by sensitive windows during which, local circuitry are drastically reshaped by life experiences. These critical periods (CPs) occur at different time points for different brain functions, presenting redundant physiological changes in the underlying brain regions. Although circuits malleability during CPs provides a valuable window of opportunity for adaptive fine-tuning to the living environment, this aspect of neurodevelopment also represents a phase of increased vulnerability for the development of a variety of disorders. Consistently, accumulating epidemiological studies point to adverse childhood experience as a major risk factor for many medical conditions, especially stress- and anxiety-related conditions. Thanks to creative approaches to manipulate rodents’ rearing environment, neurobiologist have uncovered a pivotal interaction between CPs and early-life experiences, offering an interesting landscape to improve our understanding of brain disorders. In this short review, we discuss how early-life experience impacts cellular and molecular players involved in CPs of development, translating into long-lasting behavioral consequences in rodents. Bringing together findings from multiple laboratories, we delineate a unifying theory in which systemic factors dynamically target the maturation of brain functions based on adaptive needs, shifting the balance between resilience and vulnerability in response to the quality of the rearing environment.
Collapse
Affiliation(s)
- Gabriele Chelini
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Gabriele Chelini,
| | - Luca Pangrazzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Bozzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Consiglio Nazionale delle Ricerche (CNR) Neuroscience Institute, Pisa, Italy
| |
Collapse
|
6
|
Granata LE, Valentine A, Hirsch JL, Brenhouse HC. Infant ultrasonic vocalizations predict adolescent social behavior in rats: Effects of early life adversity. Dev Psychobiol 2022; 64:e22260. [PMID: 35312059 PMCID: PMC9340574 DOI: 10.1002/dev.22260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
Early life adversity (ELA) increases risk for psychopathologies that often manifest during adolescence and involve disrupted social functioning. ELA affects development of the prefrontal cortex (PFC), which plays a role in social behavior. PFC oxytocin and vasopressin are important regulators of, first, mother-infant attachment, and, later, social behavior, and are implicated in psychiatric disorders. Here, we tested whether infant social communication is predictive of PFC development and adolescent social behavior. We used the limited bedding (LB) ELA model in rats during postnatal days (P)2-14, and measured isolation-induced ultrasonic vocalizations (USVs) at P10 to characterize differences in an early social response. Rats were tested for dyadic social interaction in adolescence (P34). Adolescent oxytocin receptor (Oxtr) and arginine-vasopressin receptor 1a mRNA were measured in the PFC. Relationships between infant USVs, adolescent behavior, and gene expression were assessed. LB-reared rats exhibited fewer USVs at P10. While social behaviors were not robustly affected by rearing, fewer total and complex-type infant USVs predicted fewer interactions in adolescence. LB increased Oxtr in both sexes but Oxtr was not directly predicted by USVs. Findings support the use of USVs as indicators of differential early life experience in rodents, toward further characterization of early factors associated with vulnerability.
Collapse
Affiliation(s)
| | | | - Jason L. Hirsch
- Department of Psychology Northeastern University Boston MA USA
| | | |
Collapse
|
7
|
Postpartum scarcity-adversity disrupts maternal behavior and induces a hypodopaminergic state in the rat dam and adult female offspring. Neuropsychopharmacology 2022; 47:488-496. [PMID: 34703012 PMCID: PMC8674224 DOI: 10.1038/s41386-021-01210-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Postpartum adversity is among the strongest predictors for the emergence of postpartum depression (PPD) in humans and a translational risk factor employed in rodent models. Parental care is disturbed under conditions of environmental adversity, including low resource environments, and in PPD. Nonetheless, the neural changes associated with these adversity-induced maladaptive behavioral states remain poorly understood. Postpartum scarcity-adversity can be modeled in rats by providing the dam with limited bedding and nesting (LBN) materials, which mimics the effects of a stressful low resource environment in potentiating maltreatment/neglect in humans. Indeed, LBN exposure from postpartum days (PD) 2-9 increased adverse maternal behaviors, impaired pup retrieval, and increased passive stress coping responses. Since mesolimbic dopamine (DA) activity is an important mechanism for motivated maternal behavior and is implicated in PPD, we assessed the impact of postpartum scarcity-adversity on in vivo electrophysiological properties of ventral tegmental area (VTA) DA neurons at two timepoints. We found reduced numbers of active VTA DA neurons in LBN dams at PD 9-10 but not PD-21, suggesting a transient impact on VTA population activity in LBN dams. Finally, we assessed the impact of early life scarcity-adversity on VTA DA function by conducting VTA recordings in adult female offspring and found a long-lasting attenuation in DA activity. These findings highlight a link between adversity-induced deficits in DA function and disrupted maternal behavior, suggesting the VTA/mesolimbic DA system as a potential mechanism by which postpartum scarcity-adversity drives aberrant maternal behavior, and early postnatal programming of adult VTA function in the offspring.
