1
|
Li N, Zhu QX, Li GZ, Wang T, Zhou H. Empagliflozin ameliorates diabetic cardiomyopathy probably via activating AMPK/PGC-1α and inhibiting the RhoA/ROCK pathway. World J Diabetes 2023; 14:1862-1876. [PMID: 38222788 PMCID: PMC10784799 DOI: 10.4239/wjd.v14.i12.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) increases the risk of hospitalization for heart failure (HF) and mortality in patients with diabetes mellitus. However, no specific therapy to delay the progression of DCM has been identified. Mitochondrial dysfunction, oxidative stress, inflammation, and calcium handling imbalance play a crucial role in the pathological processes of DCM, ultimately leading to cardiomyocyte apoptosis and cardiac dysfunctions. Empagliflozin, a novel glucose-lowering agent, has been confirmed to reduce the risk of hospitalization for HF in diabetic patients. Nevertheless, the molecular mechanisms by which this agent provides cardioprotection remain unclear. AIM To investigate the effects of empagliflozin on high glucose (HG)-induced oxidative stress and cardiomyocyte apoptosis and the underlying molecular mechanism. METHODS Twelve-week-old db/db mice and primary cardiomyocytes from neonatal rats stimulated with HG (30 mmol/L) were separately employed as in vivo and in vitro models. Echocardiography was used to evaluate cardiac function. Flow cytometry and TdT-mediated dUTP-biotin nick end labeling staining were used to assess apoptosis in myocardial cells. Mitochondrial function was assessed by cellular ATP levels and changes in mitochondrial membrane potential. Furthermore, intracellular reactive oxygen species production and superoxide dismutase activity were analyzed. Real-time quantitative PCR was used to analyze Bax and Bcl-2 mRNA expression. Western blot analysis was used to measure the phosphorylation of AMP-activated protein kinase (AMPK) and myosin phosphatase target subunit 1 (MYPT1), as well as the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and active caspase-3 protein levels. RESULTS In the in vivo experiment, db/db mice developed DCM. However, the treatment of db/db mice with empagliflozin (10 mg/kg/d) for 8 wk substantially enhanced cardiac function and significantly reduced myocardial apoptosis, accompanied by an increase in the phosphorylation of AMPK and PGC-1α protein levels, as well as a decrease in the phosphorylation of MYPT1 in the heart. In the in vitro experiment, the findings indicate that treatment of cardiomyocytes with empagliflozin (10 μM) or fasudil (FA) (a ROCK inhibitor, 100 μM) or overexpression of PGC-1α significantly attenuated HG-induced mitochondrial injury, oxidative stress, and cardiomyocyte apoptosis. However, the above effects were partly reversed by the addition of compound C (CC). In cells exposed to HG, empagliflozin treatment increased the protein levels of p-AMPK and PGC-1α protein while decreasing phosphorylated MYPT1 levels, and these changes were mitigated by the addition of CC. Adding FA and overexpressing PGC-1α in cells exposed to HG substantially increased PGC-1α protein levels. In addition, no sodium-glucose cotransporter (SGLT)2 protein expression was detected in cardiomyocytes. CONCLUSION Empagliflozin partially achieves anti-oxidative stress and anti-apoptotic effects on cardiomyocytes under HG conditions by activating AMPK/PGC-1α and suppressing of the RhoA/ROCK pathway independent of SGLT2.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Qiu-Xiao Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Gui-Zhi Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
2
|
Chung IM, Rajakumar G, Subramanian U, Venkidasamy B, Khanna VG, Thiruvengadam M. Insights on the current status and advancement of diabetes mellitus type 2 and to avert complications: An overview. Biotechnol Appl Biochem 2020; 67:920-928. [PMID: 31736194 DOI: 10.1002/bab.1853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/12/2019] [Indexed: 01/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is an endocrine metabolic disorder, occurring worldwide due to aging, advancement in lifestyle by modernization. T2DM is characterized by higher levels of glucose in the blood due to unresponsive secretion of pancreatic insulin and insulin activity or altogether. T2DM is regarded as a powerful genetic susceptible disease that leads to high risk with insulin resistance and β-cell dysfunction. To manage and overcome type 2 diabetes, physical activity, diet strategies, and other therapeutic medications along with usage of antiglycemic agents are developed and attempted appropriately. In the present review, attention has been focused on the understanding of T2DM outcomes, complications with possible management strategies, and pathophysiology of T2DM. Further, a detailed note on antiglycemic agents in use and other possible drugs of choice was discussed in the light of current preventive strategies are presented in this review.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Govindasamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Central University Laboratory Building, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Madhavaram Milk Colony, Chennai, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Venkatesan Gopiesh Khanna
