1
|
Interaction of human CRX and NRL in live HEK293T cells measured using fluorescence resonance energy transfer (FRET). Sci Rep 2022; 12:6937. [PMID: 35484285 PMCID: PMC9050680 DOI: 10.1038/s41598-022-10689-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
CRX and NRL are retina-specific transcription factors that control rod photoreceptor differentiation and synergistically activate rod phototransduction gene expression. Previous experiments showed they interact in vitro and in yeast two-hybrid assays. Here, we examined CRX-NRL interaction in live HEK293T cells using two fluorescence resonance energy transfer (FRET) approaches: confocal microscopy and flow cytometry (FC-FRET). FC-FRET can provide measurements from many cells having wide donor–acceptor expression ranges. FRET efficiencies were calibrated with a series of donor (EGFP)-acceptor (mCherry) fusion proteins separated with linkers between 6–45 amino acids. CRX and NRL were fused at either terminus with EGFP or mCherry to create fluorescent proteins, and all combinations were tested in transiently transfected cells. FRET signals between CRX or NRL homo-pairs were highest with both fluorophores fused to the DNA binding domains (DBD), lower with both fused to the activation domains (AD), and not significant when fused on opposite termini. NRL had stronger FRET signals than CRX. A significant FRET signal between CRX and NRL hetero-pairs was detected when donor was fused to the CRX DNA binding domain and the acceptor fused to the NRL activation domain. FRET signals increased with CRX or NRL expression levels at a rate much higher than expected for collisional FRET alone. Together, our results show the formation of CRX-NRL complexes in live HEK293T cells that are close enough for FRET.
Collapse
|
2
|
Modulation of Glucose Takeup by Glucose Transport on the Isolated OHCs. Neural Plast 2018; 2018:7513217. [PMID: 29849567 PMCID: PMC5907477 DOI: 10.1155/2018/7513217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/03/2018] [Indexed: 12/02/2022] Open
Abstract
Glucose is a fundamental source of energy for mammalian cells; however, whether glucose is taken up through the lateral walls of cochlear outer hair cells (OHCs) is unknown. The OHC lateral wall is complex, composed of a plasma membrane, cortical lattice, and subsurface cisternae. This study assessed the uptake of glucose by OHCs using live-cell microscopy and examined the distribution of glucose transporter isoforms by immunohistochemistry. We found that glucose transporter-4 was mostly expressed on the lateral wall of OHCs. Glucose crossed the lateral walls of OHCs via glucose transporters-4 mainly, and this process could be modulated. These results suggest that the lateral walls are involved in modulating energy transport into OHCs.
Collapse
|
3
|
Fettelschoss V, Burda P, Sagné C, Coelho D, De Laet C, Lutz S, Suormala T, Fowler B, Pietrancosta N, Gasnier B, Bornhauser B, Froese DS, Baumgartner MR. Clinical or ATPase domain mutations in ABCD4 disrupt the interaction between the vitamin B 12-trafficking proteins ABCD4 and LMBD1. J Biol Chem 2017; 292:11980-11991. [PMID: 28572511 DOI: 10.1074/jbc.m117.784819] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/24/2017] [Indexed: 01/19/2023] Open
Abstract
Vitamin B12 (cobalamin (Cbl)), in the cofactor forms methyl-Cbl and adenosyl-Cbl, is required for the function of the essential enzymes methionine synthase and methylmalonyl-CoA mutase, respectively. Cbl enters mammalian cells by receptor-mediated endocytosis of protein-bound Cbl followed by lysosomal export of free Cbl to the cytosol and further processing to these cofactor forms. The integral membrane proteins LMBD1 and ABCD4 are required for lysosomal release of Cbl, and mutations in the genes LMBRD1 and ABCD4 result in the cobalamin metabolism disorders cblF and cblJ. We report a new (fifth) patient with the cblJ disorder who presented at 7 days of age with poor feeding, hypotonia, methylmalonic aciduria, and elevated plasma homocysteine and harbored the mutations c.1667_1668delAG [p.Glu556Glyfs*27] and c.1295G>A [p.Arg432Gln] in the ABCD4 gene. Cbl cofactor forms are decreased in fibroblasts from this patient but could be rescued by overexpression of either ABCD4 or, unexpectedly, LMBD1. Using a sensitive live-cell FRET assay, we demonstrated selective interaction between ABCD4 and LMBD1 and decreased interaction when ABCD4 harbored the patient mutations p.Arg432Gln or p.Asn141Lys or when artificial mutations disrupted the ATPase domain. Finally, we showed that ABCD4 lysosomal targeting depends on co-expression of, and interaction with, LMBD1. These data broaden the patient and mutation spectrum of cblJ deficiency, establish a sensitive live-cell assay to detect the LMBD1-ABCD4 interaction, and confirm the importance of this interaction for proper intracellular targeting of ABCD4 and cobalamin cofactor synthesis.