Collapse
|
8
|
Dion A, Muñoz PT, Franklin TB. Epigenetic mechanisms impacted by chronic stress across the rodent lifespan. Neurobiol Stress 2022; 17:100434. [PMID: 35198660 PMCID: PMC8841894 DOI: 10.1016/j.ynstr.2022.100434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Exposures to stress at all stages of development can lead to long-term behavioural effects, in part through changes in the epigenome. This review describes rodent research suggesting that stress in prenatal, postnatal, adolescent and adult stages leads to long-term changes in epigenetic regulation in the brain which have causal impacts on rodent behaviour. We focus on stress-induced epigenetic changes that have been linked to behavioural deficits including poor learning and memory, and increased anxiety-like and depressive-like behaviours. Interestingly, aspects of these stress-induced behavioural changes can be transmitted to offspring across several generations, a phenomenon that has been proposed to result via epigenetic mechanisms in the germline. Here, we also discuss evidence for the differential impact of stress on the epigenome in males and females, conscious of the fact that the majority of published studies have only investigated males. This has led to a limited picture of the epigenetic impact of stress, highlighting the need for future studies to investigate females as well as males.
Collapse
|
9
|
Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, Klintsova AY. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci 2021; 15:786234. [PMID: 34924972 PMCID: PMC8678604 DOI: 10.3389/fnbeh.2021.786234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
10
|
Granata L, Valentine A, Hirsch JL, Honeycutt J, Brenhouse H. Trajectories of Mother-Infant Communication: An Experiential Measure of the Impacts of Early Life Adversity. Front Hum Neurosci 2021; 15:632702. [PMID: 33679352 PMCID: PMC7928287 DOI: 10.3389/fnhum.2021.632702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Caretaking stability in the early life environment supports neurobehavioral development, while instability and neglect constitute adverse environments that can alter maturational processes. Research in humans suggests that different types of early life adversity (ELA) can have differential effects on caretaker relationships and later cognitive and social development; however, identifying mechanistic underpinnings will require animal models with translational validity. Two common rodent models, maternal separation (MS) and limited bedding (LB), influence the mother-infant relationship during a critical window of development. We hypothesized that these paradigms may affect the development of communication strategies on the part of the pup. Ultrasonic vocalizations (USVs) are a care-eliciting mechanism and ethologically relevant response to stressors in the rat pup. USV emission rates and acoustic parameters change throughout early development, presenting the opportunity to define developmental milestones in USVs that would reflect neurobehavioral aberrations if disrupted. This study investigated the effects of MS or LB on the dam-pup relationship by quantifying pup USVs, maternal behavior, and the relationship between the two. First, we used a generalized additive model approach to establish typical developmental trajectories of USV acoustic properties and determine windows of change in MS or LB rearing. Additionally, we quantified maternal behaviors and the predictability of maternal care sequences using an entropy rate calculation. MS and LB each shifted the developmental trajectories of USV acoustic parameters and call types in a sex-specific manner. MS more often impacted male USVs, while LB impacted female USVs. MS dams spent more time passive nursing, and LB dams spent more time on the nest. The predictability of maternal care was associated with the rate of USV emissions exclusively in females. Taken together, findings demonstrate sex- and model-specific effects of rearing environments on a novel developmental trajectory involving the mother-infant relationship, facilitating the translation of animal ELA paradigms to assess later-life consequences.
