1
|
Zhang Y, Tang YW, Peng YT, Yan Z, Zhou J, Yue ZH. Acupuncture, an effective treatment for post-stroke neurologic dysfunction. Brain Res Bull 2024; 215:111035. [PMID: 39069104 DOI: 10.1016/j.brainresbull.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Stroke episodes represent a significant subset of cerebrovascular diseases globally, often resulting in diverse neurological impairments such as hemiparesis, spasticity, dysphagia, sensory dysfunction, cognitive impairment, depression, aphasia, and other sequelae. These dysfunctions markedly diminish patients' quality of life and impose substantial burdens on their families and society. Consequently, the restoration of neurological function post-stroke remains a primary objective of clinical treatment. Acupuncture, a traditional Chinese medicine technique, is endorsed by the World Health Organization (WHO) for stroke treatment due to its distinct advantages in managing cerebrovascular diseases, including ischemic stroke. Numerous clinical studies have substantiated the efficacy of acupuncture in ameliorating neurological dysfunctions following stroke. This review systematically examines the improvements in post-stroke neurological dysfunction attributable to acupuncture treatment and elucidates potential mechanisms of action proposed in recent years. Additionally, this article aims to present novel therapeutic concepts and strategies for the clinical management of post-stroke neurological dysfunction.
Collapse
Affiliation(s)
- You Zhang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yi-Wen Tang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yu-Ting Peng
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zi Yan
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin Zhou
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zeng-Hui Yue
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
2
|
Pilipenko V, Upite J, Revina BL, Jansone B. Long-Term Alterations in Motor Skills, Neurogenesis and Astrocyte Numbers following Transient Cerebral Ischemia in Mice. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:658. [PMID: 38674304 PMCID: PMC11052140 DOI: 10.3390/medicina60040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives. Neurogenesis is an integral process in post-stroke recovery, involving the recruitment of proliferating neuroblasts from neurogenic niches of the mammal brain. However, the role of neurogenesis in the long-term restoration following ischemic stroke is fragmented. Post-stroke motor dysfunction includes challenges in the proper, coordinated use of hands and is present in roughly two-thirds of human patients. In this study, we investigated chronic behavioral and biochemical alterations after transient cerebral ischemia in adult male mice. Materials and Methods: Twelve-week-old C57BL/6N male mice were used, and fMCAo lasting 60 min was induced. At multiple timepoints after fMCAo induction, a single pellet reaching task was performed. Six months after the procedure, we immunohistochemically determined the number of proliferating neuroblasts (BrdU and DCX-positive) and the number of differentiated astrocytes (GFAP-positive) in both brain hemispheres. Results: The reaching ability of fMCAo mice was impaired from one month to six months after the induction of ischemia. Neuroblast proliferation was increased in the ipsilateral SVZ, whereas GFAP+ cell count was elevated in the hippocampal DG of both hemispheres of the fMCAo group mice. Conclusions: Our current report demonstrates the long-term effects of transient cerebral ischemia on mice functional parameters and neurogenesis progression. Our data demonstrate that transient cerebral ischemia promotes a long-lasting regenerative response in the ipsilateral brain hemisphere, specifically in the neurogenic SVZ and DG regions.
Collapse
Affiliation(s)
- Vladimirs Pilipenko
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia; (J.U.); (B.L.R.)
| | | | | | - Baiba Jansone
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia; (J.U.); (B.L.R.)
| |
Collapse
|
3
|
Islam R, Ahlfors JE, Siu R, Noman H, Akbary R, Morshead CM. Inhibition of Apoptosis in a Model of Ischemic Stroke Leads to Enhanced Cell Survival, Endogenous Neural Precursor Cell Activation and Improved Functional Outcomes. Int J Mol Sci 2024; 25:1786. [PMID: 38339065 PMCID: PMC10855341 DOI: 10.3390/ijms25031786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Stroke results in neuronal cell death, which causes long-term disabilities in adults. Treatment options are limited and rely on a narrow window of opportunity. Apoptosis inhibitors demonstrate efficacy in improving neuronal cell survival in animal models of stroke. However, many inhibitors non-specifically target apoptosis pathways and high doses are needed for treatment. We explored the use of a novel caspase-3/7 inhibitor, New World Laboratories (NWL) 283, with a lower IC50 than current caspase-3/7 inhibitors. We performed in vitro and in vivo assays to determine the efficacy of NWL283 in modulating cell death in a preclinical model of stroke. In vitro and in vivo assays show that NWL283 enhances cell survival of neural precursor cells. Delivery of NWL283 following stroke enhances endogenous NPC migration and leads to increased neurogenesis in the stroke-injured cortex. Furthermore, acute NWL283 administration is neuroprotective at the stroke injury site, decreasing neuronal cell death and reducing microglia activation. Coincident with NWL283 delivery for 8 days, stroke-injured mice exhibited improved functional outcomes that persisted following cessation of the drug. Therefore, we propose that NWL283 is a promising therapeutic warranting further investigation to enhance stroke recovery.
Collapse
Affiliation(s)
- Rehnuma Islam
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Jan-Eric Ahlfors
- New World Laboratories, 275 Boul. Armand-Frappier, Laval, QC H7V 4A7, Canada
| | - Ricky Siu
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Humna Noman
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Roya Akbary
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Cindi M. Morshead
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
4
|
Darban YM, Askari H, Ghasemi-Kasman M, Yavarpour-Bali H, Dehpanah A, Gholizade P, Nosratiyan N. The Role of Induced Pluripotent Stem Cells in the Treatment of Stroke. Curr Neuropharmacol 2024; 22:2368-2383. [PMID: 39403058 PMCID: PMC11451314 DOI: 10.2174/1570159x22666240603084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 10/19/2024] Open
Abstract
Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially via the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.
Collapse
Affiliation(s)
| | - Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Amirabbas Dehpanah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Parnia Gholizade
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Inhibition of Vesicular Glutamate Transporters (VGLUTs) with Chicago Sky Blue 6B Before Focal Cerebral Ischemia Offers Neuroprotection. Mol Neurobiol 2023; 60:3130-3146. [PMID: 36802054 PMCID: PMC10122628 DOI: 10.1007/s12035-023-03259-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023]
Abstract
Brain ischemia is one of the leading causes of death and long-term disability in the world. Interruption of the blood supply to the brain is a direct stimulus for many pathological events. The massive vesicular release of glutamate (Glu) after ischemia onset induces excitotoxicity, which is a potent stress on neurons. Loading of presynaptic vesicles with Glu is the first step of glutamatergic neurotransmission. Vesicular glutamate transporters 1, 2, and 3 (VGLUT1, 2, and 3) are the main players involved in filling presynaptic vesicles with Glu. VGLUT1 and VGLUT2 are expressed mainly in glutamatergic neurons. Therefore, the possibility of pharmacological modulation to prevent ischemia-related brain damage is attractive. In this study, we aimed to determine the effect of focal cerebral ischemia on the spatiotemporal expression of VGLUT1 and VGLUT2 in rats. Next, we investigated the influence of VGLUT inhibition with Chicago Sky Blue 6B (CSB6B) on Glu release and stroke outcome. The effect of CSB6B pretreatment on infarct volume and neurological deficit was compared with a reference model of ischemic preconditioning. The results of this study indicate that ischemia upregulated the expression of VGLUT1 in the cerebral cortex and in the dorsal striatum 3 days after ischemia onset. The expression of VGLUT2 was elevated in the dorsal striatum and in the cerebral cortex 24 h and 3 days after ischemia, respectively. Microdialysis revealed that pretreatment with CSB6B significantly reduced the extracellular Glu concentration. Altogether, this study shows that inhibition of VGLUTs might be a promising therapeutic strategy for the future.
Collapse
|
6
|
Classification and Characteristics of Mesenchymal Stem Cells and Its Potential Therapeutic Mechanisms and Applications against Ischemic Stroke. Stem Cells Int 2021; 2021:2602871. [PMID: 34795764 PMCID: PMC8595011 DOI: 10.1155/2021/2602871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is a serious cerebral disease that often induces death and long-term disability. As a currently available therapy for recanalization after ischemic stroke, thrombolysis, including intravenous thrombolysis and endovascular therapy, still cannot be applicable to all patients due to the narrow time window. Mesenchymal stem cell (MSC) transplantation therapy, which can trigger neuronal regeneration and repair, has been considered as a significant advance in treatment of ischemic stroke. MSC transplantation therapy has exhibited its potential to improve the neurological function in ischemic stroke. Our review describes the current progress and future perspective of MSC transplantation therapy in ischemic stroke treatment, including cell types, transplantation approaches, therapeutic mechanisms, and preliminary clinical trials of MSC transplantation, for providing us an update role of MSC transplantation in ischemic stroke treatment.