Collapse
Affiliation(s)
- Victoria Fettelschoss
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Patricie Burda
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Corinne Sagné
- Neurophotonics Laboratory UMR 8250, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - David Coelho
- UMR-S UL-INSERM U954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, Medical Faculty of Nancy University and University Hospital Centre, Nancy, France
| | - Corinne De Laet
- Nutrition and Metabolism Unit, Queen Fabiola Children's University Hospital, Free University of Brussels (ULB), 1020 Brussels, Belgium
| | - Seraina Lutz
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Terttu Suormala
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Nicolas Pietrancosta
- CBMIT team, UMR 8601, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - Bruno Gasnier
- Neurophotonics Laboratory UMR 8250, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - Beat Bornhauser
- Department of Oncology, Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland; Rare Disease Initiative Zurich (radiz), Clinical Research Priority Program for Rare Diseases, University of Zurich, CH-8006 Zurich, Switzerland.
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland; Rare Disease Initiative Zurich (radiz), Clinical Research Priority Program for Rare Diseases, University of Zurich, CH-8006 Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, CH-8006 Zurich, Switzerland.
| |
Collapse
|
4
|
Wang J, Li X, Zhang Z, Wang H, Li J. Expression of prestin in OHCs is reduced in Spag6 gene knockout mice. Neurosci Lett 2015; 592:42-7. [PMID: 25748314 DOI: 10.1016/j.neulet.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 01/21/2023]
Abstract
Sperm-associated antigen 6 (Spag6) gene, which encodes an axonemal protein (SPAG6), ubiquitously expresses in tissue and organs containing ciliated cells. The present work was to investigate whether SPAG6 expressed in cochlear hair cells and, if so, to explore the presumable correlations between prestin and SPAG6. The distribution of SPAG6 in organ of Corti and the morphological features of hair cells in basilar membrane were investigated by immunofluorescent staining. The amount of prestin in Spag6 mutant mice was measured by Western blotting and real-time PCR, respectively. Additionally, co-immunoprecipitation tests were performed to confirm the presumed interaction between prestin and SPAG6. We observed that SPAG6 expressed in the cuticular plate in outer hair cells (OHCs) and prestin in the lateral wall of OHCs that located along with SPAG6 at this site. In comparison to Spag6 +/+ mice, Spag6 -/- mice showed apparent morphological abnormity of OHCs and lower intensity of prestin fluorescence. The expression of prestin in Spag6 -/- mice reduced significantly at both protein and mRNA levels. Moreover, co-immunoprecipitation tests demonstrated the interaction between prestin and SPAG6. Taken together, these data indicate that SPAG6 is indispensible for the stability of OHCs by maintaining the normal expression of prestin, which implies that Spag6 gene is essential for mechanosensory function of OHCs.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, PR China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, PR China; Shandong Provincial Key Laboratory of Otology, Ji'nan 250021, PR China
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, PR China; Shandong Provincial Key Laboratory of Otology, Ji'nan 250021, PR China.
| | - Jianfeng Li
- Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Ji'nan 250012, PR China; Shandong Provincial Key Laboratory of Otology, Ji'nan 250021, PR China.