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Pallavaram, Chennai, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zhou H, Sun Y, Zhang L, Kang W, Li N, Li Y. The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways. Diabetes Metab Res Rev 2018; 34:e3022. [PMID: 29745021 DOI: 10.1002/dmrr.3022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
AIMS To understand the roles of the RhoA/ROCK and mitogen-activated protein kinase (MAPK) pathways in high glucose (HG)-induced apoptosis and oxidative stress in cardiomyocytes. MATERIALS AND METHODS Neonatal rat cardiomyocytes were cultured in Dulbecco's modified Eagle's medium, supplemented with 5.5 or 30 mmol/L D-glucose, in the presence or absence of fasudil (50 or 100 μM), SB203580, SP600125, or PD98059 (10 μM, respectively). The percentage of early apoptotic cardiomyocytes was evaluated using flow cytometry. The superoxide dismutase activity and malondialdehyde contents in the cellular supernatants were measured. The Bax and Bcl-2 mRNA levels were determined by quantitative real-time PCR. Phosphorylation of myosin phosphatase target subunit 1 (MYPT1), p38MAPK, JNK, and ERK as well as the protein levels of Bax, Bcl-2, and cleaved caspase-3 was analysed by Western blot. RESULTS Fasudil, SB203580, and SP600125 effectively inhibited the HG-induced early apoptosis increase and decreased Bax mRNA expression, the Bax/Bcl-2 protein expression ratio, and cleaved caspase-3 protein levels in the cardiomyocytes; this was accompanied by upregulation of the Bcl-2 mRNA. Moreover, fasudil markedly increased the superoxide dismutase activity level and suppressed the elevation in HG-induced malondialdehyde content and the phosphorylation of MYPT1, p38MAPK and JNK. CONCLUSIONS The RhoA/ROCK pathway mediates HG-induced cardiomyocyte apoptosis via oxidative stress and activation of p38MAPK and JNK in neonatal rats in vitro. Fasudil effectively ameliorates HG-induced cardiomyocyte apoptosis by suppressing oxidative stress and the p38MAPK and JNK pathways.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yonghong Sun
- Nutriology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihui Zhang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenyuan Kang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongjun Li
- Cardiology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Institute of Cardiovascular and Cerebrovascular Diseases, Shijiazhuang, China
| |
Collapse
|
4
|
Xiong F, Li X, Yang Z, Wang Y, Gong W, Huang J, Chen C, Liu P, Huang H. TGR5 suppresses high glucose-induced upregulation of fibronectin and transforming growth factor-β1 in rat glomerular mesangial cells by inhibiting RhoA/ROCK signaling. Endocrine 2016; 54:657-670. [PMID: 27470217 DOI: 10.1007/s12020-016-1032-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/21/2016] [Indexed: 02/08/2023]
Abstract
RhoA/ROCK can cause renal inflammation and fibrosis in the context of diabetes by activating nuclear factor-κB (NF-κB). TGR5 is known for its role in maintaining metabolic homeostasis and anti-inflammation, which is closely related to NF-κB inhibition. Given that TGR5 is highly enriched in kidney, we aim to investigate the regulatory role of TGR5 on fibronectin (FN) and transforming growth factor-β1 (TGF-β1) in high glucose (HG)-treated rat glomerular mesangial cells (GMCs). Both the factors are closely related to renal inflammations and mediated by NF-κB. Moreover, our study determines whether such regulation is achieved by the inhibition of RhoA/ROCK and the subsequent NF-κB suppression. Polymerase chain reaction was taken to test the mRNA level of TGR5. Western blot was used to measure the protein expressions of TGR5, FN, TGF-β1, p65, IκBα, phospho-MYPT1 (Thr853), and MYPT1. Glutathione S-transferase-pull down and immunofluorescence were conducted to test the activation of RhoA, the distribution of TGR5, and p65, respectively. Electrophoretic mobility shift assay was adopted to measure the DNA binding activity of NF-κB. In GMCs, TGR5 activation or overexpression significantly suppressed FN and TGF-β1 protein expressions, NF-κB, and RhoA/ROCK activation induced by HG or transfection of constitutively active RhoA. By contrast, TGR5 RNA interference caused enhancement of FN, TGF-β1 protein expressions, increase of RhoA/ROCK activation. However, TGR5 cannot suppress RhoA/ROCK activation when a selective Protein kinase A (PKA) inhibitor was used. This study suggests that in HG-treated GMCs, TGR5 significantly suppresses the NF-κB-mediated upregulation of FN and TGF-β1, which are hallmarks of diabetic nephropathy. These functions are closely related to the suppression of RhoA/ROCK via PKA.