Collapse
|
7
|
Zhang Y, Xie B, Yuan Y, Zhou T, Xiao P, Wu Y, Shang Y, Yuan S, Zhang J. (R,S)-Ketamine Promotes Striatal Neurogenesis and Sensorimotor Recovery Through Improving Poststroke Depression–Mediated Decrease in Atrial Natriuretic Peptide. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:90-100. [PMID: 36324997 PMCID: PMC9616367 DOI: 10.1016/j.bpsgos.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Poststroke social isolation could worsen poststroke depression and dampen neurogenesis. (R,S)-ketamine has antidepressant and neuroprotective effects; however, its roles and mechanisms in social isolation–mediated depressive-like behaviors and sensorimotor recovery remain unclear. Methods Mice were subjected to transient middle cerebral artery occlusion, and then were pair-housed with ovariectomized female mice or were housed isolated (ISO) starting at 3 days postischemia. ISO mice received 2 weeks of (R,S)-ketamine treatment starting at 14 days postischemia. Primary ependymal epithelial cells and choroid plexus epithelial cells were cultured and treated with recombinant human atrial natriuretic peptide (ANP) protein. Results The poststroke social isolation model was successfully established using middle cerebral artery occlusion combined with poststroke isolation, as demonstrated by a more prominent depression-like phenotype in ISO mice compared with pair-housed mice. (R,S)-ketamine reversed ISO-mediated depressive-like behaviors and increased ANP levels in the atrium. The depression-like phenotype was negatively correlated with ANP levels in both the atrium and plasma. Atrial GLP-1 and GLP-1 receptor signaling was essential to the promoting effects of (R,S)-ketamine on the synthesis and secretion of ANP from the atrium in ISO mice. (R,S)-ketamine also increased ANP and TGF-β1 levels in the choroid plexus of ISO mice. Recombinant human ANP increased TGF-β1 levels in both the primarily cultured ependymal epithelial cells and choroid plexus epithelial cells. Furthermore, (R,S)-ketamine increased TGF-β1 levels in the ischemic hemisphere and promoted striatal neurogenesis and sensorimotor recovery via ANP in ISO mice. Conclusions (R,S)-ketamine alleviated poststroke ISO-mediated depressive-like behaviors and thus promoted striatal neurogenesis and sensorimotor recovery via ANP.
Collapse
|
8
|
Nemirovich-Danchenko NM, Khodanovich MY. New Neurons in the Post-ischemic and Injured Brain: Migrating or Resident? Front Neurosci 2019; 13:588. [PMID: 31275097 PMCID: PMC6591486 DOI: 10.3389/fnins.2019.00588] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous potential of adult neurogenesis is of particular interest for the development of new strategies for recovery after stroke and traumatic brain injury. These pathological conditions affect endogenous neurogenesis in two aspects. On the one hand, injury usually initiates the migration of neuronal precursors (NPCs) to the lesion area from the already existing, in physiological conditions, neurogenic niche - the ventricular-subventricular zone (V-SVZ) near the lateral ventricles. On the other hand, recent studies have convincingly demonstrated the local generation of new neurons near lesion areas in different brain locations. The striatum, cortex, and hippocampal CA1 region are considered to be locations of such new neurogenic zones in the damaged brain. This review focuses on the relative contribution of two types of NPCs of different origin, resident population in new neurogenic zones and cells migrating from the lateral ventricles, to post-stroke or post-traumatic enhancement of neurogenesis. The migratory pathways of NPCs have also been considered. In addition, the review highlights the advantages and limitations of different methodological approaches to the definition of NPC location and tracking of new neurons. In general, we suggest that despite the considerable number of studies, we still lack a comprehensive understanding of neurogenesis in the damaged brain. We believe that the advancement of methods for in vivo visualization and longitudinal observation of neurogenesis in the brain could fundamentally change the current situation in this field.
Collapse
Affiliation(s)
| | - Marina Yu. Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
9
|
Wei ZZ, Chen D, Liu LP, Gu X, Zhong W, Zhang YB, Wang Y, Yu SP, Wei L. Enhanced Neurogenesis and Collaterogenesis by Sodium Danshensu Treatment After Focal Cerebral Ischemia in Mice. Cell Transplant 2019; 27:622-636. [PMID: 29984620 PMCID: PMC7020234 DOI: 10.1177/0963689718771889] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke remains a serious threat to human life. There are limited effective
therapies for the treatment of stroke. We have previously demonstrated that angiogenesis
and neurogenesis in the brain play an important role in functional recovery following
ischemic stroke. Recent studies indicate that increased arteriogenesis and collateral
circulation are determining factors for restoring reperfusion and outcomes of stroke
patients. Danshensu, the Salvia miltiorrhiza root extract, is used in
treatments of various human ischemic events in traditional Chinese medicine. Its
therapeutic mechanism, however, is not well clarified. Due to its proposed effect on
angiogenesis and arteriogenesis, we hypothesized that danshensu could benefit stroke
recovery through stimulating neurogenesis and collaterogenesis in the post-ischemia brain.
Focal ischemic stroke targeting the right sensorimotor cortex was induced in wild-type
C57BL6 mice and transgenic mice expressing green fluorescent protein (GFP) to label smooth
muscle cells of brain arteries. Sodium danshensu (SDS, 700 mg/kg) was administered
intraperitoneally (i.p.) 10 min after stroke and once daily until animals were sacrificed.
To label proliferating cells, 5-bromo-2′-deoxyuridine (BrdU; 50 mg/kg, i.p.) was
administered, starting on day 3 after ischemia and continued once daily until sacrifice.
At 14 days after stroke, SDS significantly increased the expression of vascular
endothelial growth factor (VEGF), stromal-derived factor-1 (SDF-1), brain-derived
neurotrophic factor (BDNF), and endothelial nitric oxide synthase (eNOS) in the
peri-infarct region. SDS-treated animals showed increased number of doublecortin
(DCX)-positive cells. Greater numbers of proliferating endothelial cells and smooth muscle
cells were detected in SDS-treated mice 21 days after stroke in comparison with vehicle
controls. The number of newly formed neurons labeled by NeuN and BrdU antibodies increased
in SDS-treated mice 28 days after stroke. SDS significantly increased the newly formed
arteries and the diameter of collateral arteries, leading to enhanced local cerebral blood
flow recovery after stroke. These results suggest that systemic sodium danshensu treatment
shows significant regenerative effects in the post-ischemic brain, which may benefit
long-term functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,2 Experimental and Translational Research Center, Beijing Friendship Hospital, Beijing, China.,3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dongdong Chen
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Li-Ping Liu
- 4 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohuan Gu
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiwei Zhong
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong-Bo Zhang
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- 4 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Ping Yu
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,2 Experimental and Translational Research Center, Beijing Friendship Hospital, Beijing, China.,3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA.,5 Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Evaluation of temperature induction in focal ischemic thermocoagulation model. PLoS One 2018; 13:e0200135. [PMID: 29975761 PMCID: PMC6033425 DOI: 10.1371/journal.pone.0200135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
The thermocoagulation model, which consists of focal cerebral ischemia with craniectomy, is helpful in studying permanent ischemic brain lesions and has good reproducibility and low mortality. This study analyzed the best conditions for inducing a focal ischemic lesion by thermocoagulation. We investigated parameters such as temperature and thermal dissipation in the brain tissue during induction and analyzed real-time blood perfusion, histological changes, magnetic resonance imaging (MRI), and motor behavior in a permanent ischemic stroke model. We used three-month-old male Wistar rats, weighing 300–350 g. In the first experiment, the animals were divided into four groups (n = 5 each): one sham surgery group and three ischemic lesion groups having thermocoagulation induction (TCI) temperatures of 200°C, 300°C, and 400°C, respectively, with blood perfusion (basal and 30 min after TCI) and 2,3,5-Triphenyl-tetrazolium chloride (TTC) evaluation at 2 h after TCI. In the second experiment, five groups (n = 5 each) were analyzed by MRI (basal and 24 h after TCI) and behavioral tests (basal and seven days after TCI) with the control group added for the surgical effects. The MRI and TTC analyses revealed that ischemic brain lesions expressively evolved, especially at TCI temperatures of 300°C and 400°C, and significant motor deficits were observed as the animals showed a decrease frequency of movement and an asymmetric pattern. We conclude that a TCI temperature of 400°C causes permanent ischemic stroke and motor deficit.
Collapse
|
11
|
Chau MJ, Deveau TC, Gu X, Kim YS, Xu Y, Yu SP, Wei L. Delayed and repeated intranasal delivery of bone marrow stromal cells increases regeneration and functional recovery after ischemic stroke in mice. BMC Neurosci 2018; 19:20. [PMID: 29649974 PMCID: PMC5897929 DOI: 10.1186/s12868-018-0418-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke is a leading cause of death and disability worldwide, yet there are limited treatments available. Intranasal administration is a novel non-invasive strategy to deliver cell therapy into the brain. Cells delivered via the intranasal route can migrate from the nasal mucosa to the ischemic infarct and show acute neuroprotection as well as functional benefits. However, there is little information about the regenerative effects of this transplantation method in the delayed phase of stroke. We hypothesized that repeated intranasal deliveries of bone marrow stromal cells (BMSCs) would be feasible and could enhance delayed neurovascular repair and functional recovery after ischemic stroke. RESULTS Reverse transcription polymerase chain reaction and immunocytochemistry were performed to analyze the expression of regenerative factors including SDF-1α, CXCR4, VEGF and FAK in BMSCs. Ischemic stroke targeting the somatosensory cortex was induced in adult C57BL/6 mice by permanently occluding the right middle cerebral artery and temporarily occluding both common carotid arteries. Hypoxic preconditioned (HP) BMSCs (HP-BMSCs) with increased expression of surviving factors HIF-1α and Bcl-xl (1 × 106 cells/100 μl per mouse) or cell media were administered intranasally at 3, 4, 5, and 6 days after stroke. Mice received daily BrdU (50 mg/kg) injections until sacrifice. BMSCs were prelabeled with Hoechst 33342 and detected within the peri-infarct area 6 and 24 h after transplantation. In immunohistochemical staining, significant increases in NeuN/BrdU and Glut-1/BrdU double positive cells were seen in stroke mice received HP-BMSCs compared to those received regular BMSCs. HP-BMSC transplantation significantly increased local cerebral blood flow and improved performance in the adhesive removal test. CONCLUSIONS This study suggests that delayed and repeated intranasal deliveries of HP-treated BMSCs is an effective treatment to encourage regeneration after stroke.