| |
Collapse
|
5
|
Xia A, Song Y, Wang R, Gao SS, Clifton W, Raphael P, Chao SI, Pereira FA, Groves AK, Oghalai JS. Prestin regulation and function in residual outer hair cells after noise-induced hearing loss. PLoS One 2013; 8:e82602. [PMID: 24376553 PMCID: PMC3869702 DOI: 10.1371/journal.pone.0082602] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/25/2013] [Indexed: 12/27/2022] Open
Abstract
The outer hair cell (OHC) motor protein prestin is necessary for electromotility, which drives cochlear amplification and produces exquisitely sharp frequency tuning. TectaC1509G transgenic mice have hearing loss, and surprisingly have increased OHC prestin levels. We hypothesized, therefore, that prestin up-regulation may represent a generalized response to compensate for a state of hearing loss. In the present study, we sought to determine the effects of noise-induced hearing loss on prestin expression. After noise exposure, we performed cytocochleograms and observed OHC loss only in the basal region of the cochlea. Next, we patch clamped OHCs from the apical turn (9–12 kHz region), where no OHCs were lost, in noise-exposed and age-matched control mice. The non-linear capacitance was significantly higher in noise-exposed mice, consistent with higher functional prestin levels. We then measured prestin protein and mRNA levels in whole-cochlea specimens. Both Western blot and qPCR studies demonstrated increased prestin expression after noise exposure. Finally, we examined the effect of the prestin increase in vivo following noise damage. Immediately after noise exposure, ABR and DPOAE thresholds were elevated by 30–40 dB. While most of the temporary threshold shifts recovered within 3 days, there were additional improvements over the next month. However, DPOAE magnitudes, basilar membrane vibration, and CAP tuning curve measurements from the 9–12 kHz cochlear region demonstrated no differences between noise-exposed mice and control mice. Taken together, these data indicate that prestin is up-regulated by 32–58% in residual OHCs after noise exposure and that the prestin is functional. These findings are consistent with the notion that prestin increases in an attempt to partially compensate for reduced force production because of missing OHCs. However, in regions where there is no OHC loss, the cochlea is able to compensate for the excess prestin in order to maintain stable auditory thresholds and frequency discrimination.
Collapse
MESH Headings
- Animals
- Cochlear Microphonic Potentials
- Evoked Potentials, Auditory, Brain Stem
- Gene Expression Regulation
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Mice
- Models, Biological
- Molecular Motor Proteins/genetics
- Molecular Motor Proteins/metabolism
- Noise
- Otoacoustic Emissions, Spontaneous
- Patch-Clamp Techniques
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Anping Xia
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Yohan Song
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Rosalie Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Simon S. Gao
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Will Clifton
- Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Patrick Raphael
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Sung-il Chao
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- Department of Otolaryngology–Head and Neck Surgery, Chosun University, Gwangju, South Korea
| | - Fred A. Pereira
- Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John S. Oghalai
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene. J Neurosci 2012; 32:9485-98. [PMID: 22787034 DOI: 10.1523/jneurosci.0311-12.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.
Collapse
|
7
|
Abstract
The unusual membrane motor protein prestin is essential for mammalian hearing and for the survival of cochlear outer hair cells. While prestin has been demonstrated to be a homooligomer, by Western blot and FRET analyses, the stoichiometry of self association is unclear. Prestin, coupled to the enhanced green fluorescent protein, was synthesized and membrane targeted in human embryonic kidney cells by plasmid transfection. Fragments of membrane containing immobilized fluorescent molecules were isolated by osmotic lysis. Diffraction-limited fluorescent spots consistent in size with single molecules were observed. Under continuous excitation, the spots bleached to background in sequential and approximately equal-amplitude steps. The average step count to background levels was 2.7. A binomial model of prestin oligomerization indicated that prestin was most likely a tetramer, and that a fraction of the green fluorescent protein molecules was dark. As a positive control, the same procedure was applied to cells transfected with plasmids coding for the human cyclic nucleotide-gated ion channel A3 subunit (again coupled to the enhanced green fluorescent protein), which is an obligate tetramer. The average step count for this molecule was also 2.7. This result implies that in cell membranes prestin oligomerizes to a tetramer.
