1
|
Hochbaum DR, Dubinsky AC, Farnsworth HC, Hulshof L, Kleinberg G, Urke A, Wang W, Hakim R, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi M, Prouty S, Geistlinger L, Banks A, Scanlan T, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone rewires cortical circuits to coordinate body-wide metabolism and exploratory drive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552874. [PMID: 37609206 PMCID: PMC10441422 DOI: 10.1101/2023.08.10.552874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Animals adapt to varying environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here we find that thyroid hormone- a prominent regulator of metabolism in many peripheral organs- activates cell-type specific transcriptional programs in anterior regions of cortex of adult mice via direct activation of thyroid hormone receptors. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulators across both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread remodeling of cortical circuits. Indeed, whole-cell electrophysiology recordings revealed that thyroid hormone induces local transcriptional programs that rewire cortical neural circuits via pre-synaptic mechanisms, resulting in increased excitatory drive with a concomitant sensitization of recruited inhibition. We find that thyroid hormone bidirectionally regulates innate exploratory behaviors and that the transcriptionally mediated circuit changes in anterior cortex causally promote exploratory decision-making. Thus, thyroid hormone acts directly on adult cerebral cortex to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
|
2
|
Chen Y, Li W. Rapid eye movement sleep contributes to the formation of new axonal varicosities in mouse cerebellar parallel fibers after motor training. Neurosci Lett 2023; 810:137349. [PMID: 37327855 DOI: 10.1016/j.neulet.2023.137349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Synaptic structural plasticity is essential for the development, learning and memory. It is well established that sleep plays important roles in synaptic plasticity after motor learning. In cerebellar cortex, parallel fibers of granule cells make excitatory synapses to the dendrites of Purkinje cells. However, the synaptic structural dynamics between parallel and Purkinje cells after motor training and the function of sleep in cerebellar synaptic plasticity remain unclear. Here, we used two-photon microscopy to examine presynaptic axonal structural dynamics at parallel fiber-Purkinje cell synapses and investigated the effect of REM sleep in synaptic plasticity of mouse cerebellar cortex following motor training. We found that motor training induces higher formation of new axonal varicosities in cerebellar parallel fibers. Our results also indicate that calcium activities of granule cells significantly increase during REM sleep, and REM sleep deprivation prevents motor training-induced formation of axonal varicosities in parallel fibers, suggesting that higher calcium activity of granule cells was crucial for promoting newly formed axonal varicosities after motor training. Together, these findings reveal the effect of motor training on parallel fiber presynaptic structural modification and the important role of REM sleep in synaptic plasticity in cerebellar cortex.
Collapse
Affiliation(s)
- Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Xie X, Gong S, Sun N, Zhu J, Xu X, Xu Y, Li X, Du Z, Liu X, Zhang J, Gong W, Si K. Contextual Fear Learning and Extinction in the Primary Visual Cortex of Mice. Neurosci Bull 2023; 39:29-40. [PMID: 35704211 PMCID: PMC9849540 DOI: 10.1007/s12264-022-00889-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/28/2022] [Indexed: 01/22/2023] Open
Abstract
Fear memory contextualization is critical for selecting adaptive behavior to survive. Contextual fear conditioning (CFC) is a classical model for elucidating related underlying neuronal circuits. The primary visual cortex (V1) is the primary cortical region for contextual visual inputs, but its role in CFC is poorly understood. Here, our experiments demonstrated that bilateral inactivation of V1 in mice impaired CFC retrieval, and both CFC learning and extinction increased the turnover rate of axonal boutons in V1. The frequency of neuronal Ca2+ activity decreased after CFC learning, while CFC extinction reversed the decrease and raised it to the naïve level. Contrary to control mice, the frequency of neuronal Ca2+ activity increased after CFC learning in microglia-depleted mice and was maintained after CFC extinction, indicating that microglial depletion alters CFC learning and the frequency response pattern of extinction-induced Ca2+ activity. These findings reveal a critical role of microglia in neocortical information processing in V1, and suggest potential approaches for cellular-based manipulation of acquired fear memory.