Collapse
Affiliation(s)
- Fengxiao Xiong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Druggability Assessment for Biologically Active Compounds, Guangzhou, 510006, China
| | - Xuejuan Li
- Dept of Pharmacy, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
| | - Zhiying Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Wang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Druggability Assessment for Biologically Active Compounds, Guangzhou, 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China.
- Guangzhou Key Laboratory of Druggability Assessment for Biologically Active Compounds, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Wu YS, Chen YT, Bao YT, Li ZM, Zhou XJ, He JN, Dai SJ, Li CY. Identification and Verification of Potential Therapeutic Target Genes in Berberine-Treated Zucker Diabetic Fatty Rats through Bioinformatics Analysis. PLoS One 2016; 11:e0166378. [PMID: 27846294 PMCID: PMC5112949 DOI: 10.1371/journal.pone.0166378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/27/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Berberine is used to treat diabetes and dyslipidemia. However, the effect of berberine on specific diabetes treatment targets is unknown. In the current study, we investigated the effect of berberine on the random plasma glucose, glycated hemoglobin (HbA1C), AST, ALT, BUN and CREA levels of Zucker diabetic fatty (ZDF) rats, and we identified and verified the importance of potential therapeutic target genes to provide molecular information for further investigation of the mechanisms underlying the anti-diabetic effects of berberine. METHODS ZDF rats were randomly divided into control (Con), diabetic (DM) and berberine-treated (300 mg⋅kg-1, BBR) groups. After the ZDF rats were treated with BBR for 12 weeks, its effect on the random plasma glucose and HbA1C levels was evaluated. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), CREA and OGTT were measured from blood, respectively. The levels of gene expression in liver samples were analyzed using an Agilent rat gene expression 4x44K microarray. The differentially expressed genes (DEGs) were screened as those with log2 (Con vs DM) ≥ 1 and log2 (BBR vs DM) ≥ 1 expression levels, which were the genes with up-regulated expression, and those with log2 (Con vs DM) ≤ -1 and log2 (BBR vs DM) ≤ -1 expression levels, which were the genes with down-regulated expression; the changes in gene expression were considered significant at P<0.05. The functions of the DEGs were determined using gene ontology (GO) and pathway analysis. Furthermore, a protein-protein interaction (PPI) network was constructed using STRING and Cytoscape software. The expression levels of the key node genes in the livers of the ZDF rats were also analyzed using qRT-PCR. RESULTS We found that 12 weeks of berberine treatment significantly decreased the random plasma glucose, HbA1C levels and improved glucose tolerance. There was a tendency for berberine to reduce AST, ALT, BUN except increase CREA levels. In the livers of the BBR group, we found 154 DEGs, including 91 genes with up-regulated expression and 63 genes with down-regulated expression. In addition, GO enrichment analysis showed significant enrichment of the DEGs in the following categories: metabolic process, localization, cellular process, biological regulation and response to stimulus process. After the gene screening, KEGG pathway analysis showed that the target genes are involved in multiple pathways, including the lysine degradation, glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and pyruvate metabolism pathways. By combining the results of PPI network and KEGG pathway analyses, we identified seven key node genes. The qRT-PCR results confirmed that the expression of the RHOA, MAPK4 and DLAT genes was significantly down-regulated compared with the levels in DM group, whereas the expression of the SgK494, DOT1L, SETD2 and ME3 genes was significantly up-regulated in the BBR group. CONCLUSION Berberine can significantly improve glucose metabolism and has a protective effects of liver and kidney function in ZDF rats. The qRT-PCR results for the crucial DEGs validated the microarray results. These results suggested that the RHOA, MAPK4, SGK494, DOT1L, SETD2, ME3 and DLAT genes are potential therapeutic target genes for the treatment of diabetes.