Collapse
Affiliation(s)
- Richard Hallworth
- Dept. of Biomedical Sciences, Creighton Univ., 2500 California Plaza, Omaha, NE 68178, USA.
| | | |
Collapse
|
8
|
Currall B, Rossino D, Jensen-Smith H, Hallworth R. The roles of conserved and nonconserved cysteinyl residues in the oligomerization and function of mammalian prestin. J Neurophysiol 2011; 106:2358-67. [PMID: 21813750 DOI: 10.1152/jn.00496.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The creation of several prestin knockout and knockin mouse lines has demonstrated the importance of the intrinsic outer hair cell membrane protein prestin to mammalian hearing. However, the structure of prestin remains largely unknown, with even its major features in dispute. Several studies have suggested that prestin forms homo-oligomers that may be stabilized by disulfide bonds. Our phylogenetic analysis of prestin sequences across chordate classes suggested that the cysteinyl residues could be divided into three groups, depending on the extent of their conservation between prestin orthologs and paralogs or homologs. An alanine scan functional analysis was performed of all nine cysteinyl positions in mammalian prestin. Prestin function was assayed by measurement of prestin-associated nonlinear capacitance. Of the nine cysteine-alanine substitution mutations, all were properly membrane targeted and all demonstrated nonlinear capacitance. Four mutations (C124A, C192A, C260A, and C415A), all in nonconserved cysteinyl residues, significantly differed in their nonlinear capacitance properties compared with wild-type prestin. In the two most severely disrupted mutations, substitution of the polar residue seryl for cysteinyl restored normal function in one (C415S) but not the other (C124S). We assessed the relationship of prestin oligomerization to cysteine position using fluorescence resonance energy transfer. With one exception, cysteine-alanine substitutions did not significantly alter prestin-prestin interactions. The exception was C415A, one of the two nonconserved cysteinyl residues whose mutation to alanine caused the most disruption in function. We suggest that no disulfide bond is essential for prestin function. However, C415 likely participates by hydrogen bonding in both nonlinear capacitance and oligomerization.
Collapse
Affiliation(s)
- Benjamin Currall
- Dept. of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
9
|
Morrow JM, Chang BSW. The p1D4-hrGFP II expression vector: a tool for expressing and purifying visual pigments and other G protein-coupled receptors. Plasmid 2010; 64:162-9. [PMID: 20627111 DOI: 10.1016/j.plasmid.2010.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 11/19/2022]
Abstract
The heterologous expression of membrane proteins such as G protein-coupled receptors can be a notoriously difficult task. We have engineered an expression vector, p1D4-hrGFP II, in order to efficiently express visual pigments in mammalian cell culture. This expression vector is based on pIRES-hrGFP II (Stratagene), with the addition of a C-terminal 1D4 epitope tag for immunoblotting and immunoaffinity purification. This vector employs the CMV promoter and hrGFP II, a co-translated reporter gene. We measured the effectiveness of pIRES-hrGFP II in expressing bovine rhodopsin, and showed a 3.9- to 5.7-fold increase in expression as measured by absorbance spectroscopy as compared with the pMT vector, a common choice for visual pigment expression. We then expressed zebrafish RH2-1 using p1D4-hrGFP II in order to assess its utility in expressing cone opsins, known to be less stable and more difficult to express than bovine rhodopsin. We show a λ(280)/λ(MAX) value of 3.3, one third of that reported in previous studies, suggesting increased expression levels and decreased levels of misfolded, non-functional visual pigment. Finally, we monitored HEK293T cell growth following transfection with pIRES-hrGFP II using fluorescence microscopy to illustrate the benefits of having a co-translated reporter during heterologous expression studies.