Collapse
Affiliation(s)
- Xiaoke Xie
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310012, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314001, China
| | - Shangyue Gong
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
| | - Ning Sun
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Jiazhu Zhu
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314001, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310012, China
| | - Xiaobin Xu
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Yongxian Xu
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Xiaojing Li
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Zhenhong Du
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314001, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310012, China
| | - Xuanting Liu
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
| | - Wei Gong
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Ke Si
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China.
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310012, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314001, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Qiao Q, Wu C, Ma L, Zhang H, Li M, Wu X, Gan WB. Motor learning-induced new dendritic spines are preferentially involved in the learned task than existing spines. Cell Rep 2022; 40:111229. [PMID: 35977515 DOI: 10.1016/j.celrep.2022.111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Learning induces the formation of new synapses in addition to changes of existing synapse strength. However, it remains unclear whether new synapses serve different functions from existing synapses. By performing two-photon structural and Ca2+ imaging of postsynaptic dendritic spines in layer 2/3 pyramidal neurons, we show that new spine formation increases in the mouse motor cortex 8-24 h after motor training. New spines, not existing spine populations, are preferentially active when mice perform the learned task rather than a new task. New spine activity is also more synchronized with dendritic/somatic activity when the learned task, not a new task, is carried out. Furthermore, new spines are formed to increase the task specificity in a subset of neurons, and their survival is not affected when a new task is learned. These findings suggest that newly formed synapses preferentially increase the task specificity of neurons over existing synapses at the retention stage of motor learning.
Collapse
Affiliation(s)
- Qian Qiao
- Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunling Wu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Ma
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hua Zhang
- Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Miao Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xujun Wu
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wen-Biao Gan
- Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
5
|
Midorikawa M. Pathway-specific maturation of presynaptic functions of the somatosensory thalamus. Neurosci Res 2022; 181:1-8. [DOI: 10.1016/j.neures.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
|
6
|
Gundelfinger ED, Karpova A, Pielot R, Garner CC, Kreutz MR. Organization of Presynaptic Autophagy-Related Processes. Front Synaptic Neurosci 2022; 14:829354. [PMID: 35368245 PMCID: PMC8968026 DOI: 10.3389/fnsyn.2022.829354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Brain synapses pose special challenges on the quality control of their protein machineries as they are far away from the neuronal soma, display a high potential for plastic adaptation and have a high energy demand to fulfill their physiological tasks. This applies in particular to the presynaptic part where neurotransmitter is released from synaptic vesicles, which in turn have to be recycled and refilled in a complex membrane trafficking cycle. Pathways to remove outdated and damaged proteins include the ubiquitin-proteasome system acting in the cytoplasm as well as membrane-associated endolysosomal and the autophagy systems. Here we focus on the latter systems and review what is known about the spatial organization of autophagy and endolysomal processes within the presynapse. We provide an inventory of which components of these degradative systems were found to be present in presynaptic boutons and where they might be anchored to the presynaptic apparatus. We identify three presynaptic structures reported to interact with known constituents of membrane-based protein-degradation pathways and therefore may serve as docking stations. These are (i) scaffolding proteins of the cytomatrix at the active zone, such as Bassoon or Clarinet, (ii) the endocytic machinery localized mainly at the peri-active zone, and (iii) synaptic vesicles. Finally, we sketch scenarios, how presynaptic autophagic cargos are tagged and recruited and which cellular mechanisms may govern membrane-associated protein turnover in the presynapse.