Collapse
Affiliation(s)
- Yang Sheng Wu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi-Tao Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Ting Bao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhe-Ming Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao-Jie Zhou
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jia-Na He
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Shi-Jie Dai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chang yu Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
6
|
Liu L, Tan L, Lai J, Li S, Wang DW. Enhanced Rho-kinase activity: Pathophysiological relevance in type 2 diabetes. Clin Chim Acta 2016; 462:107-110. [PMID: 27616626 DOI: 10.1016/j.cca.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Accumulating evidence indicates that Rho-associated kinase (ROCK) has been involved in the pathogenesis of insulin resistance and diabetes. However, little clinical evidence for ROCK activity in diabetic patients is available. We determined whether ROCK activity is systemically enhanced in type 2 diabetic patients and associated with other components of diabetes. METHODS Seventy-eight volunteers, including 41 type 2 diabetic patients and 37 control subjects, were participated in this study. Fasting blood samples were collected to measure ROCK activity in circulating leukocyte, determined by the ratio of phosphorylation/total myosin-binding subunit (MBS), a direct downstream target of ROCK. RESULTS Compared with the control subjects, ROCK activity was significantly increased in type 2 diabetic patients (phosphorylation/total MBS ratio 0.80±0.10 vs. 0.72±0.08, P<0.01). An independent positive correlation was found between ROCK activity and HbA1c concentration in type 2 diabetic patients but not in control subjects (r=0.40, P=0.01). In multiple regression analysis, ROCK activity remains associated significantly in a positive manner with HbA1c concentration in type 2 diabetes (β=0.03, P=0.04). CONCLUSIONS These findings demonstrated that ROCK activity is significantly increased in type 2 diabetic patients and enhanced ROCK activity may reflect the progression of disease.
Collapse
Affiliation(s)
- Lei Liu
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Tan
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsheng Lai
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Boucher J, Simard É, Froehlich U, D'Orléans-Juste P, Grandbois M. Using carboxyfluorescein diacetate succinimidyl ester to monitor intracellular protein glycation. Anal Biochem 2015; 478:73-81. [PMID: 25800564 DOI: 10.1016/j.ab.2015.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 11/17/2022]
Abstract
Protein glycation is a ubiquitous process involved in vascular complications observed in diabetes. Glyoxal (GO), an intracellular reactive oxoaldehyde that is one of the most potent glycation agents, readily reacts with amines present on proteins to produce the lysine-derived adduct carboxymethyllysine, which is a prevalent advanced glycation end-product (AGE). Our group previously showed that cell exposure to GO leads to an alteration in the cell contractile activity that could occur as a result of the glycation of various proteins regulating the cell contractile machinery. Here, we measured the extent of glycation on three functionally distinct proteins known to participate in cell contraction and cytoskeletal organization-Rho-kinase (ROCK), actin, and gelsolin (GSN)-using an assay based on the reaction of the cell membrane-permeable fluorescent probe carboxyfluorescein diacetate succinimidyl ester (CFDA-SE), which reacts with primary amine groups of proteins. By combining CFDA-SE fluorescence and Western blot detection, we observed (following GO incubation) increased glycation of actin and ROCK as well as an increased interaction between actin and GSN as observed by co-immunoprecipitation. Thus, we conclude that the use of the fluorescent probe CFDA-SE offers an interesting alternative to perform a comparative analysis of the extent of intracellular protein glycation in live cells.
