1
|
Campbell TS, Donoghue K, Roth TL. Gene Expression After Exercise Is Disrupted by Early-Life Stress. Dev Psychobiol 2025; 67:e70017. [PMID: 39780028 PMCID: PMC11711301 DOI: 10.1002/dev.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Exercise can be leveraged as an important tool to improve neural and psychological health, either on its own or to bolster the efficacy of evidence-based treatment modalities. Research in both humans and animal models shows that positive experiences, such as exercise, promote neuroprotection while, in contrast, aversive experiences, particularly those in early development, are often neurologically and psychologically disruptive. In the current study, we employed a preclinical model to investigate the therapeutic benefits of exercise on gene expression in the brains of adult rats. Long Evans rats were exposed to maltreatment stress or nurturing care during infancy, with some rats later given voluntary running wheels as an aerobic exercise intervention from Postnatal Days 70 to 90. Our results showed that irisin gene expression, which promotes neuroprotection, was differentially affected by exercise and early exposure to stress. We add to a rapidly growing area of research on the neuroprotective benefits of exercise and shed light on important molecular mechanisms that may affect the efficacy of exercise in different individuals.
Collapse
Affiliation(s)
- Taylor S. Campbell
- Department of Psychological & Brain SciencesUniversity of DelawareNewarkDelawareUSA
| | - Katelyn Donoghue
- Department of Psychological & Brain SciencesUniversity of DelawareNewarkDelawareUSA
| | - Tania L. Roth
- Department of Psychological & Brain SciencesUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
2
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
3
|
Campbell TS, Donoghue K, Roth TL. Unlocking the epigenome: Stress and exercise induced Bdnf regulation in the prefrontal cortex. Neurotoxicol Teratol 2024; 103:107353. [PMID: 38648864 PMCID: PMC11636650 DOI: 10.1016/j.ntt.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Aversive caregiving in early life is a risk factor for aberrant brain and behavioral development. This outcome is related to epigenetic dysregulation of the brain-derived neurotrophic factor (Bdnf) gene. The Bdnf gene encodes for BDNF, a neurotrophin involved in early brain development, neural plasticity, learning, and memory. Recent work suggests that exercise may be neuroprotective in part by supporting BDNF protein and gene expression, making it an exciting target for therapeutic interventions. To our knowledge, exercise has never been studied as a therapeutic intervention in preclinical rodent models of caregiver maltreatment. To that end, the current study investigated the effect of an adult voluntary wheel running intervention on Bdnf methylation and expression in the prefrontal cortex of rats who experienced aversive caregiving in infancy. We employed a rodent model (Long Evans rats) wherein rat pups experienced intermittent caregiver-induced stress from postnatal days 1-7 and were given voluntary access to a running wheel (except in the control condition) from postnatal days 70-90 as a young adulthood treatment intervention. Our results indicate that maltreatment and exercise affect Bdnf gene methylation in an exon, CG site, and sex-specific manner. Here we add to a growing body of evidence of the ability for our experiences, including exercise, to permeate the brain. Keywords: Early life stress, Bdnf, exercise, prefrontal cortex.
Collapse
Affiliation(s)
- Taylor S Campbell
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America.
| | - Katelyn Donoghue
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America
| | - Tania L Roth
- University of Delaware, Psychological & Brain Sciences, Newark, DE 19716, United States of America
| |
Collapse
|
4
|
Burenkova OV, Grigorenko EL. The role of epigenetic mechanisms in the long-term effects of early-life adversity and mother-infant relationship on physiology and behavior of offspring in laboratory rats and mice. Dev Psychobiol 2024; 66:e22479. [PMID: 38470450 PMCID: PMC10959231 DOI: 10.1002/dev.22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Research Administration, Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
5
|
Collins NJ, Campbell TS, Bozeman AL, Martes AC, Ross SE, Doherty TS, Brumley MR, Roth TL. Epigenetic processes associated with neonatal spinal transection. Dev Psychobiol 2024; 66:e22466. [PMID: 38388192 DOI: 10.1002/dev.22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
In early development, the spinal cord in healthy or disease states displays remarkable activity-dependent changes in plasticity, which may be in part due to the increased activity of brain derived neurotrophic factor (BDNF). Indeed, BDNF delivery has been efficacious in partially ameliorating many of the neurobiological and behavioral consequences of spinal cord injury (SCI), making elucidating the role of BDNF in the normative developing and injured spinal cord a critical research focus. Recent work in our laboratory provided evidence for aberrant global and locus-specific epigenetic changes in methylation of the Bdnf gene as a consequence of SCI. In the present study, animals underwent thoracic lesions on P1, with cervical and lumbar tissue being later collected on P7, P14, and P21. Levels of Bdnf expression and methylation (exon IX and exon IV), in addition to global methylation levels were quantified at each timepoint. Results indicated locus-specific reductions of Bdnf expression that was accompanied by a parallel increase in methylation caudal to the injury site, with animals displaying increased Bdnf expression at the P14 timepoint. Together, these findings suggest that epigenetic activity of the Bdnf gene may act as biomarker in the etiology and intervention effort efficacy following SCI.
Collapse
Affiliation(s)
- Nicholas J Collins
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Taylor S Campbell
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Aimee L Bozeman
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Alleyna C Martes
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Sydney E Ross
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Michele R Brumley
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|