Collapse
Affiliation(s)
- Eckart D. Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Rainer Pielot
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Craig C. Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael R. Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
7
|
Cortical axon sub-population maintains density, but not turnover, of en passant boutons in the aged APP/PS1 amyloidosis model. Neurobiol Aging 2022; 115:29-38. [DOI: 10.1016/j.neurobiolaging.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022]
|
8
|
Sando R, Ho ML, Liu X, Südhof TC. Engineered synaptic tools reveal localized cAMP signaling in synapse assembly. J Cell Biol 2022; 221:e202109111. [PMID: 34913963 PMCID: PMC8685283 DOI: 10.1083/jcb.202109111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological mechanisms driving synapse formation are elusive. Although numerous signals are known to regulate synapses, it remains unclear which signaling mechanisms organize initial synapse assembly. Here, we describe new tools, referred to as "SynTAMs" for synaptic targeting molecules, that enable localized perturbations of cAMP signaling in developing postsynaptic specializations. We show that locally restricted suppression of postsynaptic cAMP levels or of cAMP-dependent protein-kinase activity severely impairs excitatory synapse formation without affecting neuronal maturation, dendritic arborization, or inhibitory synapse formation. In vivo, suppression of postsynaptic cAMP signaling in CA1 neurons prevented formation of both Schaffer-collateral and entorhinal-CA1/temporoammonic-path synapses, suggesting a general principle. Retrograde trans-synaptic rabies virus tracing revealed that postsynaptic cAMP signaling is required for continuous replacement of synapses throughout life. Given that postsynaptic latrophilin adhesion-GPCRs drive synapse formation and produce cAMP, we suggest that spatially restricted postsynaptic cAMP signals organize assembly of postsynaptic specializations during synapse formation.
Collapse
Affiliation(s)
- Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Milan Lyndie Ho
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
9
|
Chen CC, Brumberg JC. Sensory Experience as a Regulator of Structural Plasticity in the Developing Whisker-to-Barrel System. Front Cell Neurosci 2022; 15:770453. [PMID: 35002626 PMCID: PMC8739903 DOI: 10.3389/fncel.2021.770453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cellular structures provide the physical foundation for the functionality of the nervous system, and their developmental trajectory can be influenced by the characteristics of the external environment that an organism interacts with. Historical and recent works have determined that sensory experiences, particularly during developmental critical periods, are crucial for information processing in the brain, which in turn profoundly influence neuronal and non-neuronal cortical structures that subsequently impact the animals' behavioral and cognitive outputs. In this review, we focus on how altering sensory experience influences normal/healthy development of the central nervous system, particularly focusing on the cerebral cortex using the rodent whisker-to-barrel system as an illustrative model. A better understanding of structural plasticity, encompassing multiple aspects such as neuronal, glial, and extra-cellular domains, provides a more integrative view allowing for a deeper appreciation of how all aspects of the brain work together as a whole.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,Department of Neuroscience, Duke Kunshan University, Suzhou, China
| | - Joshua C Brumberg
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,The Biology (Neuroscience) and Psychology (Behavioral and Cognitive Neuroscience) PhD Programs, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
10
|
Yan Y, Tian M, Li M, Zhou G, Chen Q, Xu M, Hu Y, Luo W, Guo X, Zhang C, Xie H, Wu QF, Xiong W, Liu S, Guan JS. ASH1L haploinsufficiency results in autistic-like phenotypes in mice and links Eph receptor gene to autism spectrum disorder. Neuron 2022; 110:1156-1172.e9. [DOI: 10.1016/j.neuron.2021.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
|
11
|
Correction to: Modeling Axonal Plasticity in Artificial Neural Networks. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Syngap1 regulates experience-dependent cortical ensemble plasticity by promoting in vivo excitatory synapse strengthening. Proc Natl Acad Sci U S A 2021; 118:2100579118. [PMID: 34404727 DOI: 10.1073/pnas.2100579118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A significant proportion of autism risk genes regulate synapse function, including plasticity, which is believed to contribute to behavioral abnormalities. However, it remains unclear how impaired synapse plasticity contributes to network-level processes linked to adaptive behaviors, such as experience-dependent ensemble plasticity. We found that Syngap1, a major autism risk gene, promoted measures of experience-dependent excitatory synapse strengthening in the mouse cortex, including spike-timing-dependent glutamatergic synaptic potentiation and presynaptic bouton formation. Synaptic depression and bouton elimination were normal in Syngap1 mice. Within cortical networks, Syngap1 promoted experience-dependent increases in somatic neural activity in weakly active neurons. In contrast, plastic changes to highly active neurons from the same ensemble that paradoxically weaken with experience were unaffected. Thus, experience-dependent excitatory synapse strengthening mediated by Syngap1 shapes neuron-specific plasticity within cortical ensembles. We propose that other genes regulate neuron-specific weakening within ensembles, and together, these processes function to redistribute activity within cortical networks during experience.
