1
|
Anunziata F, Macchione AF, Alcalde AA, Tejerina DN, Amigone JL, Wille-Bille A, Trujillo V, Molina JC. Ethanol's disruptive effects upon early breathing plasticity and blood parameters associated with hypoxia and hypercapnia. Exp Neurol 2021; 344:113796. [PMID: 34224736 DOI: 10.1016/j.expneurol.2021.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Early ethanol exposure affects respiratory neuroplasticity; a risk factor associated with the Sudden Infant Death Syndrome. High and chronic ethanol doses exert long-lasting effects upon respiratory rates, apneic episodes and ventilatory processes triggered by hypoxia. The present study was performed in 3-9-day-old rat pups. Respiratory processes under normoxic and hypoxic conditions were analyzed in pups intoxicated with different ethanol doses which were pre-exposed or not to the drug. A second major goal was to examine if acute and/or chronic early ethanol exposure affects blood parameters related with hypercapnic or hypoxic states. In Experiment 1, at postnatal day 9, animals previously treated with ethanol (2.0 g/kg) or vehicle (0.0 g/kg) were tested sober or intoxicated with 0.75, 1.37 or 2.00 g/kg ethanol. The test involved sequential air conditions defined as initial normoxia, hypoxia and recovery normoxia. Motor activity was also evaluated. In Experiment 2, blood parameters indicative of possible hypoxic and hypercapnic states were assessed as a function of early chronic or acute experiences with the drug. The main results of Experiment 1 were as follows: i) ethanol's depressant effects upon respiratory rates increased as a function of sequential treatment with the drug (sensitization); ii) ethanol inhibited apneic episodes even when employing the lowest dose at test (0.75 g/kg); iii) the hyperventilatory response caused by hypoxia negatively correlated with the ethanol dose administered at test; iv) ventilatory long-term facilitation (LTF) during recovery normoxia was observed in pups pre-exposed to the drug and in pups that received the different ethanol doses at test; v) self-grooming increased in pups treated with either 1.37 or 2.00 g/kg ethanol. The main result of Experiment 2 indicated that acute as well as chronic ethanol exposure results in acidosis-hypercapnia. The results indicate that early and brief experiences with ethanol are sufficient to affect different respiratory plasticity processes as well as blood biomarkers indicative of acidosis-hypercapnia. An association between the LTF process and the acidosis-hypercapnic state caused by ethanol seems to exist. The mentioned experiences with the drug are sufficient to result in an anomalous programming of respiratory patterns and metabolic conditions.
Collapse
Affiliation(s)
- Florencia Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana F Macchione
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigaciones Psicológicas, IIPsi-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Asier Angulo Alcalde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, Universidad del País Vasco UPV-EHU, Donostia-San Sebastián, Guipúzcoa, Spain
| | - David N Tejerina
- Laboratorio de Bioquímica Clínica, Hospital Privado de Córdoba, Córdoba, Argentina
| | - José L Amigone
- Laboratorio de Bioquímica Clínica, Hospital Privado de Córdoba, Córdoba, Argentina
| | - Aranza Wille-Bille
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Trujillo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan C Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Reed MD, Iceman KE, Harris MB, Taylor BE. Buccal rhythmogenesis and CO 2 sensitivity in Lithobates catesbeianus tadpole brainstems across metamorphosis. Respir Physiol Neurobiol 2019; 268:103251. [PMID: 31279052 DOI: 10.1016/j.resp.2019.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022]
Abstract
Bullfrog tadpoles ventilate both the buccal cavity and lung. In isolated brainstems, the midbrain/pons influences CO2 responsiveness and timing of lung ventilatory bursting, depending on larval development. However, little is known about midbrain/pons influences on buccal burst patterns. As such, we investigated how removal of this region affects buccal burst shape and CO2 responsiveness across development. We measured facial nerve activity in brainstems isolated from tadpoles during early and late developmental stages, under normal and elevated levels of CO2. Brainstems were either left intact or transected by removing the midbrain/pons. In late stage preparations, buccal burst pattern differed between intact and reduced preparations, and bursts were responsive to elevated CO2 in these reduced preparations. These results suggest the midbrain/pons affects tadpole buccal burst pattern and CO2 responsiveness, perhaps similar to its influences on lung ventilation.
Collapse
Affiliation(s)
- Mitchell D Reed
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, United States.
| | - Kimberly E Iceman
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, United States; Department of Biology, Valparaiso University, Valparaiso, IN, 46383, United States
| | - Michael B Harris
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, United States; Department of Biology, California State University Long Beach, Long Beach, CA, 90840, United States
| | - Barbara E Taylor
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, United States; Department of Biology, California State University Long Beach, Long Beach, CA, 90840, United States
| |
Collapse
|
3
|
Reed MD, Iceman KE, Harris MB, Taylor BE. The rostral medulla of bullfrog tadpoles contains critical lung rhythmogenic and chemosensitive regions across metamorphosis. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:7-15. [PMID: 29890210 DOI: 10.1016/j.cbpa.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022]
Abstract
The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO2 sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO2 responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO2 responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO2 throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis.
Collapse
Affiliation(s)
- Mitchell D Reed
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States.
| | - Kimberly E Iceman
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Department of Biology, Valparaiso University, Valparaiso, IN 46383, United States
| | - Michael B Harris
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Barbara E Taylor
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| |
Collapse
|
4
|
Abstract
The invertebrates have adopted a myriad of breathing strategies to facilitate the extraction of adequate quantities of oxygen from their surrounding environments. Their respiratory structures can take a wide variety of forms, including integumentary surfaces, lungs, gills, tracheal systems, and even parallel combinations of these same gas exchange structures. Like their vertebrate counterparts, the invertebrates have evolved elaborate control strategies to regulate their breathing activity. Our goal in this article is to present the reader with a description of what is known regarding the control of breathing in some of the specific invertebrate species that have been used as model systems to study different mechanistic aspects of the control of breathing. We will examine how several species have been used to study fundamental principles of respiratory rhythm generation, central and peripheral chemosensory modulation of breathing, and plasticity in the control of breathing. We will also present the reader with an overview of some of the behavioral and neuronal adaptability that has been extensively documented in these animals. By presenting explicit invertebrate species as model organisms, we will illustrate mechanistic principles that form the neuronal foundation of respiratory control, and moreover appear likely to be conserved across not only invertebrates, but vertebrate species as well.
Collapse
Affiliation(s)
- Harold J Bell
- Division of Pulmonary and Critical Care, Department of Medicine, Penn State University, Hershey, Pennsylvania, USA.
| | | |
Collapse
|
5
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Dubois C, Kervern M, Naassila M, Pierrefiche O. Chronic ethanol exposure during development: Disturbances of breathing and adaptation. Respir Physiol Neurobiol 2013; 189:250-60. [DOI: 10.1016/j.resp.2013.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
|