Collapse
Affiliation(s)
- Lauren Granata
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Alissa Valentine
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Jason L. Hirsch
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Jennifer Honeycutt
- Department of Psychology, Northeastern University, Boston, MA, United States
- Department of Psychology, Bowdoin College, Brunswick, ME, United States
| | - Heather Brenhouse
- Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
11
|
Corticotropin-releasing factor infusion in the bed nucleus of the stria terminalis of lactating mice alters maternal care and induces behavioural phenotypes in offspring. Sci Rep 2020; 10:19985. [PMID: 33204022 PMCID: PMC7672063 DOI: 10.1038/s41598-020-77118-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
The peripartum period is accompanied by numerous physiological and behavioural adaptations organised by the maternal brain. These changes are essential for adequate expression of maternal behaviour, thereby ensuring proper development of the offspring. The corticotropin-releasing factor (CRF) plays a key role in a variety of behaviours accompanying stress, anxiety, and depression. There is also evidence that CRF contributes to maladaptations during the peripartum period. We investigated the effects of CRF in the bed nucleus of the stria terminalis (BNST) of lactating mice during maternal care and analysed locomotor activity and anxiety-like behaviour in the offspring. The BNST has been implicated in anxiety behaviour and regulation of the stress response. The effects of intra-BNST CRF administration were compared with those induced by the limited bedding (LB) procedure, a model that produces altered maternal behaviour. BALB/cJ dams were exposed to five infusions of CRF or saline into the BNST in the first weeks after birth while the LB dams were exposed to limited nesting material from postnatal days (P) 2–9. Maternal behaviour was recorded in intercalated days, from P1-9. Offspring anxiety-like behaviour was assessed during adulthood using the open-field, elevated plus-maze, and light/dark tests. Both intra-BNST CRF and LB exposure produced altered maternal care, represented by decreased arched-back nursing and increased frequency of exits from the nest. These changes in maternal care resulted in robust sex-based differences in the offspring’s behavioural responses during adulthood. Females raised by CRF-infused dams exhibited increased anxiety-like behaviour, whereas males presented a significant decrease in anxiety. On the other hand, both males and females raised by dams exposed to LB showed higher locomotor activity. Our study demonstrates that maternal care is impaired by intra-BNST CRF administrations, and these maladaptations are similar to exposure to adverse early environments. These procedures, however, produce distinct phenotypes in mice during young adulthood and suggest sex-based differences in the susceptibility to poor maternal care.
Collapse
|
12
|
Becoming Stressed: Does the Age Matter? Reviewing the Neurobiological and Socio-Affective Effects of Stress throughout the Lifespan. Int J Mol Sci 2020; 21:ijms21165819. [PMID: 32823723 PMCID: PMC7460954 DOI: 10.3390/ijms21165819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Social and affective relations occur at every stage of our lives. Impairments in the quality of this “social world” can be exceptionally detrimental and lead to psychopathology or pathological behavior, including schizophrenia, autism spectrum disorder, affective disorders, social phobia or violence, among other things. Exposure to highly stressful or traumatic events, depending on the stage of life in which stress exposure occurs, could severely affect limbic structures, including the amygdala, and lead to alterations in social and affective behaviors. This review summarizes recent findings from stress research and provides an overview of its age-dependent effects on the structure and function of the amygdala, which includes molecular and cellular changes, and how they can trigger deviant social and affective behaviors. It is important to highlight that discoveries in this field may represent a breakthrough both for medical science and for society, as they may help in the development of new therapeutic approaches and prevention strategies in neuropsychiatric disorders and pathological behaviors.
Collapse
|
13
|
Emmons R, Sadok T, Rovero NG, Belnap MA, Henderson HJM, Quan AJ, Del Toro NJ, Halladay LR. Chemogenetic manipulation of the bed nucleus of the stria terminalis counteracts social behavioral deficits induced by early life stress in C57BL/6J mice. J Neurosci Res 2020; 99:90-109. [PMID: 32476178 DOI: 10.1002/jnr.24644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Trauma during critical periods of development can induce long-lasting adverse effects. To study neural aberrations resulting from early life stress (ELS), many studies utilize rodent maternal separation, whereby pups are intermittently deprived of maternal care necessary for proper development. This can produce adulthood behavioral deficits related to anxiety, reward, and social behavior. The bed nucleus of the stria terminalis (BNST) encodes aspects of anxiety-like and social behaviors, and also undergoes developmental maturation during the early postnatal period, rendering it vulnerable to effects of ELS. Mice underwent maternal separation (separation 4 hr/day during postnatal day (PD)2-5 and 8 hr/day on PD6-16) with early weaning on PD17, which induced behavioral deficits in adulthood performance on two-part social interaction task designed to test social motivation (choice between a same-sex novel conspecific or an empty cup) and social novelty preference (choice between the original-novel conspecific vs. a new-novel conspecific). We used chemogenetics to non-selectively silence or activate neurons in the BNST to examine its role in social motivation and social novelty preference, in mice with or without the history of ELS. Manipulation of BNST produced differing social behavior effects in non-stressed versus ELS mice; social motivation was decreased in non-stressed mice following BNST activation, but unchanged following BNST silencing, while ELS mice showed no change in social behavior after BNST activation, but exhibited enhancement of social motivation-for which they were deficient prior-following BNST silencing. Findings emphasize the BNST as a potential therapeutic target for social anxiety disorders instigated by childhood trauma.