Collapse
|
13
|
|
14
|
Zhang KX, Zhao JJ, Chai W, Chen JY. Synaptic remodeling in mouse motor cortex after spinal cord injury. Neural Regen Res 2021; 16:744-749. [PMID: 33063737 PMCID: PMC8067930 DOI: 10.4103/1673-5374.295346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury dramatically blocks information exchange between the central nervous system and the peripheral nervous system. The resulting fate of synapses in the motor cortex has not been well studied. To explore synaptic reorganization in the motor cortex after spinal cord injury, we established mouse models of T12 spinal cord hemi-section and then monitored the postsynaptic dendritic spines and presynaptic axonal boutons of pyramidal neurons in the hindlimb area of the motor cortex in vivo. Our results showed that spinal cord hemi-section led to the remodeling of dendritic spines bilaterally in the motor cortex and the main remodeling regions changed over time. It made previously stable spines unstable and eliminated spines more unlikely to be re-emerged. There was a significant increase in new spines in the contralateral motor cortex. However, the low survival rate of the new spines demonstrated that new spines were still fragile. Observation of presynaptic axonal boutons found no significant change. These results suggest the existence of synapse remodeling in motor cortex after spinal cord hemi-section and that spinal cord hemi-section affected postsynaptic dendritic spines rather than presynaptic axonal boutons. This study was approved by the Ethics Committee of Chinese PLA General Hospital, China (approval No. 201504168S) on April 16, 2015.
Collapse
Affiliation(s)
- Ke-Xue Zhang
- Department of Pediatric Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jia-Jia Zhao
- Department of Anesthesiology, Shunyi District Hospital, Beijing, China
| | - Wei Chai
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ji-Ying Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Caspase inhibition rescues F1Fo ATP synthase dysfunction-mediated dendritic spine elimination. Sci Rep 2020; 10:17589. [PMID: 33067541 PMCID: PMC7568535 DOI: 10.1038/s41598-020-74613-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Dendritic spine injury underlies synaptic failure in many neurological disorders. Mounting evidence suggests a mitochondrial pathway of local nonapoptotic caspase signaling in mediating spine pruning. However, it remains unclear whether this caspase signaling plays a key role in spine loss when severe mitochondrial functional defects are present. The answer to this question is critical especially for some pathological states, in which mitochondrial deficits are prominent and difficult to fix. F1Fo ATP synthase is a pivotal mitochondrial enzyme and the dysfunction of this enzyme involves in diseases with spinopathy. Here, we inhibited F1Fo ATP synthase function in primary cultured hippocampal neurons by using non-lethal oligomycin A treatment. Oligomycin A induced mitochondrial defects including collapsed mitochondrial membrane potential, dissipated ATP production, and elevated reactive oxygen species (ROS) production. In addition, dendritic mitochondria underwent increased fragmentation and reduced positioning to dendritic spines along with increased caspase 3 cleavage in dendritic shaft and spines in response to oligomycin A. Concurring with these dendritic mitochondrial changes, oligomycin A-insulted neurons displayed spine loss and altered spine architecture. Such oligomycin A-mediated changes in dendritic spines were substantially prevented by the inhibition of caspase activation by using a pan-caspase inhibitor, quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone (Q-VD-OPh). Of note, the administration of Q-VD-OPh showed no protective effect on oligomycin A-induced mitochondrial dysfunction. Our findings suggest a pivotal role of caspase 3 signaling in mediating spine injury and the modulation of caspase 3 activation may benefit neurons from spine loss in diseases, at least, in those with F1Fo ATP synthase defects.