Collapse
Affiliation(s)
- Monica J. Chau
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Todd C. Deveau
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yo Sup Kim
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yun Xu
- Department of Neurology, Nanjing University School of Medicine, Nanjing, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Center for Visual and Neurocognitive Rehabilitation, Veteran’s Affair Medical Center, Atlanta, GA USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Woodruff Memorial Research Building, Suite 617, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322 USA
| |
Collapse
|
12
|
Wei ZZ, Zhang JY, Taylor TM, Gu X, Zhao Y, Wei L. Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. J Cereb Blood Flow Metab 2018; 38:404-421. [PMID: 28430000 PMCID: PMC5851145 DOI: 10.1177/0271678x17702669] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/31/2023]
Abstract
Wnt signaling is a conserved pathway involved in expansion of neural progenitors and lineage specification during development. However, the role of Wnt signaling in the post-stroke brain has not been well-elucidated. We hypothesized that Wnt-3a would play an important role for neurogenesis and brain repair. Adult male mice were subjected to a focal ischemic stroke targeting the sensorimotor cortex. Mice that received Wnt-3a (2 µg/kg/day, 1 h after stroke and once a day for the next 2 days, intranasal delivery) had reduced infarct volume compared to stroke controls. Wnt-3a intranasal treatment of seven days upregulated the expression of brain-derived growth factor (BDNF), increased the proliferation and migration of neuroblasts from the subventricular zone (SVZ), resulting in increased numbers of newly formed neurons and endothelial cells in the peri-infarct zone. Both the molecular and cellular effects of Wnt-3a were blocked by the Wnt specific inhibitors XAV-939 or Dkk-1. In functional assays, Wnt-3a treatment enhanced the local cerebral blood flow (LCBF) in the peri-infarct, as well as improved sensorimotor functions in a battery of behavioral tests. Together, our data demonstrates that the Wnt-3a signaling can act as a dual neuroprotective and regenerative factor for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - James Ya Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tammi M Taylor
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingying Zhao
- Laboratories of Stem Cell Biology and Regenerative Medicine, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Chau M, Deveau TC, Song M, Wei ZZ, Gu X, Yu SP, Wei L. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1α increases regeneration and functional recovery after ischemic stroke. Oncotarget 2017; 8:97537-97553. [PMID: 29228630 PMCID: PMC5722582 DOI: 10.18632/oncotarget.22180] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is a leading cause of human death and disability while clinical treatments are limited. The adult brain possesses endogenous regenerative activities that may benefit tissue repair after stroke. Trophic factors such as stromal cell-derived factor 1 alpha (SDF-1α) are upregulated in the ischemic brain, which promote endogenous regeneration. The regenerative response, however, is normally insufficient. Transplantation of exogenous cells has been explored as regenerative therapies. One promising cell type for transplantation is induced pluripotent stem (iPS) cells which are cells genetically reprogrammed from adult somatic cells. We hypothesized that transplanting neural progenitor cells derived from iPS cells (iPS-NPCs) could provide cell replacement and trophic support. The trophic factor SDF-1α was overexpressed in iPS-NPCs by lentiviral transduction to test if SDF-1α could increase regeneration in the ischemic brain. These SDF-1α-iPS-NPCs were differentiated in vitro to express mature neuronal and synaptic markers. Differentiated cells expressed functional Na+ and K+ channels, and fired action potentials. In the oxygen glucose deprivation (OGD) test, SDF-1α-iPS-NPCs survived significantly better compared to control iPS-NPCs. In mice subjected to focal cerebral ischemia in the sensorimotor cortex, iPS-NPCs and SDF-1α-iPS-NPCs were intracranially transplanted into the ischemic cortex 7 days after stroke. Neuronal differentiation of transplanted cells was identified using NeuN 14 days after transplantation. Mice that received SDF-1α-iPS-NPCs had greater numbers of NeuN/BrdU and Glut-1/BrdU co-labeled cells in the peri-infarct area and improved locomotion compared to the control iPS-NPC transplantation. Thus, SDF-1α upregulation in transplanted cells may be a therapeutic strategy to enhance endogenous neurovascular repair after ischemic stroke in adult mice.
Collapse
Affiliation(s)
- Monica Chau
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd C. Deveau
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mingke Song
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zheng Z. Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
15
|
Yu B, Ruan M, Liang T, Huang SW, Yu Y, Cheng HB, Shen XC. The Synergic Effect of Tetramethylpyrazine Phosphate and Borneol for Protecting Against Ischemia Injury in Cortex and Hippocampus Regions by Modulating Apoptosis and Autophagy. J Mol Neurosci 2017; 63:70-83. [DOI: 10.1007/s12031-017-0958-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 01/07/2023]
|
16
|
Luo J, Zheng H, Zhang L, Zhang Q, Li L, Pei Z, Hu X. High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats. Int J Mol Sci 2017; 18:ijms18020455. [PMID: 28230741 PMCID: PMC5343989 DOI: 10.3390/ijms18020455] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has rapidly become an attractive therapeutic approach for stroke. However, the mechanisms underlying this remain elusive. This study aimed to investigate whether high-frequency rTMS improves functional recovery mediated by enhanced neurogenesis and activation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway and to compare the effect of conventional 20 Hz rTMS and intermittent theta burst stimulation (iTBS) on ischemic rats. Rats after rTMS were sacrificed seven and 14 days after middle cerebral artery occlusion (MCAO), following evaluation of neurological function. Neurogenesis was measured using specific markers: Ki67, Nestin, doublecortin (DCX), NeuN and glial fibrillary acidic protein (GFAP), and the expression levels of BDNF were visualized by Western blotting and RT-PCR analysis. Both high-frequency rTMS methods significantly improved neurological function and reduced infarct volume. Moreover, 20 Hz rTMS and iTBS significantly promoted neurogenesis, shown by an increase of Ki67/DCX, Ki67/Nestin, and Ki67/NeuN-positive cells in the peri-infarct striatum. These beneficial effects were accompanied by elevated protein levels of BDNF and phosphorylated-TrkB. In conclusion, high-frequency rTMS improves functional recovery possibly by enhancing neurogenesis and activating BDNF/TrkB signaling pathway and conventional 20 Hz rTMS is better than iTBS at enhancing neurogenesis in ischemic rats.
Collapse
Affiliation(s)
- Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Qingjie Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
17
|
Zhao Y, Wei ZZ, Zhang JY, Zhang Y, Won S, Sun J, Yu SP, Li J, Wei L. GSK-3β Inhibition Induced Neuroprotection, Regeneration, and Functional Recovery After Intracerebral Hemorrhagic Stroke. Cell Transplant 2017; 26:395-407. [PMID: 28195036 DOI: 10.3727/096368916x694364] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hemorrhagic stroke is a devastating disease that lacks effective therapies. In the present investigation, we tested 6-bromoindirubin-3'-oxime (BIO) as a selective glycogen synthase kinase-3β (GSK-3β) inhibitor in a mouse model of intracerebral hemorrhage (ICH). ICH was induced by injection of collagenase IV into the striatum of 8- to 10-week-old C57BL/6 mice. BIO (8 μg/kg, IP) was administered following either an acute delivery (0-2 h delay) or a prolonged regimen (every 48 h starting at 3 days post-ICH). At 2 days post-ICH, the acute BIO treatment significantly reduced the hematoma volume. In the perihematoma regions, BIO administration blocked GSK-3β phosphorylation/activation, increased Bcl-2 and β-catenin levels, and significantly increased viability of neurons and other cell types. The prolonged BIO regimen maintained a higher level of β-catenin, upregulated VEGF and BDNF, and promoted neurogenesis and angiogenesis in peri-injury zones at 14 days after ICH. The BIO treatment also promoted proliferation of neural stem cells (NSCs) and migration of nascent DCX+ neuroblasts from the subventricular zone (SVZ) to the lesioned cortex. BIO improved functional outcomes on both the neurological severity score and rotarod tests. The findings of this study corroborate the neuroprotective and regenerative effects of BIO and suggest that the Wnt/GSK-3β/β-catenin pathway may be explored for the treatment of acute or chronic ICH.
Collapse
|
18
|
Wang LL, Li J, Gu X, Wei L, Yu SP. Delayed treatment of 6-Bromoindirubin-3'-oxime stimulates neurogenesis and functional recovery after focal ischemic stroke in mice. Int J Dev Neurosci 2017; 57:77-84. [PMID: 28111255 DOI: 10.1016/j.ijdevneu.2017.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) was originally identified as a regulator for glycogen metabolism and is now an important therapeutic target for a variety of brain disorders including neurodegenerative diseases due to it's pivotal role in cellular metabolism, proliferation and differentiation. In the development of stroke therapies focusing on tissue repair and functional recovery, promoting neurogenesis is a main approach in regenerative medicine. In the present investigation, we explored the effects of a GSK3β specific inhibitor, 6-Bromoindirubin-3'-oxime (BIO), on regenerative activities of neuroblasts in the subventricular zone (SVZ) and functional recovery after focal cerebral ischemia. Adult C57/BL mice were subjected to occlusion of distal branches of middle cerebral artery (MCA) supplying the sensorimotor barrel cortex. Three days later, BIO (8.5μg/kg, i.p.) was administered every 2days until sacrificed at 14 or 21days after stroke. The BIO treatment significantly increased generation of neuroblasts labeled with BrdU and BrdU/doublecortin (DCX) in the SVZ. Comparing to vehicle controls, increased number of neuroblasts migrated to the peri-infarct region where they differentiate into mature neurons. Along with the elevated BDNF expression at the peri-infarct area, the number of newly formed neurons was significantly increased. BIO treatment significantly enhanced sensorimotor functional recovery after the focal ischemia. It is suggested that the GSK3 signaling may be a potential therapeutic target for regenerative treatment after ischemic stroke.