Collapse
Affiliation(s)
- James M Morrow
- Department of Cell & Systems Biology, University of Toronto, Room 501, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Wang X, Yang S, Jia S, He DZZ. Prestin forms oligomer with four mechanically independent subunits. Brain Res 2010; 1333:28-35. [PMID: 20347723 DOI: 10.1016/j.brainres.2010.03.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 11/26/2022]
Abstract
Prestin is the motor protein of cochlear outer hair cells (OHCs) with the unique capability of performing direct, rapid, and reciprocal electromechanical conversion. Prestin consists of 744 amino acids with a molecular mass of approximately 81.4 kDa. The predicted membrane topology and molecular mass of a single prestin molecule appear inadequate to account for the size of intramembrane particles (IMPs) expressed in the OHC membrane. Although recent biochemical evidence suggests that prestin forms homo-oligomers, most likely as a tetramer, the oligomeric structure of prestin in OHCs remains unclear. We obtained the charge density of prestin in the gerbil OHCs by measuring their nonlinear capacitance (NLC). The average charge density (22,608 microm(-2) measured was four times the average IMP density (5686 microm(-2) reported in the freeze-fracture study. This suggests that each IMP contains four prestin molecules, based on the general notion that each prestin transfers a single elementary charge. We subsequently compared the voltage dependency and the values of slope factor of NLC and somatic motility simultaneously measured from the same OHCs to determine whether NLC and motility are fully coupled and how prestin subunits function within the tetramer. We showed that the voltage dependency and slope factors of NLC and motility were not statistically different, suggesting that NLC and motility are fully coupled. The fact that the slope factor is the same between NLC and motility suggests that each prestin monomer in the tetramer is in parallel, each interacting independently with cytoplasmic or other partners to facilitate the mechanical response.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
11
|
Banning C, Votteler J, Hoffmann D, Koppensteiner H, Warmer M, Reimer R, Kirchhoff F, Schubert U, Hauber J, Schindler M. A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS One 2010; 5:e9344. [PMID: 20179761 PMCID: PMC2825263 DOI: 10.1371/journal.pone.0009344] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/02/2010] [Indexed: 01/08/2023] Open
Abstract
Background Försters resonance energy transfer (FRET) microscopy is widely used for the analysis of protein interactions in intact cells. However, FRET microscopy is technically challenging and does not allow assessing interactions in large cell numbers. To overcome these limitations we developed a flow cytometry-based FRET assay and analysed interactions of human and simian immunodeficiency virus (HIV and SIV) Nef and Vpu proteins with cellular factors, as well as HIV Rev multimer-formation. Results Amongst others, we characterize the interaction of Vpu with CD317 (also termed Bst-2 or tetherin), a host restriction factor that inhibits HIV release from infected cells and demonstrate that the direct binding of both is mediated by the Vpu membrane-spanning region. Furthermore, we adapted our assay to allow the identification of novel protein interaction partners in a high-throughput format. Conclusion The presented combination of FRET and FACS offers the precious possibility to discover and define protein interactions in living cells and is expected to contribute to the identification of novel therapeutic targets for treatment of human diseases.
Collapse
Affiliation(s)
- Carina Banning
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Jörg Votteler
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dirk Hoffmann
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Herwig Koppensteiner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Martin Warmer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Rudolph Reimer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | | | - Ulrich Schubert
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Joachim Hauber
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | - Michael Schindler
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Xiang W, Wei–wei G, David Zhi–Zhou H, Shi–Ming Y. Prestin forms tetramer with each subunit being mechanically independent. J Otol 2009. [DOI: 10.1016/s1672-2930(09)50019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Greeson JN, Raphael RM. Amphipath-induced nanoscale changes in outer hair cell plasma membrane curvature. Biophys J 2009; 96:510-20. [PMID: 19167301 DOI: 10.1016/j.bpj.2008.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022] Open
Abstract
Outer hair cell (OHC) electromotility enables frequency selectivity and sensitivity in mammalian audition. Electromotility is generated by the transmembrane protein prestin and is sensitive to amphipathic compounds including salicylate, chlorpromazine (CPZ), and trinitrophenol (TNP). Although these compounds induce observable membrane curvature changes in erythrocytes, their effects on OHC membrane curvature are unknown. In this work, fluorescence polarization microscopy was applied to investigate the effects of salicylate, CPZ, and TNP on di-8-ANEPPS orientation in the OHC plasma membrane. Our results demonstrate the ability of fluorescence polarization microscopy to measure amphipath-induced changes in di-8-ANEPPS orientation, consistent with nanoscale changes in membrane curvature between regularly spaced proteins connecting the OHC plasma membrane and cytoskeleton. Simultaneous application of oppositely charged amphipaths generally results in no net membrane bending, consistent with predictions of the bilayer couple hypothesis; however, the application of salicylate (10 mM), which inhibits electromotility, is not reversed by the addition of CPZ. This result supports other findings that suggest salicylate primarily influences electromotiliy and OHC nonlinear capacitance via a direct interaction with prestin. In contrast, we find that CPZ and TNP influence the voltage sensitivity of prestin via membrane bending, demonstrating the mechanosensitivity of this unique membrane motor protein.