Collapse
Affiliation(s)
- Randi Emmons
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Tasneem Sadok
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Natalie G Rovero
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Malia A Belnap
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | | | - Alex J Quan
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Noël J Del Toro
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | | |
Collapse
|
14
|
Synthesizing Views to Understand Sex Differences in Response to Early Life Adversity. Trends Neurosci 2020; 43:300-310. [PMID: 32353334 DOI: 10.1016/j.tins.2020.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Sex as a biological variable (SABV) is critical for understanding the broad range of physiological, neurobiological, and behavioral consequences of early life adversity(ELA). The study of the interaction of SABV and ELA ties into several current debates, including the importance of taking into account SABV in research, differing strategies employed by males and females in response to adversity, and the possible evolutionary and developmental mechanisms of altered development in response to adversity. This review highlights the importance of studying both sexes, of understanding sex differences (and similarities) in response to ELA, and provides a context for the debate surrounding whether the response to ELA may be an adaptive process.
Collapse
|
15
|
Brenhouse HC, Bath KG. Bundling the haystack to find the needle: Challenges and opportunities in modeling risk and resilience following early life stress. Front Neuroendocrinol 2019; 54:100768. [PMID: 31175880 PMCID: PMC6708473 DOI: 10.1016/j.yfrne.2019.100768] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Various forms of early life adversity (ELA) have been linked with increased risk for negative health outcomes, including neuropsychiatric disorders. Understanding how the complex interplay between types, timing, duration, and severity of ELA, together with individual differences in genetic, socio-cultural, and physiological differences can mediate risk and resilience has proven difficult in population based studies. Use of animal models provides a powerful toolset to isolate key variables underlying risk for altered neural and behavioral maturational trajectories. However, a lack of clarity regarding the unique features of differing forms of adversity, lab differences in the implementation and reporting of methods, and the ability compare across labs and types of ELA has led to some confusion. Here, we highlight the diversity of approaches available, current challenges, and a possible ways forward to increase clarity and drive more meaningful and fruitful implementation and comparison of these approaches.
Collapse
Affiliation(s)
- Heather C Brenhouse
- Psychology Department, Northeastern University, 125 Nightingale Hall, Boston, MA 02115, United States.
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer St. Box 1821, Providence, RI 02912, United States
| |
Collapse
|
16
|
Preventing epigenetic traces of caregiver maltreatment: A role for HDAC inhibition. Int J Dev Neurosci 2019; 78:178-184. [PMID: 31075305 DOI: 10.1016/j.ijdevneu.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/07/2023] Open
Abstract
Reorganization of the brain's epigenetic landscape occurs alongside early adversity in both human and non-human animals. Whether this reorganization is simply incidental to or is a causal mechanism of the behavioral abnormalities that result from early adversity is important to understand. Using the scarcity-adversity model of low nesting resources in Long Evans rats, our lab has previously reported specific epigenetic and behavioral trajectories occurring in response to early disruption of the caregiving environment. To further probe that relationship, the current work investigates the ability of the epigenome-modifying drug sodium butyrate to prevent maltreatment-induced methylation changes when administered alongside maltreatment. Following exposure to the scarcity-adversity model, during which drug was administered prior to each caregiving session, methylation of Brain-derived Neurotrophic Factor (Bdnf) IX DNA was examined in the Prefrontal Cortex (PFC) of male and female pups at postnatal day (PN) 8. As our previous work reports, increased methylation at this exon of Bdnf in the PFC is a stable epigenetic change across the lifespan that occurs in response to early maltreatment, thus giving us a suitable starting point to investigate pharmacological prevention of maltreatment-induced epigenetic marks. Here we also examined off-target effects of sodium butyrate by assessing methylation in another region of Bdnf (exon IV) not affected in the infant brain as well as global levels of methylation in the brain region of interest. Results indicate that a 400 mg/kg (but not 300 mg/kg) dose of sodium butyrate is effective in preventing the maltreatment-induced rise in methylation at Bdnf exon IX in the PFC of male (but not female) infant pups. Administration of sodium butyrate did not affect the methylation status of Bdnf IV or overall levels of global methylation in the PFC, suggesting potential specificity of this drug. These data provide us an avenue forward for investigating whether the relationship between adversity-induced epigenetic outcomes in our model can be manipulated to improve behavioral outcomes.
Collapse
|