Collapse
Affiliation(s)
- Li-Li Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University, School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University, School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Orczyk JJ, Batka R, Gore A, Maio-Lexa M, Kulkarni A, Garraghty PE. Female rat transcriptome response to infraorbital nerve transection differs from that of males: RNA-seq. J Comp Neurol 2017; 525:140-150. [PMID: 27224679 DOI: 10.1002/cne.24045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022]
Abstract
The effects of infraorbital nerve (ION) transection on gene expression in the adult female rat barrel cortex were investigated using RNA sequencing. After a 24-hour survival duration, 28 genes were differentially regulated by ION transection. Differentially expressed genes suggest microglial activity, increased retrograde ciliary transport, and a decrease in inhibition. These changes may be functionally comparable to changes in the male barrel cortex, where changes in genes related to morphology, neuronal activity, and neuronal excitability were observed. However, the patterns in changes in gene expression are vastly different between male and female rats. The results strongly caution against the practice of generalizing data from one sex to both sexes. This cautionary note has potentially profound implications for a range of research lines, including substance abuse and stress, both research domains in which subjects have been predominantly males. Future research needs to employ sex as a classification variable, as sex differences can generally be expected. Future research is also needed to confirm that changes in gene expression observed with RNA-seq correlate with changes in protein expression. J. Comp. Neurol. 525:140-150, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John J Orczyk
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Richard Batka
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Ashleigh Gore
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Michelena Maio-Lexa
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Akhil Kulkarni
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Preston E Garraghty
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
20
|
Song M, Yu SP, Mohamad O, Cao W, Wei ZZ, Gu X, Jiang MQ, Wei L. Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol Dis 2016; 98:9-24. [PMID: 27884724 DOI: 10.1016/j.nbd.2016.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/11/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022] Open
Abstract
Neurogenesis in the subventricular zone (SVZ) of the adult brain may contribute to tissue repair after brain injuries. Whether SVZ neurogenesis can be upregulated by specific neuronal activity in vivo and promote functional recovery after stroke is largely unknown. Using the spatial and cell type specific optogenetic technique combined with multiple approaches of in vitro, ex vivo and in vivo examinations, we tested the hypothesis that glutamatergic activation in the striatum could upregulate SVZ neurogenesis in the normal and ischemic brain. In transgenic mice expressing the light-gated channelrhodopsin-2 (ChR2) channel in glutamatergic neurons, optogenetic stimulation of the glutamatergic activity in the striatum triggered glutamate release into SVZ region, evoked membrane currents, Ca2+ influx and increased proliferation of SVZ neuroblasts, mediated by AMPA receptor activation. In ChR2 transgenic mice subjected to focal ischemic stroke, optogenetic stimuli to the striatum started 5days after stroke for 8days not only promoted cell proliferation but also the migration of SVZ neuroblasts into the peri-infarct cortex with increased neuronal differentiation and improved long-term functional recovery. These data provide the first morphological and functional evidence showing a unique striatum-SVZ neuronal regulation via a semi-phasic synaptic mechanism that can boost neurogenic cascades and stroke recovery. The benefits from stimulating endogenous glutamatergic activity suggest a novel regenerative strategy after ischemic stroke and other brain injuries.
Collapse
Affiliation(s)
- Mingke Song
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA.
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenyuan Cao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Treadmill Exercise Promotes Neurogenesis in Ischemic Rat Brains via Caveolin-1/VEGF Signaling Pathways. Neurochem Res 2016; 42:389-397. [DOI: 10.1007/s11064-016-2081-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 11/25/2022]
|
22
|
Taylor SR, Smith CM, Keeley KL, McGuone D, Dodge CP, Duhaime AC, Costine BA. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain. Front Neurosci 2016; 10:387. [PMID: 27601978 PMCID: PMC4994423 DOI: 10.3389/fnins.2016.00387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022] Open
Abstract
Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU(+) neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that were born prior to PND 5. This platform may be useful to continue to study potential complications of white matter injury and alterations of postnatal population of brain regions, which may contribute to the chronic effects of TBI in children.
Collapse
Affiliation(s)
- Sabrina R Taylor
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Charlestown, MA, USA
| | - Colin M Smith
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General Hospital Boston, MA, USA
| | - Kristen L Keeley
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General Hospital Boston, MA, USA
| | | | - Carter P Dodge
- Department of Anesthesiology, Dartmouth Medical School, Children's Hospital at Dartmouth Lebanon, PA, USA
| | - Ann-Christine Duhaime
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General HospitalBoston, MA, USA; Department of Neurosurgery, Harvard Medical SchoolBoston, MA, USA
| | - Beth A Costine
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General HospitalBoston, MA, USA; Department of Neurosurgery, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
23
|
Pan Q, He C, Liu H, Liao X, Dai B, Chen Y, Yang Y, Zhao B, Bihl J, Ma X. Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow. Mol Brain 2016; 9:63. [PMID: 27267759 PMCID: PMC4897950 DOI: 10.1186/s13041-016-0243-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/25/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Endothelial cell (EC) released microvesicles (EMVs) can affect various target cells by transferring carried genetic information. Astrocytes are the main components of the blood brain barrier (BBB) structure in the brain and participate in regulating BBB integrity and blood flow. The interactions between ECs and astrocytes are essential for BBB integrity in homeostasis and pathological conditions. Here, we studied the effects of human brain microvascular ECs released EMVs on astrocyte functions. Additionally, we investigated the effects of EMVs treated astrocytes on regulating BBB function and cerebral ischemic damage. RESULTS EMVs prepared from ECs cultured in normal condition (n-EMVs) or oxygen and glucose deprivation (OGD-EMVs) condition had diverse effects on astrocytes. The n-EMVs promoted, while the OGD-EMVs inhibited the proliferation of astrocytes via regulating PI3K/Akt pathway. Glial fibrillary acidic protein (GFAP) expression (marker of astrocyte activation) was up-regulated by n-EMVs, while down-regulated by OGD-EMVs. Meanwhile, n-EMVs inhibited but OGD-EMVs promoted the apoptosis of astrocytes accompanied by up/down-regulating the expression of Caspase-9 and Bcl-2. In the BBB model of ECs-astrocytes co-culture, the n-EMVs, conversely to OGD-EMVs, decreased the permeability of BBB accompanied with up-regulation of zonula occudens-1(ZO-1) and Claudin-5. In a transient cerebral ischemia mouse model, n-EMVs ameliorated, while OGD-EMVs aggravated, BBB disruption, local cerebral blood flow (CBF) reduction, infarct volume and neurological deficit score. CONCLUSIONS Our data suggest that EMVs diversely modulate astrocyte functions, BBB integrity and CBF, and could serve as a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Caixia He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.,Guangdong Medical University, Zhanjiang, 524001, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, Hubei, 430000, China
| | - Xiaorong Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bingyan Dai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanfang Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.,Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 45435, USA.,Department of Neurology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, Hubei, 430000, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Ji Bihl
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China. .,Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 45435, USA.
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
24
|
Magnusson JP, Frisén J. Stars from the darkest night: unlocking the neurogenic potential of astrocytes in different brain regions. Development 2016; 143:1075-86. [DOI: 10.1242/dev.133975] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Abstract
In a few regions of the adult brain, specialized astrocytes act as neural stem cells capable of sustaining life-long neurogenesis. In other, typically non-neurogenic regions, some astrocytes have an intrinsic capacity to produce neurons when provoked by particular conditions but do not use this ability to replace neurons completely after injury or disease. Why do astrocytes display regional differences and why do they not use their neurogenic capacity for brain repair to a greater extent? In this Review, we discuss the neurogenic potential of astrocytes in different brain regions and ask what stimulates this potential in some regions but not in others. We discuss the transcriptional networks and environmental cues that govern cell identity, and consider how the activation of neurogenic properties in astrocytes can be understood as the de-repression of a latent neurogenic transcriptional program.