Collapse
|
16
|
Cortical Presynaptic Boutons Progressively Engulf Spinules as They Mature. eNeuro 2020; 7:ENEURO.0426-19.2020. [PMID: 32958478 PMCID: PMC7568603 DOI: 10.1523/eneuro.0426-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023] Open
Abstract
Despite decades of discussion in the neuroanatomical literature, the role of the synaptic "spinule" in synaptic development and function remains elusive. Canonically, spinules are finger-like projections that emerge from postsynaptic spines and can become enveloped by presynaptic boutons. When a presynaptic bouton encapsulates a spinule in this manner, the membrane apposition between the spinule and surrounding bouton can be significantly larger than the membrane interface at the synaptic active zone. Hence, spinules may represent a mechanism for extrasynaptic neuronal communication and/or may function as structural "anchors" that increase the stability of cortical synapses. Yet despite their potential to impact synaptic function, we have little information on the percentages of developing and adult cortical bouton populations that contain spinules, the percentages of these cortical spinule-bearing boutons (SBBs) that contain spinules from distinct neuronal/glial origins, or whether the onset of activity or cortical plasticity are correlated with increased prevalence of cortical SBBs. Here, we employed 2D and 3D electron microscopy to determine the prevalence of spinules in excitatory presynaptic boutons at key developmental time points in the primary visual cortex (V1) of female and male ferrets. We find that the prevalence of SBBs in V1 increases across postnatal development, such that ∼25% of excitatory boutons in late adolescent ferret V1 contain spinules. In addition, we find that a majority of spinules within SBBs at later developmental time points emerge from postsynaptic spines and adjacent boutons/axons, suggesting that synaptic spinules may enhance synaptic stability and allow for axo-axonal communication in mature sensory cortex.
Collapse
|
17
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
18
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
19
|
Hasegawa R, Ebina T, Tanaka YR, Kobayashi K, Matsuzaki M. Structural dynamics and stability of corticocortical and thalamocortical axon terminals during motor learning. PLoS One 2020; 15:e0234930. [PMID: 32559228 PMCID: PMC7304593 DOI: 10.1371/journal.pone.0234930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
Synaptic plasticity is the cellular basis of learning and memory. When animals learn a novel motor skill, synaptic modifications are induced in the primary motor cortex (M1), and new postsynaptic dendritic spines relevant to motor memory are formed in the early stage of learning. However, it is poorly understood how presynaptic axonal boutons are formed, eliminated, and maintained during motor learning, and whether long-range corticocortical and thalamocortical axonal boutons show distinct structural changes during learning. In this study, we conducted two-photon imaging of presynaptic boutons of long-range axons in layer 1 (L1) of the mouse M1 during the 7-day learning of an accelerating rotarod task. The training-period-averaged rate of formation of boutons on axons projecting from the secondary motor cortical area increased, while the average rate of elimination of those from the motor thalamus (thalamic boutons) decreased. In particular, the elimination rate of thalamic boutons during days 4-7 was lower than that in untrained mice, and the fraction of pre-existing thalamic boutons that survived until day 7 was higher than that in untrained mice. Our results suggest that the late stabilization of thalamic boutons in M1 contributes to motor skill learning.
Collapse
Affiliation(s)
- Ryota Hasegawa
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
- Division of Behavioral Neurobiology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Teppei Ebina
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasuhiro R. Tanaka
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Masanori Matsuzaki
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
Lees RM, Johnson JD, Ashby MC. Presynaptic Boutons That Contain Mitochondria Are More Stable. Front Synaptic Neurosci 2020; 11:37. [PMID: 31998110 PMCID: PMC6966497 DOI: 10.3389/fnsyn.2019.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
The addition and removal of presynaptic terminals reconfigures neuronal circuits of the mammalian neocortex, but little is known about how this presynaptic structural plasticity is controlled. Since mitochondria can regulate presynaptic function, we investigated whether the presence of axonal mitochondria relates to the structural plasticity of presynaptic boutons in mouse neocortex. We found that the overall density of axonal mitochondria did not appear to influence the loss and gain of boutons. However, positioning of mitochondria at individual presynaptic sites did relate to increased stability of those boutons. In line with this, synaptic localization of mitochondria increased as boutons aged and showed differing patterns of localization at en passant and terminaux boutons. These results suggest that mitochondria accumulate locally at boutons over time to increase bouton stability.