Collapse
Affiliation(s)
- Julie Boucher
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Élie Simard
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Ulrike Froehlich
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pedro D'Orléans-Juste
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Michel Grandbois
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
8
|
Amin E, Dubey BN, Zhang SC, Gremer L, Dvorsky R, Moll JM, Taha MS, Nagel-Steger L, Piekorz RP, Somlyo AV, Ahmadian MR. Rho-kinase: regulation, (dys)function, and inhibition. Biol Chem 2014; 394:1399-410. [PMID: 23950574 DOI: 10.1515/hsz-2013-0181] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 01/08/2023]
Abstract
In a variety of normal and pathological cell types, Rho-kinases I and II (ROCKI/II) play a pivotal role in the organization of the nonmuscle and smooth muscle cytoskeleton and adhesion plaques as well as in the regulation of transcription factors. Thus, ROCKI/II activity regulates cellular contraction, motility, morphology, polarity, cell division, and gene expression. Emerging evidence suggests that dysregulation of the Rho-ROCK pathways at different stages is linked to cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. This review focuses on the current status of understanding the multiple functions of Rho-ROCK signaling pathways and various modes of regulation of Rho-ROCK activity, thereby orchestrating a concerted functional response.
Collapse
|
9
|
Kang C, Yu H, Yi GS. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data. BMC Med Inform Decis Mak 2013; 13 Suppl 1:S3. [PMID: 23566118 PMCID: PMC3618247 DOI: 10.1186/1472-6947-13-s1-s3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Due to the low statistical power of individual markers from a genome-wide association study (GWAS), detecting causal single nucleotide polymorphisms (SNPs) for complex diseases is a challenge. SNP combinations are suggested to compensate for the low statistical power of individual markers, but SNP combinations from GWAS generate high computational complexity. Methods We aim to detect type 2 diabetes (T2D) causal SNP combinations from a GWAS dataset with optimal filtration and to discover the biological meaning of the detected SNP combinations. Optimal filtration can enhance the statistical power of SNP combinations by comparing the error rates of SNP combinations from various Bonferroni thresholds and p-value range-based thresholds combined with linkage disequilibrium (LD) pruning. T2D causal SNP combinations are selected using random forests with variable selection from an optimal SNP dataset. T2D causal SNP combinations and genome-wide SNPs are mapped into functional modules using expanded gene set enrichment analysis (GSEA) considering pathway, transcription factor (TF)-target, miRNA-target, gene ontology, and protein complex functional modules. The prediction error rates are measured for SNP sets from functional module-based filtration that selects SNPs within functional modules from genome-wide SNPs based expanded GSEA. Results A T2D causal SNP combination containing 101 SNPs from the Wellcome Trust Case Control Consortium (WTCCC) GWAS dataset are selected using optimal filtration criteria, with an error rate of 10.25%. Matching 101 SNPs with known T2D genes and functional modules reveals the relationships between T2D and SNP combinations. The prediction error rates of SNP sets from functional module-based filtration record no significance compared to the prediction error rates of randomly selected SNP sets and T2D causal SNP combinations from optimal filtration. Conclusions We propose a detection method for complex disease causal SNP combinations from an optimal SNP dataset by using random forests with variable selection. Mapping the biological meanings of detected SNP combinations can help uncover complex disease mechanisms.
Collapse
Affiliation(s)
- Chiyong Kang
- Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, South Korea
| | | | | |
Collapse
|