Collapse
Affiliation(s)
- Jens P. Magnusson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| |
Collapse
|
25
|
Wang W, Ma X, Han J, Zhou M, Ren H, Pan Q, Zheng C, Zheng Q. Neuroprotective Effect of Scutellarin on Ischemic Cerebral Injury by Down-Regulating the Expression of Angiotensin-Converting Enzyme and AT1 Receptor. PLoS One 2016; 11:e0146197. [PMID: 26730961 PMCID: PMC4711585 DOI: 10.1371/journal.pone.0146197] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Previous studies have demonstrated that angiotensin-converting enzyme (ACE) is involved in brain ischemic injury. In the present study, we investigated whether Scutellarin (Scu) exerts neuroprotective effects by down-regulating the Expression of Angiotensin-Converting Enzyme and AT1 receptor in a rat model of permanent focal cerebral ischemia. Methods Adult Sprague–Dawley rats were administrated with different dosages of Scu by oral gavage for 7 days and underwent permanent middle cerebral artery occlusion (pMCAO). Blood pressure was measured 7 days after Scu administration and 24 h after pMCAO surgery by using a noninvasive tail cuff method. Cerebral blood flow (CBF) was determined by Laser Doppler perfusion monitor and the neuronal dysfunction was evaluated by analysis of neurological deficits before being sacrificed at 24 h after pMCAO. Histopathological change, cell apoptosis and infarct area were respectively determined by hematoxylin–eosin staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis and 2,3,5-triphenyltetrazolium chloride staining. Tissue angiotensin II (Ang II) and ACE activity were detected by enzyme-linked immunosorbent assays. The expression levels of ACE, Ang II type 1 receptor (AT1R), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured by Western blot and real-time PCR. ACE inhibitory activity of Scu in vitro was detected by the photometric determination. Results Scu treatment dose-dependently decreased neurological deficit score, infarct area, cell apoptosis and morphological changes induced by pMCAO, which were associated with reductions of ACE and AT1R expression and the levels of Ang II, TNF-α, IL-6, and IL-1β in ischemic brains. Scu has a potent ACE inhibiting activity. Conclusion Scu protects brain from acute ischemic injury probably through its inhibitory effect on the ACE/Ang II/AT1 axis, CBF preservation and proinflammation inhibition.
Collapse
Affiliation(s)
- Wenjuan Wang
- Pharmacy School, Shihezi University, Shihezi, China
- Department of Pharmacy, the First Division Hospital of Xinjiang Production and Construction Corps, Aksu, Xinjiang, China
| | - Xiaotang Ma
- Institute of Neurological Disease, Zhanjiang Medical College, Zhanjiang, Guangdong, China
| | - Jichun Han
- Pharmacy School, Shihezi University, Shihezi, China
| | | | - Huanhuan Ren
- Pharmacy School, Shihezi University, Shihezi, China
| | - Qunwen Pan
- Institute of Neurological Disease, Zhanjiang Medical College, Zhanjiang, Guangdong, China
| | - Chunli Zheng
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi, China
| | - Qiusheng Zheng
- Pharmacy School, Shihezi University, Shihezi, China
- Binzhou Medical University, Yantai, China
- * E-mail:
| |
Collapse
|
26
|
Chau MJ, Deveau TC, Song M, Gu X, Chen D, Wei L. iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells 2015; 32:3075-87. [PMID: 25132189 DOI: 10.1002/stem.1802] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/23/2014] [Indexed: 12/23/2022]
Abstract
Limited treatments are available for perinatal/neonatal stroke. Induced pluripotent stem cells (iPSCs) hold therapeutic promise for stroke treatment, but the benefits of iPSC transplantation in neonates are relatively unknown. We hypothesized that transplanted iPSC-derived neural progenitor cells (iPSC-NPCs) would increase regeneration after stroke. Mouse pluripotent iPSCs were differentiated into neural progenitors using a retinoic acid protocol. Differentiated neural cells were characterized by using multiple criteria and assessments. Ischemic stroke was induced in postnatal day 7 (P7) rats by occluding the right middle cerebral artery and right common carotid artery. iPSC-NPCs (400,000 in 4 µl) were transplanted into the penumbra via intracranial injection 7 days after stroke. Trophic factor expression in the peri-infarct tissue was measured using Western blot analysis. Animals received daily bromodeoxyuridine (BrdU) injections and were sacrificed 21 days after stroke for immunohistochemistry. The vibrissae-elicited forelimb placement test was used to evaluate functional recovery. Differentiated iPSCs expressed mature neuronal markers, functional sodium and potassium channels, and fired action potentials. Several angiogenic and neurogenic trophic factors were identified in iPSC-NPCs. Animals that received iPSC-NPC transplantation had greater expression of stromal cell-derived factor 1-α (SDF-1α) and vascular endothelial growth factor (VEGF) in the peri-infarct region. iPSC-NPCs stained positive for neuronal nuclei (NeuN) or glial fibrillary acidic protein (GFAP) 14 days after transplantation. iPSC-NPC-transplanted animals showed greater numbers of BrdU/NeuN and BrdU/Collagen IV colabeled cells in the peri-infarct area compared with stroke controls and performed better in a sensorimotor functional test after stroke. iPSC-NPC therapy may play multiple therapeutic roles after stroke by providing trophic factors, increasing angiogenesis and neurogenesis, and providing new cells for tissue repair.
Collapse
Affiliation(s)
- Monica J Chau
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
27
|
Custead R, Oh H, Rosner AO, Barlow S. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults. Brain Res 2015; 1622:81-90. [PMID: 26119917 DOI: 10.1016/j.brainres.2015.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Austin Oder Rosner
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
28
|
Takuwa H, Kanou M. Sensitive Period for the Recovery of the Response Rate of the Wind-Evoked Escape Behavior of Unilaterally Cercus-Ablated Crickets (Gryllus bimaculatus). Zoolog Sci 2015; 32:119-23. [PMID: 25826058 DOI: 10.2108/zs140230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined the compensational recovery of the response rate (relative occurrence) of the wind-evoked escape behavior in unilaterally cercus-ablated crickets (Gryllus bimaculatus) and elucidated the existence of a sensitive period for such recovery by rearing the crickets under different conditions. In one experiment, each cricket was reared in an apparatus called a walking inducer (WI) to increase the sensory input to the remaining cercus, i.e., the self-generated wind caused by walking. In another experiment, each cricket was reared in a small plastic case separate from the outside atmosphere (wind-free: WF). In this rearing condition, the cricket did not experience self-generated wind as walking was prohibited. During the recovery period after the unilateral cercus ablation, the crickets were reared under either the WI or WF condition to investigate the role of the sensory inputs on the compensational recovery of the response rate. The compensational recovery of the response rate occurred only in the crickets reared under the WI condition during the early period after the ablation. In particular, WI rearing during the first three days after the ablation resulted in the largest compensational recovery in the response rate. In contrast, no compensational recovery was observed in the crickets reared under the WF condition during the first three days. These results suggest that a sensitive period exists in which sensory inputs from the remaining cercus affect the compensational recovery of the response rate more effectively than during other periods.
Collapse
Affiliation(s)
- Hiroyuki Takuwa
- 1 Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa, Chiba 263-8555, Japan
| | | |
Collapse
|
29
|
Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, Wei L. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 2015; 272:78-87. [PMID: 25797577 DOI: 10.1016/j.expneurol.2015.03.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhagic stroke (ICH) causes high mortality and morbidity with very limited treatment options. Cell-based therapy has emerged as a novel approach to replace damaged brain tissues and promote regenerative processes. In this study we tested the hypothesis that intranasally delivered hypoxia-preconditioned BMSCs could reach the brain, promote tissue repair and improve functional recovery after ICH. Hemorrhagic stroke was induced in adult C57/B6 mice by injection of collagenase IV into the striatum. Animals were randomly divided into three groups: sham group, intranasal BMSC treatment group, and vehicle treatment group. BMSCs were pre-treated with hypoxic preconditioning (HP) and pre-labeled with Hoechst before transplantation. Behavior tests, including the mNSS score, rotarod test, adhesive removal test, and locomotor function evaluation were performed at varying days, up to 21days, after ICH to evaluate the therapeutic effects of BMSC transplantation. Western blots and immunohistochemistry were performed to analyze the neurotrophic effects. Intranasally delivered HP-BMSCs were identified in peri-injury regions. NeuN+/BrdU+ co-labeled cells were markedly increased around the hematoma region, and growth factors, including BDNF, GDNF, and VEGF were significantly upregulated in the ICH brain after BMSC treatment. The BMSC treatment group showed significant improvement in behavioral performance compared with the vehicle group. Our data also showed that intranasally delivered HP-BMSCs migrated to peri-injury regions and provided growth factors to increase neurogenesis after ICH. We conclude that intranasal administration of BMSC is an effective treatment for ICH, and that it enhanced neuroregenerative effects and promoted neurological functional recovery after ICH. Overall, the investigation supports the potential therapeutic strategy for BMSC transplantation therapy against hemorrhagic stroke.
Collapse
Affiliation(s)
- Jinmei Sun
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Ya Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Ling Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Abstract
Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of the cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sub-lethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
31
|
Bazarek S, Peterson DA. Prospects for engineering neurons from local neocortical cell populations as cell-mediated therapy for neurological disorders. J Comp Neurol 2014; 522:2857-76. [PMID: 24756774 PMCID: PMC4729289 DOI: 10.1002/cne.23618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/20/2014] [Indexed: 12/21/2022]
Abstract
There is little cell replacement following neurological injury, limiting the regenerative response of the CNS. Progress in understanding the biology of neural stem cells has raised interest in using stem cells for replacing neurons lost to injury or to disease. Stem cell therapy may also have a role in rebuilding deficient neural circuitry underlying mood disorders, epilepsy, and pain modulation among other roles. In vitro expansion of stem cells with directed differentiation prior to transplantation is one approach to stem cell therapy. Emerging evidence suggests that it may be possible to convert in vivo endogenous neural cells to a neuronal fate directly, providing an alternative strategy for stem cell therapy to the CNS. This review assesses the evidence for engineering a subtype-specific neuronal fate of endogenous neural cells in the cerebral cortex as a function of initial cell lineage, reactive response to injury, conversion factors, and environmental context. We conclude with a discussion of some of the challenges that must be overcome to move this alternative in vivo engineered conversion process toward becoming a viable therapeutic option.