Collapse
Affiliation(s)
| | | | - Michael C. Ashby
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
21
|
Sammons RP, Clopath C, Barnes SJ. Size-Dependent Axonal Bouton Dynamics following Visual Deprivation In Vivo. Cell Rep 2019; 22:576-584. [PMID: 29346758 PMCID: PMC5792425 DOI: 10.1016/j.celrep.2017.12.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022] Open
Abstract
Persistent synapses are thought to underpin the storage of sensory experience, yet little is known about their structural plasticity in vivo. We investigated how persistent presynaptic structures respond to the loss of primary sensory input. Using in vivo two-photon (2P) imaging, we measured fluctuations in the size of excitatory axonal boutons in L2/3 of adult mouse visual cortex after monocular enucleation. The average size of boutons did not change after deprivation, but the range of bouton sizes was reduced. Large boutons decreased, and small boutons increased. Reduced bouton variance was accompanied by a reduced range of correlated calcium-mediated neural activity in L2/3 of awake animals. Network simulations predicted that size-dependent plasticity may promote conditions of greater bidirectional plasticity. These predictions were supported by electrophysiological measures of short- and long-term plasticity. We propose size-dependent dynamics facilitate cortical reorganization by maximizing the potential for bidirectional plasticity. The range of persistent axonal bouton sizes is reduced following visual deprivation Bouton sizes move toward the mean in a size-dependent manner Bouton plasticity is accompanied by a reduced range of correlated network activity Deprived cortex exhibits greater bidirectional functional presynaptic plasticity
Collapse
Affiliation(s)
- Rosanna P Sammons
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University St., London WC1E 6DE, UK
| | - Claudia Clopath
- Department of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Samuel J Barnes
- Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
22
|
Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA, Wang CH, Huang CW, Kang YN, Chang HY, Li LL, Chang KP, Shih YH, Lin CH, Kwan SY, Tsai JW. Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 2018; 9:2498. [PMID: 29950674 PMCID: PMC6021418 DOI: 10.1038/s41467-018-04880-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in genes involved in the production, migration, or differentiation of cortical neurons often lead to malformations of cortical development (MCDs). However, many genetic mutations involved in MCD pathogenesis remain unidentified. Here we developed a genetic screening paradigm based on transposon-mediated somatic mutagenesis by in utero electroporation and the inability of mutant neuronal precursors to migrate to the cortex and identified 33 candidate MCD genes. Consistent with the screen, several genes have already been implicated in neural development and disorders. Functional disruption of the candidate genes by RNAi or CRISPR/Cas9 causes altered neuronal distributions that resemble human cortical dysplasia. To verify potential clinical relevance of these candidate genes, we analyzed somatic mutations in brain tissue from patients with focal cortical dysplasia and found that mutations are enriched in these candidate genes. These results demonstrate that this approach is able to identify potential mouse genes involved in cortical development and MCD pathogenesis. Cortical malformations have a variety of causes. Here the authors use transposon mutagenesis to insert mutations into neural stem cells in the developing mouse cortex to screen for new candidate genes for cortical malformation, and validate some targets in human brain tissue.
Collapse
Affiliation(s)
- I-Ling Lu
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chien Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Hung Chen
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jia-Ping Pan
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan.,Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 112, Taiwan
| | - Jia-Shing Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-An Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chun-Hung Wang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-Ning Kang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Yun Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lei-Li Li
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Kai-Ping Chang
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Yang-Hsin Shih
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Chi-Hung Lin
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 112, Taiwan. .,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
23
|
Ziv NE. Maintaining the active zone: Demand, supply and disposal of core active zone proteins. Neurosci Res 2018; 127:70-77. [DOI: 10.1016/j.neures.2017.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
|
24
|
Synaptic Tenacity or Lack Thereof: Spontaneous Remodeling of Synapses. Trends Neurosci 2018; 41:89-99. [DOI: 10.1016/j.tins.2017.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
|
25
|
Fernández-Montoya J, Avendaño C, Negredo P. The Glutamatergic System in Primary Somatosensory Neurons and Its Involvement in Sensory Input-Dependent Plasticity. Int J Mol Sci 2017; 19:ijms19010069. [PMID: 29280965 PMCID: PMC5796019 DOI: 10.3390/ijms19010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023] Open
Abstract