Collapse
Affiliation(s)
- Jennifer N Greeson
- Rice University, Department of Bioengineering, Houston, Texas 77251-1892, USA
| | | |
Collapse
|
14
|
Jensen-Smith H, Currall B, Rossino D, Tiede L, Nichols M, Hallworth R. Fluorescence microscopy methods in the study of protein structure and function. Methods Mol Biol 2009; 493:369-79. [PMID: 18839359 DOI: 10.1007/978-1-59745-523-7_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As more and more proteins specific to hair cells are discovered, it becomes imperative to understand their structure and how that contributes to their function. The fluorescence microscopic methods described here can be employed to provide information on protein-protein interactions, whether homomeric or heteromeric, and on protein conformation. Here, we describe two fluorescence microscopic methodologies applied to the outer hair cell-specific membrane protein prestin: the intensity and fluorescence lifetime (FLIM) variants of FRET (Fluorescence Resonance Energy Transfer), used in the study of protein-protein interactions, and the Scanning Cysteine Accessibility Method (SCAM), used for the determination of protein conformation. The methods are readily adaptable to other proteins.
Collapse
Affiliation(s)
- Heather Jensen-Smith
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
15
|
Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, Yu Y, Amlal H, Seidler U, Zuo J, Soleimani M. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem 2008; 284:5056-66. [PMID: 19091748 DOI: 10.1074/jbc.m808128200] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The identity of the transporter responsible for fructose absorption in the intestine in vivo and its potential role in fructose-induced hypertension remain speculative. Here we demonstrate that Glut5 (Slc2a5) deletion reduced fructose absorption by approximately 75% in the jejunum and decreased the concentration of serum fructose by approximately 90% relative to wild-type mice on increased dietary fructose. When fed a control (60% starch) diet, Glut5(-/-) mice had normal blood pressure and displayed normal weight gain. However, whereas Glut5(+/+) mice showed enhanced salt absorption in their jejuna in response to luminal fructose and developed systemic hypertension when fed a high fructose (60% fructose) diet for 14 weeks, Glut5(-/-) mice did not display fructose-stimulated salt absorption in their jejuna, and they experienced a significant impairment of nutrient absorption in their intestine with accompanying hypotension as early as 3-5 days after the start of a high fructose diet. Examination of the intestinal tract of Glut5(-/-) mice fed a high fructose diet revealed massive dilatation of the caecum and colon, consistent with severe malabsorption, along with a unique adaptive up-regulation of ion transporters. In contrast to the malabsorption of fructose, Glut5(-/-) mice did not exhibit an absorption defect when fed a high glucose (60% glucose) diet. We conclude that Glut5 is essential for the absorption of fructose in the intestine and plays a fundamental role in the generation of fructose-induced hypertension. Deletion of Glut5 results in a serious nutrient-absorptive defect and volume depletion only when the animals are fed a high fructose diet and is associated with compensatory adaptive up-regulation of ion-absorbing transporters in the colon.
Collapse
Affiliation(s)
- Sharon Barone
- Center on Genetics of Transport and Epithelial Biology and the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Okoruwa OE, Weston MD, Sanjeevi DC, Millemon AR, Fritzsch B, Hallworth R, Beisel KW. Evolutionary insights into the unique electromotility motor of mammalian outer hair cells. Evol Dev 2008; 10:300-15. [PMID: 18460092 DOI: 10.1111/j.1525-142x.2008.00239.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prestin (SLC26A5) is the molecular motor responsible for cochlear amplification by mammalian cochlea outer hair cells and has the unique combined properties of energy-independent motility, voltage sensitivity, and speed of cellular shape change. The ion transporter capability, typical of SLC26A members, was exchanged for electromotility function and is a newly derived feature of the therian cochlea. A putative minimal essential motif for the electromotility motor (meEM) was identified through the amalgamation of comparative genomic, evolution, and structural diversification approaches. Comparisons were done among nonmammalian vertebrates, eutherian mammalian species, and the opossum and platypus. The opossum and platypus SLC26A5 proteins were comparable to the eutherian consensus sequence. Suggested from the point-accepted mutation analysis, the meEM motif spans all the transmembrane segments and represented residues 66-503. Within the eutherian clade, the meEM was highly conserved with a substitution frequency of only 39/7497 (0.5%) residues, compared with 5.7% in SLC26A4 and 12.8% in SLC26A6 genes. Clade-specific substitutions were not observed and there was no sequence correlation with low or high hearing frequency specialists. We were able to identify that within the highly conserved meEM motif two regions, which are unique to all therian species, appear to be the most derived features in the SLC26A5 peptide.