Collapse
Affiliation(s)
- Stanley Bazarek
- Center for Stem Cell and Regenerative Medicine, Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, 60064
| | | |
Collapse
|
32
|
Wang LL, Chen D, Lee J, Gu X, Alaaeddine G, Li J, Wei L, Yu SP. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice. PLoS One 2014; 9:e87284. [PMID: 24503654 PMCID: PMC3913619 DOI: 10.1371/journal.pone.0087284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/20/2013] [Indexed: 12/19/2022] Open
Abstract
Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH) therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p.) was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1) positive endothelial progenitor cells (EPCs) in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ) and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.
Collapse
Affiliation(s)
- Li-Li Wang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jinhwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ghina Alaaeddine
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Venna VR, Xu Y, Doran SJ, Patrizz A, McCullough LD. Social interaction plays a critical role in neurogenesis and recovery after stroke. Transl Psychiatry 2014; 4:e351. [PMID: 24473442 PMCID: PMC3905235 DOI: 10.1038/tp.2013.128] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/25/2013] [Accepted: 12/07/2013] [Indexed: 01/06/2023] Open
Abstract
Stroke survivors often experience social isolation. Social interaction improves quality of life and decreases mortality after stroke. Male mice (20-25 g; C57BL/6N), all initially pair housed, were subjected to middle cerebral artery occlusion (MCAO). Mice were subsequently assigned into one of three housing conditions: (1) Isolated (SI); (2) Paired with their original cage mate who was also subjected to stroke (stroke partner (PH-SP)); or (3) Paired with their original cage mate who underwent sham surgery (healthy partner (PH-HP)). Infarct analysis was performed 72 h after stroke and chronic survival was assessed at day 30. Immediate post-stroke isolation led to a significant increase in infarct size and mortality. Interestingly, mice paired with a healthy partner had significantly lower mortality than mice paired with a stroke partner, despite equivalent infarct damage. To control for changes in infarct size induced by immediate post-stroke isolation, additional cohorts were assessed that remained pair housed for three days after stroke prior to randomization. Levels of brain-derived neurotrophic factor (BDNF) were assessed at 90 days and cell proliferation (in cohorts injected with 5-bromo-2'-deoxyuridine, BrdU) was evaluated at 8 and 90 days after stroke. All mice in the delayed housing protocol had equivalent infarct volumes (SI, PH-HP and PH-SP). Mice paired with a healthy partner showed enhanced behavioral recovery compared with either isolated mice or mice paired with a stroke partner. Behavioral improvements paralleled changes in BDNF levels and neurogenesis. These findings suggest that the social environment has an important role in recovery after ischemic brain injury.
Collapse
Affiliation(s)
- V R Venna
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Y Xu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - S J Doran
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - A Patrizz
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - L D McCullough
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA,Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA,The Stroke Center at Hartford Hospital, Hartford, CT, USA,Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA. E-mail:
| |
Collapse
|
34
|
Li Y, Yu SP, Mohamad O, Genetta T, Wei L. Sublethal transient global ischemia stimulates migration of neuroblasts and neurogenesis in mice. Transl Stroke Res 2013; 1:184-96. [PMID: 21792374 DOI: 10.1007/s12975-010-0016-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Increasing evidence has shown the potential of neuronal plasticity in adult brain after injury. Neural proliferation can be triggered by a focal sublethal ischemic preconditioning event; whether mild global ischemia could cause neurogenesis has been not clear. The present study investigated stimulating effects of sublethal transient global ischemia (TGI) on endogenous neurogenesis and neuroblast migration in the subventricular zone (SVZ), dentate gyrus, and peri-infarct areas of the adult cortex. Adult mice of 129S2/Sv strain were subjected to 8-min bilateral common carotid artery ligation followed by 5-bromo-2'-deoxyuridine (BrdU; 50 mg/kg, intraperitoneal) administration every day until being sacrificed at 1-21 days after reperfusion. The mild TGI did not induce neuronal cell death for up to 7 days after TGI, as evidenced by negative terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining among NeuN-positive cells in the hippocampus and neocortex. In TGI animals, BrdU staining revealed enhanced proliferation of neuroblasts and their migration track from the SVZ into the striatum and neocortex. In the corpus callosum, there were more BrdU-positive cells in the TGI group in the first 2 days. Increasing numbers of BrdU-positive cells were seen 7-21 days later in the striatum and cortex of TGI mice. The cortex of TGI animals showed increased expression of erythropoietin, erythropoietin receptor, fibroblast growth factor 2, vascular endothelial growth factor, and phosphorylated Jun N-terminal kinase; the expression was peaked 2 to 3 days after reperfusion. BrdU and NeuN double staining in the dentate gyrus, striatum, and cortex implied increased neurogenesis induced by the TGI preconditioning. Doublecortin (DCX)-positive cells increased in the cortex of TGI mice, localized to cortical layers II, III, and V, and many stained positive for the mature neuronal markers NeuN, neurofilament, N-methyl-d-aspartic acid receptor subunit gene NR1, or the gamma-aminobutyric-acid-synthesizing enzyme glutamic acid decarboxylase (GAD67). The atypical localization of DCX-positive cells and the colabeling with mature neuronal markers suggested that, in addition to indentifying migrating neuroblasts, DCX might also be a stress marker in the cortex. It is suggested that the sublethal TGI-induced regenerative responses may contribute to the beneficial effects of ischemic preconditioning.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
35
|
Hamel D, Sanchez M, Duhamel F, Roy O, Honoré JC, Noueihed B, Zhou T, Nadeau-Vallée M, Hou X, Lavoie JC, Mitchell G, Mamer OA, Chemtob S. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol 2013; 34:285-93. [PMID: 24285580 DOI: 10.1161/atvbaha.113.302131] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Prompt post-hypoxia-ischemia (HI) revascularization has been suggested to improve outcome in adults and newborn subjects. Other than hypoxia-inducible factor, sensors of metabolic demand remain largely unknown. During HI, anaerobic respiration is arrested resulting in accumulation of carbohydrate metabolic intermediates. As such succinate readily increases, exerting its biological effects via a specific receptor, G-protein-coupled receptor (GPR) 91. We postulate that succinate/GPR91 enhances post-HI vascularization and reduces infarct size in a model of newborn HI brain injury. APPROACH AND RESULTS The Rice-Vannucci model of neonatal HI was used. Succinate was measured by mass spectrometry, and microvascular density was evaluated by quantification of lectin-stained cryosection. Gene expression was evaluated by real-time polymerase chain reaction. Succinate levels rapidly increased in the penumbral region of brain infarcts. GPR91 was foremost localized not only in neurons but also in astrocytes. Microvascular density increased at 96 hours after injury in wild-type animals; it was diminished in GPR91-null mice leading to an increased infarct size. Stimulation with succinate led to an increase in growth factors implicated in angiogenesis only in wild-type mice. To explain the mode of action of succinate/GPR91, we investigated the role of prostaglandin E2-prostaglandin E receptor 4, previously proposed in neural angiogenesis. Succinate-induced vascular endothelial growth factor expression was abrogated by a cyclooxygenase inhibitor and a selective prostaglandin E receptor 4 antagonist. This antagonist also abolished succinate-induced neovascularization. CONCLUSIONS We uncover a dominant metabolic sensor responsible for post-HI neurovascular adaptation, notably succinate/GPR91, acting via prostaglandin E2-prostaglandin E receptor 4 to govern expression of major angiogenic factors. We propose that pharmacological intervention targeting GPR91 could improve post-HI brain recovery.
Collapse
Affiliation(s)
- David Hamel
- From the Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, Quebec, Canada (D.H., O.R., J.C.H., T.Z., X.H., J.-C.L., G.A.M., S.C.); Departments of Pharmacology (D.H., F.D., S.C.) and Biomedical Sciences (O.R., M.N.-V.), Université de Montréal, Montréal, Quebec, Canada; and Department of Pharmacology and Therapeutics (M.S., B.N., S.C.), Goodman Cancer Research and Metabolomics Core Facility (O.A.M.), McGill University, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sánchez-Mendoza E, Bellver-Landete V, Merino JJ, González MP, Martínez-Murillo R, Oset-Gasque MJ. Review: Could neurotransmitters influence neurogenesis and neurorepair after stroke? Neuropathol Appl Neurobiol 2013; 39:722-35. [DOI: 10.1111/nan.12082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
- E. Sánchez-Mendoza
- Departament of Biochemistry and Molecular Biology; Faculty of Pharmacy; Complutense University of Madrid; Madrid Spain
| | - V. Bellver-Landete
- Departament of Biochemistry and Molecular Biology; Faculty of Pharmacy; Complutense University of Madrid; Madrid Spain
| | - J. J. Merino
- Departament of Biochemistry and Molecular Biology; Faculty of Pharmacy; Complutense University of Madrid; Madrid Spain
| | - M. P. González
- Departament of Biochemistry and Molecular Biology; Faculty of Pharmacy; Complutense University of Madrid; Madrid Spain
| | - R. Martínez-Murillo
- Molecular, Cellular and Developmental Neurobiology Department; Cajal Institute; Spanish Research Council (CSIC); Madrid Spain
| | - M. J. Oset-Gasque
- Departament of Biochemistry and Molecular Biology; Faculty of Pharmacy; Complutense University of Madrid; Madrid Spain
| |
Collapse
|
37
|
Drury-Stewart D, Song M, Mohamad O, Guo Y, Gu X, Chen D, Wei L. Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Res Ther 2013; 4:93. [PMID: 23928330 PMCID: PMC3854684 DOI: 10.1186/scrt292] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/26/2013] [Indexed: 02/07/2023] Open
Abstract
Introduction Ischemic stroke is a leading cause of death and disability, but treatment options are severely limited. Cell therapy offers an attractive strategy for regenerating lost tissues and enhancing the endogenous healing process. In this study, we investigated the use of human embryonic stem cell-derived neural precursors as a cell therapy in a murine stroke model. Methods Neural precursors were derived from human embryonic stem cells by using a fully adherent SMAD inhibition protocol employing small molecules. The efficiency of neural induction and the ability of these cells to further differentiate into neurons were assessed by using immunocytochemistry. Whole-cell patch-clamp recording was used to demonstrate the electrophysiological activity of human embryonic stem cell-derived neurons. Neural precursors were transplanted into the core and penumbra regions of a focal ischemic stroke in the barrel cortex of mice. Animals received injections of bromodeoxyuridine to track regeneration. Neural differentiation of the transplanted cells and regenerative markers were measured by using immunohistochemistry. The adhesive removal test was used to determine functional improvement after stroke and intervention. Results After 11 days of neural induction by using the small-molecule protocol, over 95% of human embryonic stem-derived cells expressed at least one neural marker. Further in vitro differentiation yielded cells that stained for mature neuronal markers and exhibited high-amplitude, repetitive action potentials in response to depolarization. Neuronal differentiation also occurred after transplantation into the ischemic cortex. A greater level of bromodeoxyuridine co-localization with neurons was observed in the penumbra region of animals receiving cell transplantation. Transplantation also improved sensory recovery in transplant animals over that in control animals. Conclusions Human embryonic stem cell-derived neural precursors derived by using a highly efficient small-molecule SMAD inhibition protocol can differentiate into electrophysiologically functional neurons in vitro. These cells also differentiate into neurons in vivo, enhance regenerative activities, and improve sensory recovery after ischemic stroke.