Glutamate is the most common neurotransmitter in both the central and the peripheral nervous system. Glutamate is present in all types of neurons in sensory ganglia, and is released not only from their peripheral and central axon terminals but also from their cell bodies. Consistently, these neurons express ionotropic and metabotropic receptors, as well as other molecules involved in the synthesis, transport and release of the neurotransmitter. Primary sensory neurons are the first neurons in the sensory channels, which receive information from the periphery, and are thus key players in the sensory transduction and in the transmission of this information to higher centers in the pathway. These neurons are tightly enclosed by satellite glial cells, which also express several ionotropic and metabotropic glutamate receptors, and display increases in intracellular calcium accompanying the release of glutamate. One of the main interests in our group has been the study of the implication of the peripheral nervous system in sensory-dependent plasticity. Recently, we have provided novel evidence in favor of morphological changes in first- and second-order neurons of the trigeminal system after sustained alterations of the sensory input. Moreover, these anatomical changes are paralleled by several molecular changes, among which those related to glutamatergic neurotransmission are particularly relevant. In this review, we will describe the state of the art of the glutamatergic system in sensory ganglia and its involvement in input-dependent plasticity, a fundamental ground for advancing our knowledge of the neural mechanisms of learning and adaptation, reaction to injury, and chronic pain.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| |
Collapse
|
26
|
Südhof TC. Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. Cell 2017; 171:745-769. [PMID: 29100073 DOI: 10.1016/j.cell.2017.10.024] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Synapses are specialized junctions between neurons in brain that transmit and compute information, thereby connecting neurons into millions of overlapping and interdigitated neural circuits. Here, we posit that the establishment, properties, and dynamics of synapses are governed by a molecular logic that is controlled by diverse trans-synaptic signaling molecules. Neurexins, expressed in thousands of alternatively spliced isoforms, are central components of this dynamic code. Presynaptic neurexins regulate synapse properties via differential binding to multifarious postsynaptic ligands, such as neuroligins, cerebellin/GluD complexes, and latrophilins, thereby shaping the input/output relations of their resident neural circuits. Mutations in genes encoding neurexins and their ligands are associated with diverse neuropsychiatric disorders, especially schizophrenia, autism, and Tourette syndrome. Thus, neurexins nucleate an overall trans-synaptic signaling network that controls synapse properties, which thereby determines the precise responses of synapses to spike patterns in a neuron and circuit and which is vulnerable to impairments in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, CA 94305-5453, USA.
| |
Collapse
|
27
|
Südhof TC. Molecular Neuroscience in the 21 st Century: A Personal Perspective. Neuron 2017; 96:536-541. [PMID: 29096071 DOI: 10.1016/j.neuron.2017.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023]
Abstract
Neuroscience is inherently interdisciplinary in its quest to explain the brain. Like all biological structures, the brain operates at multiple levels, from nano-scale molecules to meter-scale systems. Here, I argue that understanding the nano-scale organization of the brain is not only helpful for insight into its function, but is a requisite for such insight. I propose that one impediment to a better understanding of the brain is that most of its molecular processes are incompletely understood, and suggest a number of key questions that require our attention so that progress can be achieved in neuroscience beyond a description of the activity of neural circuits.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, CA 94305-5453, USA.
| |
Collapse
|
28
|
Gala R, Lebrecht D, Sahlender DA, Jorstad A, Knott G, Holtmaat A, Stepanyants A. Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images. eLife 2017; 6:e29315. [PMID: 29058678 PMCID: PMC5675596 DOI: 10.7554/elife.29315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
The ability to measure minute structural changes in neural circuits is essential for long-term in vivo imaging studies. Here, we propose a methodology for detection and measurement of structural changes in axonal boutons imaged with time-lapse two-photon laser scanning microscopy (2PLSM). Correlative 2PLSM and 3D electron microscopy (EM) analysis, performed in mouse barrel cortex, showed that the proposed method has low fractions of false positive/negative bouton detections (2/0 out of 18), and that 2PLSM-based bouton weights are correlated with their volumes measured in EM (r = 0.93). Next, the method was applied to a set of axons imaged in quick succession to characterize measurement uncertainty. The results were used to construct a statistical model in which bouton addition, elimination, and size changes are described probabilistically, rather than being treated as deterministic events. Finally, we demonstrate that the model can be used to quantify significant structural changes in boutons in long-term imaging experiments.