Collapse
Affiliation(s)
- Oseremen E Okoruwa
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Xia A, Wooltorton JRA, Palmer DJ, Ng P, Pereira FA, Eatock RA, Oghalai JS. Functional prestin transduction of immature outer hair cells from normal and prestin-null mice. J Assoc Res Otolaryngol 2008; 9:307-20. [PMID: 18506528 DOI: 10.1007/s10162-008-0121-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 04/04/2008] [Indexed: 10/22/2022] Open
Abstract
Prestin is a membrane protein in the outer hair cell (OHC) that has been shown to be essential for electromotility. OHCs from prestin-null mice do not express prestin, do not have a nonlinear capacitance (the electrical signature of electromotility), and are smaller in size than wild-type OHCs. We sought to determine whether prestin-null OHCs can be transduced to incorporate functional prestin protein in a normal fashion. A recombinant helper-dependent adenovirus expressing prestin and green fluorescent protein (HDAd-prestin-GFP) was created and tested in human embryonic kidney cells (HEK cells). Transduced HEK cells demonstrated membrane expression of prestin and nonlinear capacitance. HDAd-prestin-GFP was then applied to cochlear sensory epithelium explants harvested from wild-type and prestin-null mice at postnatal days 2-3, the age at which native prestin is just beginning to become functional in wild-type mice. At postnatal days 4-5, we investigated transduced OHCs for (1) their prestin expression pattern as revealed by immunofluorescence; (2) their cell surface area as measured by linear capacitance; and (3) their prestin function as indicated by nonlinear capacitance. HDAd-prestin-GFP efficiently transduced OHCs of both genotypes and prestin protein localized to the plasma membrane. Whole-cell voltage clamp studies revealed a nonlinear capacitance in transduced wild-type and prestin-null OHCs, but not in non-transduced cells of either genotype. Prestin transduction did not increase the linear capacitance (cell surface area) for either genotype. In peak nonlinear capacitance, voltage at peak nonlinear capacitance, charge density of the nonlinear capacitance, and shape of the voltage-capacitance curves, the transduced cells of the two genotypes resembled each other and previously reported data from adult wild-type mouse OHCs. Thus, prestin introduced into prestin-deficient OHCs segregates normally to the cell membrane and generates a normal nonlinear capacitance, indicative of normal prestin function.
Collapse
Affiliation(s)
- Anping Xia
- Bobby R. Alford Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Wu X, Wang X, Gao J, Yu Y, Jia S, Zheng J, Dallos P, He DZZ, Cheatham M, Zuo J. Glucose transporter 5 is undetectable in outer hair cells and does not contribute to cochlear amplification. Brain Res 2008; 1210:20-8. [PMID: 18417103 DOI: 10.1016/j.brainres.2008.02.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 02/16/2008] [Accepted: 02/24/2008] [Indexed: 11/29/2022]
Abstract
Glucose transporter 5 (Glut5) is a high-affinity fructose transporter. It was proposed to be a motor protein or part of the motor complex required for cochlear amplification in outer hair cells (OHCs). Here we show that, in contrast to previous reports, Glut5 is undetectable, and possibly absent, in OHCs harvested from wildtype mice. Further, Glut5-deficient mice display normal OHC morphology and motor function (i.e., nonlinear capacitance and electromotility) and normal cochlear sensitivity and frequency selectivity. We conclude that Glut5 is not required for OHC motility or cochlear amplification.