Collapse
|
38
|
Wei S, Sun J, Li J, Wang L, Hall CL, Dix TA, Mohamad O, Wei L, Yu SP. Acute and delayed protective effects of pharmacologically induced hypothermia in an intracerebral hemorrhage stroke model of mice. Neuroscience 2013; 252:489-500. [PMID: 23912033 DOI: 10.1016/j.neuroscience.2013.07.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
Hemorrhagic stroke, including intracerebral hemorrhage (ICH), is a devastating subtype of stroke; yet, effective clinical treatment is very limited. Accumulating evidence has shown that mild to moderate hypothermia is a promising intervention for ischemic stroke and ICH. Current physical cooling methods, however, are less efficient and often impractical for acute ICH patients. The present investigation tested pharmacologically induced hypothermia (PIH) using the second-generation neurotensin receptor (NTR) agonist HPI-201 (formerly known as ABS-201) in an adult mouse model with ICH. Acute or delayed administrations of HPI-201 (2mg/kg bolus injection followed by 2 injections of 1mg/kg, i.p.) were initiated at 1 or 24h after ICH. HPI-201 induced mild hypothermia within 30 min and body and brain temperatures were maintained at 32.7 ± 0.4°C for at least 6h without causing observable shivering. With the 1-h delayed treatment, HPI-201-induced PIH significantly reduced ICH-induced cell death and brain edema compared to saline-treated ICH animals. When HPI-201-induced hypothermia was initiated 24h after the onset of ICH, it still significantly attenuated brain edema, cell death and blood-brain barrier breakdown. HPI-201 significantly decreased the expression of matrix metallopeptidase-9 (MMP-9), reduced caspase-3 activation, and increased Bcl-2 expression in the ICH brain. Moreover, ICH mice received 1-h delayed HPI-201 treatment performed significantly better in the neurological behavior test 48 h after ICH. All together, these data suggest that systemic injection of HPI-201 is an effective hypothermic strategy that protects the brain from ICH injury with a wide therapeutic window. The protective effect of this PIH therapy is partially mediated through the alleviation of apoptosis and neurovascular damage. We suggest that pharmacological hypothermia using the newly developed neurotensin analogs is a promising therapeutic treatment for ICH.
Collapse
Affiliation(s)
- S Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Espinera AR, Ogle ME, Gu X, Wei L. Citalopram enhances neurovascular regeneration and sensorimotor functional recovery after ischemic stroke in mice. Neuroscience 2013; 247:1-11. [PMID: 23590907 DOI: 10.1016/j.neuroscience.2013.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/18/2013] [Accepted: 04/08/2013] [Indexed: 12/27/2022]
Abstract
Recent clinical trials have demonstrated that treatment with selective serotonin reuptake inhibitors after stroke enhances motor functional recovery; however, the underlying mechanisms remain to be further elucidated. We hypothesized that daily administration of the clinical drug citalopram would produce these functional benefits via enhancing neurovascular repair in the ischemic peri-infarct region. To test this hypothesis, focal ischemic stroke was induced in male C57/B6 mice by permanent ligation of distal branches of the middle cerebral artery to the barrel cortex and 7-min occlusion of the bilateral common carotid arteries. Citalopram (10mg/kg, i.p.) was injected 24h after stroke and daily thereafter. To label proliferating cells, bromo-deoxyuridine was injected daily beginning 3 days after stroke. Immunohistochemical and functional assays were performed to elucidate citalopram-mediated cellular and sensorimotor changes after stroke. Citalopram treatment had no significant effect on infarct formation or edema 3 days after stroke; however, citalopram-treated mice had better functional recovery than saline-treated controls 3 and 14 days after stroke in the adhesive removal test. Increased expression of brain-derived neurotrophic factor was detected in the peri-infarct region 7 days after stroke in citalopram-treated animals. The number of proliferating neural progenitor cells and the distance of neuroblast migration from the sub-ventricular zone toward the ischemic cortex were significantly greater in citalopram-treated mice at 7 days after stroke. Immunohistochemical staining and co-localization analysis showed that citalopram-treated animals generated more new neurons and microvessels in the peri-infarct region 21 and 28 days after stroke. Taken together, these results suggest that citalopram promotes post-stroke sensorimotor recovery likely via enhancing neurogenesis, neural cell migration and the microvessel support in the peri-infarct region of the ischemic brain.
Collapse
Affiliation(s)
- A R Espinera
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
40
|
Li WL, Yu SP, Chen D, Yu SS, Jiang YJ, Genetta T, Wei L. The regulatory role of NF-κB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience 2013; 244:16-30. [PMID: 23558089 DOI: 10.1016/j.neuroscience.2013.03.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
Autophagy may contribute to ischemia-induced cell death in the brain, but the regulation of autophagic cell death is largely unknown. Nuclear factor kappa B (NF-κB) is a regulator of apoptosis in cerebral ischemia. We examined the hypothesis that autophagy-like cell death could contribute to ischemia-induced brain damage and the process was regulated by NF-κB. In adult wild-type (WT) and NF-κB p50 knockout (p50(-/-)) mice, focal ischemia in the barrel cortex was induced by ligation of distal branches of the middle cerebral artery. Twelve to 24h later, autophagic activity increased as indicated by enhanced expression of Beclin-1 and LC3 in the ischemic core and/or penumbra regions. This increased autophagy contributed to cell injury, evidenced by terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) co-staining and a protective effect achieved by the autophagy inhibitor 3-methyladenine. The number of Beclin-1/TUNEL-positive cells was significantly more in p50(-/-) mice than in WT mice. Neuronal and vascular cell death, as determined by TUNEL-positive cells co-staining with NeuN or Collagen IV, was more abundant in p50(-/-) mice. Immunostaining of the endothelial cell tight junction marker occludin revealed more damage to the blood-brain barrier in p50(-/-) mice. Western blotting of the peri-infarct tissue showed a reduction of Akt-the mammalian target of rapamycin (mTOR) signaling in p50(-/-) mice after ischemia. These findings provide the first evidence that cerebral ischemia induced autophagy-like injury is regulated by the NF-κB pathway, which may suggest potential treatments for ischemic stroke.
Collapse
Affiliation(s)
- W-L Li
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Culver JC, Vadakkan TJ, Dickinson ME. A specialized microvascular domain in the mouse neural stem cell niche. PLoS One 2013; 8:e53546. [PMID: 23308251 PMCID: PMC3538546 DOI: 10.1371/journal.pone.0053546] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/03/2012] [Indexed: 12/27/2022] Open
Abstract
The microenvironment of the subependymal zone (SEZ) neural stem cell niche is necessary for regulating adult neurogenesis. In particular, signaling from the microvasculature is essential for adult neural stem cell maintenance, but microvascular structure and blood flow dynamics in the SEZ are not well understood. In this work, we show that the mouse SEZ constitutes a specialized microvascular domain defined by unique vessel architecture and reduced rates of blood flow. Additionally, we demonstrate that hypoxic conditions are detectable in the ependymal layer that lines the ventricle, and in a subpopulation of neurons throughout the SEZ and striatum. Together, these data highlight previously unidentified features of the SEZ neural stem cell niche, and further demonstrate the extent of microvascular specialization in the SEZ microenvironment.