Collapse
Affiliation(s)
- Xudong Wu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Normal hearing depends on sound amplification within the mammalian cochlea. The amplification, without which the auditory system is effectively deaf, can be traced to the correct functioning of a group of motile sensory hair cells, the outer hair cells of the cochlea. Acting like motor cells, outer hair cells produce forces that are driven by graded changes in membrane potential. The forces depend on the presence of a motor protein in the lateral membrane of the cells. This protein, known as prestin, is a member of a transporter superfamily SLC26. The functional and structural properties of prestin are described in this review. Whether outer hair cell motility might account for sound amplification at all frequencies is also a critical question and is reviewed here.
Collapse
Affiliation(s)
- Jonathan Ashmore
- Department of Physiology and UCL Ear Institute, University College London, London, United Kingdom.
| |
Collapse
|
20
|
Detro-Dassen S, Schänzler M, Lauks H, Martin I, zu Berstenhorst SM, Nothmann D, Torres-Salazar D, Hidalgo P, Schmalzing G, Fahlke C. Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J Biol Chem 2007; 283:4177-88. [PMID: 18073211 DOI: 10.1074/jbc.m704924200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SLC26 gene family encodes multifunctional transport proteins in numerous tissues and organs. Some paralogs function as anion exchangers, others as anion channels, and one, prestin (SLC26A5), represents a membrane-bound motor protein in outer hair cells of the inner ear. At present, little is known about the molecular basis of this functional diversity. We studied the subunit stoichiometry of one bacterial, one teleost, and two mammalian SLC26 isoforms expressed in Xenopus laevis oocytes or in mammalian cells using blue native PAGE and chemical cross-linking. All tested SLC26s are assembled as dimers composed of two identical subunits. Co-expression of two mutant prestins with distinct voltage-dependent capacitances results in motor proteins with novel electrical properties, indicating that the two subunits do not function independently. Our results indicate that an evolutionarily conserved dimeric quaternary structure represents the native and functional state of SLC26 transporters.
Collapse
Affiliation(s)
- Silvia Detro-Dassen
- Abteilung Molekulare Pharmakologie, Rheinisch-Westfälische Technische Hochschule Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jensen-Smith H, Hallworth R. Lateral wall protein content mediates alterations in cochlear outer hair cell mechanics before and after hearing onset. ACTA ACUST UNITED AC 2007; 64:705-17. [PMID: 17615570 PMCID: PMC1992524 DOI: 10.1002/cm.20217] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Specialized outer hair cells (OHCs) housed within the mammalian cochlea exhibit active, nonlinear, mechanical responses to auditory stimulation termed electromotility. The extraordinary frequency resolution capacity of the cochlea requires an exquisitely equilibrated mechanical system of sensory and supporting cells. OHC electromotile length change, stiffness, and force generation are responsible for a 100-fold increase in hearing sensitivity by augmenting vibrational input to non-motile sensory inner hair cells. Characterization of OHC mechanics is crucial for understanding and ultimately preventing permanent functional deficits due to overstimulation or as a consequence of various cochlear pathologies. The OHCs' major structural assembly is a highly-specialized lateral wall. The lateral wall consists of three structures; a plasma membrane highly-enriched with the motor-protein prestin, an actin-spectrin cortical lattice, and one or more layers of subsurface cisternae. Technical difficulties in independently manipulating each lateral wall constituent have constrained previous attempts to analyze the determinants of OHCs' mechanical properties. Temporal separations in the accumulation of each lateral wall constituent during postnatal development permit associations between lateral wall structure and OHC mechanics. We compared developing and adult gerbil OHC axial stiffness using calibrated glass fibers. Alterations in each lateral wall component and OHC stiffness were correlated as a function of age. Reduced F-actin labeling was correlated with reduced OHC stiffness before hearing onset. Prestin incorporation into the PM was correlated with increased OHC stiffness at hearing onset. Our data indicate lateral wall F-actin and prestin are the primary determinants of OHC mechanical properties before and after hearing onset, respectively.
Collapse
Affiliation(s)
- Heather Jensen-Smith
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, USA.
| | | |
Collapse
|