Collapse
Affiliation(s)
- James C. Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tegy J. Vadakkan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
42
|
Acupuncture Stimulation Induces Neurogenesis in Adult Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 111:67-90. [DOI: 10.1016/b978-0-12-411545-3.00004-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Zhang Y, Huang S, Wang B, Sun B, Li W, Lu X, Ding X. Atorvastatin and whisker stimulation synergistically enhance angiogenesis in the barrel cortex of rats following focal ischemia. Neurosci Lett 2012; 525:135-9. [DOI: 10.1016/j.neulet.2012.07.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/14/2022]
|
44
|
Abstract
Although the adult human brain has a small number of neural stem cells, they are insufficient to repair the damaged brain to achieve significant functional recovery for neurodegenerative diseases and stroke. Stem cell therapy, by either enhancing endogenous neurogenesis, or transplanting stem cells, has been regarded as a promising solution. However, the harsh environment of the diseased brain posts a severe threat to the survival and correct differentiation of those new stem cells. Hormesis (or preconditioning, stress adaptation) is an adaptation mechanism by which cells or organisms are potentiated to survive an otherwise lethal condition, such as the harsh oxidative stress in the stroke brain. Stem cells treated by low levels of chemical, physical, or pharmacological stimuli have been shown to survive better in the neurodegenerative brain. Thus combining hormesis and stem cell therapy might improve the outcome for treatment of these diseases. In addition, since the cell death patterns and their underlying molecular mechanism may vary in different neurodegenerative diseases, even in different progression stages of the same disease, it is essential to design a suitable and optimum hormetic strategy that is tailored to the individual patient.
Collapse
Affiliation(s)
- Guanghu Wang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University
| |
Collapse
|
45
|
Schitine C, Xapelli S, Agasse F, Sardà-Arroyo L, Silva AP, De Melo Reis RA, de Mello FG, Malva JO. Ampakine CX546 increases proliferation and neuronal differentiation in subventricular zone stem/progenitor cell cultures. Eur J Neurosci 2012; 35:1672-83. [DOI: 10.1111/j.1460-9568.2012.08072.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Romero-Grimaldi C, Murillo-Carretero M, López-Toledano MA, Carrasco M, Castro C, Estrada C. ADAM-17/tumor necrosis factor-α-converting enzyme inhibits neurogenesis and promotes gliogenesis from neural stem cells. Stem Cells 2012; 29:1628-39. [PMID: 21837653 DOI: 10.1002/stem.710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural precursor cells (NPCs) are activated in central nervous system injury. However, despite being multipotential, their progeny differentiates into astrocytes rather than neurons in situ. We have investigated the role of epidermal growth factor receptor (EGFR) in the generation of non-neurogenic conditions. Cultured mouse subventricular zone NPCs exposed to differentiating conditions for 4 days generated approximately 50% astrocytes and 30% neuroblasts. Inhibition of EGFR with 4-(3-chloroanilino)-6,7-dimethoxyquinazoline significantly increased the number of neuroblasts and decreased that of astrocytes. The same effects were observed upon treatment with the metalloprotease inhibitor galardin, N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide (GM 6001), which prevented endogenous transforming growth factor-α (TGF-α) release. These results suggested that metalloprotease-dependent EGFR-ligand shedding maintained EGFR activation and favored gliogenesis over neurogenesis. Using a disintegrin and metalloprotease 17 (ADAM-17) small interference RNAs transfection of NPCs, ADAM-17 was identified as the metalloprotease involved in cell differentiation in these cultures. In vivo experiments revealed a significant upregulation of ADAM-17 mRNA and de novo expression of ADAM-17 protein in areas of cortical injury in adult mice. Local NPCs, identified by nestin staining, expressed high levels of ADAM-17, as well as TGF-α and EGFR, the three molecules necessary to prevent neurogenesis and promote glial differentiation in vitro. Chronic local infusions of GM6001 resulted in a notable increase in the number of neuroblasts around the lesion. These results indicate that, in vivo, the activation of a metalloprotease, most probably ADAM-17, initiates EGFR-ligand shedding and EGFR activation in an autocrine manner, preventing the generation of new neurons from NPCs. Inhibition of ADAM-17, the limiting step in this sequence, may contribute to the generation of neurogenic niches in areas of brain damage.
Collapse
|
47
|
Cellular Therapy for Ischemic Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Yust-Katz S, Fisher-Shoval Y, Barhum Y, Ben-Zur T, Barzilay R, Lev N, Hod M, Melamed E, Offen D. Placental mesenchymal stromal cells induced into neurotrophic factor-producing cells protect neuronal cells from hypoxia and oxidative stress. Cytotherapy 2011; 14:45-55. [PMID: 22040110 DOI: 10.3109/14653249.2011.613928] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) may be useful in a range of clinical applications. The placenta has been suggested as an abundant, ethically acceptable, less immunogenic and easily accessible source of MSC. The aim of this study was to evaluate the capacity of induced placental MSC to differentiate into neurotrophic factor-producing cells (NTF) and their protective effect on neuronal cells. METHODS MSC were isolated from placentas and characterized by fluorescence-activated cell sorting (FACS). The cells underwent an induction protocol to differentiate them into NTF. Analysis of the cellular differentiation was done using polymerase chain reactions (PCR), immunocytochemical staining and enzyme-linked immunosorbent assays (ELISA). Conditioned media from placental MSC (PL-MSC) and differentiated MSC (PL-DIFF) were collected and examined for their ability to protect neural cells. RESULTS The immunocytochemical studies showed that the cells displayed typical MSC membrane markers. The cells differentiated into osteoblasts and adipocytes. PCR and immunohistology staining demonstrated that the induced cells expressed typical astrocytes markers and neurotrophic factors. Vascular endothelial growth factor (VEGF) levels were higher in the conditioned media from PL-DIFF compared with PL-MSC, as indicated by ELISA. Both PL-DIFF and PL-MSC conditioned media markedly protected neural cells from oxidative stress induced by H(2)O(2) and 6-hydroxydopamine. PL-DIFF conditioned medium had a superior effect on neuronal cell survival. Anti-VEGF antibodies (Bevacizumab) reduced the protective effect of the conditioned media from differentiated and undifferentiated MSC. CONCLUSIONS This study has demonstrated a neuroprotective effect of MSC of placental origin subjected to an induction differentiation protocol. These data offer the prospect of using placenta as a source for stem cell-based therapies.
Collapse
Affiliation(s)
- Shlomit Yust-Katz
- Department of Neurology, Hospital for Women, Rabin Medical Center, Petah Tiqwa 49100, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The role of VEGF/VEGFR2 signaling in peripheral stimulation-induced cerebral neurovascular regeneration after ischemic stroke in mice. Exp Brain Res 2011; 214:503-13. [PMID: 21922279 DOI: 10.1007/s00221-011-2849-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 08/17/2011] [Indexed: 12/21/2022]
Abstract
Ischemic stroke is a major cause of mortality and morbidity worldwide but effective treatments are limited. Strategies to enhance neurovascular remodeling following stroke provide promising opportunities to improve tissue repair and functional recovery. We have previously demonstrated that whisker activity promotes central angiogenesis in rodent models of whisker-barrel cortex stroke. However, the mechanisms involved in the regulation of neurovascular plasticity by peripheral stimulation are not well-defined. Here, we report that angiogenesis and neurogenesis occur concurrently after cerebral ischemia and whisker stimulation in mice. We show that neuroblasts expressing vascular endothelial growth factor receptor 2 (VEGFR2) migrate along the vessels. Blocking VEGFR2 with the selective inhibitor SU5416 (semaxinib) attenuates ischemia-induced regenerative responses and completely prevents whisker stimulation-induced neurovascular remodeling. These results suggest that VEGFR2-mediated signaling plays an important role in promoting post-ischemia neurovascular remodeling and provides a link between angiogenesis and neurogenesis.
Collapse
|
50
|
Gonzalez Andino SL, Herrera-Rincon C, Panetsos F, Grave de Peralta R. Combining BMI Stimulation and Mathematical Modeling for Acute Stroke Recovery and Neural Repair. Front Neurosci 2011; 5:87. [PMID: 21811433 PMCID: PMC3144440 DOI: 10.3389/fnins.2011.00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 06/24/2011] [Indexed: 12/13/2022] Open
Abstract
Rehabilitation is a neural plasticity-exploiting approach that forces undamaged neural circuits to undertake the functionality of other circuits damaged by stroke. It aims to partial restoration of the neural functions by circuit remodeling rather than by the regeneration of damaged circuits. The core hypothesis of the present paper is that – in stroke – brain machine interfaces (BMIs) can be designed to target neural repair instead of rehabilitation. To support this hypothesis we first review existing evidence on the role of endogenous or externally applied electric fields on all processes involved in CNS repair. We then describe our own results to illustrate the neuroprotective and neuroregenerative effects of BMI-electrical stimulation on sensory deprivation-related degenerative processes of the CNS. Finally, we discuss three of the crucial issues involved in the design of neural repair-oriented BMIs: when to stimulate, where to stimulate and – the particularly important but unsolved issue of – how to stimulate. We argue that optimal parameters for the electrical stimulation can be determined from studying and modeling the dynamics of the electric fields that naturally emerge at the central and peripheral nervous system during spontaneous healing in both, experimental animals and human patients. We conclude that a closed-loop BMI that defines the optimal stimulation parameters from a priori developed experimental models of the dynamics of spontaneous repair and the on-line monitoring of neural activity might place BMIs as an alternative or complement to stem-cell transplantation or pharmacological approaches, intensively pursued nowadays.
Collapse
Affiliation(s)
- Sara L Gonzalez Andino
- Electrical Neuroimaging Group, Department of Neurology, Geneva University Hospital Geneva, Switzerland
| | | | | | | |
Collapse
|