Collapse
Affiliation(s)
- Rohan Gala
- Department of Physics and Center for Interdisciplinary Research on Complex SystemsNortheastern UniversityBostonUnited States
| | - Daniel Lebrecht
- Department of Basic Neurosciences, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
- Lemanic Neuroscience Doctoral SchoolSwitzerland
| | - Daniela A Sahlender
- Biological Electron Microscopy Facility, Centre of Electron MicroscopyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Anne Jorstad
- Biological Electron Microscopy Facility, Centre of Electron MicroscopyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Graham Knott
- Biological Electron Microscopy Facility, Centre of Electron MicroscopyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Armen Stepanyants
- Department of Physics and Center for Interdisciplinary Research on Complex SystemsNortheastern UniversityBostonUnited States
| |
Collapse
|
29
|
Jamann N, Jordan M, Engelhardt M. Activity-dependent axonal plasticity in sensory systems. Neuroscience 2017; 368:268-282. [PMID: 28739523 DOI: 10.1016/j.neuroscience.2017.07.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
The rodent whisker-to-barrel cortex pathway is a classic model to study the effects of sensory experience and deprivation on neuronal circuit formation, not only during development but also in the adult. Decades of research have produced a vast body of evidence highlighting the fundamental role of neuronal activity (spontaneous and/or sensory-evoked) for circuit formation and function. In this context, it has become clear that neuronal adaptation and plasticity is not just a function of the neonatal brain, but persists into adulthood, especially after experience-driven modulation of network status. Mechanisms for structural remodeling of the somatodendritic or axonal domain include microscale alterations of neurites or synapses. At the same time, functional alterations at the nanoscale such as expression or activation changes of channels and receptors contribute to the modulation of intrinsic excitability or input-output relationships. However, it remains elusive how these forms of structural and functional plasticity come together to shape neuronal network formation and function. While specifically somatodendritic plasticity has been studied in great detail, the role of axonal plasticity, (e.g. at presynaptic boutons, branches or axonal microdomains), is rather poorly understood. Therefore, this review will only briefly highlight somatodendritic plasticity and instead focus on axonal plasticity. We discuss (i) the role of spontaneous and sensory-evoked plasticity during critical periods, (ii) the assembly of axonal presynaptic sites, (iii) axonal plasticity in the mature brain under baseline and sensory manipulation conditions, and finally (iv) plasticity of electrogenic axonal microdomains, namely the axon initial segment, during development and in the mature CNS.
Collapse
Affiliation(s)
- Nora Jamann
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Merryn Jordan
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany.
| |
Collapse
|
30
|
Chambers AR, Rumpel S. A stable brain from unstable components: Emerging concepts and implications for neural computation. Neuroscience 2017; 357:172-184. [PMID: 28602920 DOI: 10.1016/j.neuroscience.2017.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 11/28/2022]
Abstract
Neuroscientists have often described the adult brain in similar terms to an electronic circuit board- dependent on fixed, precise connectivity. However, with the advent of technologies allowing chronic measurements of neural structure and function, the emerging picture is that neural networks undergo significant remodeling over multiple timescales, even in the absence of experimenter-induced learning or sensory perturbation. Here, we attempt to reconcile the parallel observations that critical brain functions are stably maintained, while synapse- and single-cell properties appear to be reformatted regularly throughout adult life. In this review, we discuss experimental evidence at multiple levels ranging from synapses to neuronal ensembles, suggesting that many parameters are maintained in a dynamic equilibrium. We highlight emerging hypotheses that could explain how stable brain functions may be generated from dynamic elements. Furthermore, we discuss the impact of dynamic circuit elements on neural computations, and how they could provide living neural circuits with computational abilities a fixed structure cannot offer. Taken together, recent evidence indicates that continuous dynamics are a fundamental property of neural circuits compatible with macroscopically stable behaviors. In addition, they may be a unique advantage imparting robustness and flexibility throughout life.
Collapse
Affiliation(s)
- Anna R Chambers
- Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University, Mainz, Germany; Institute of Physiology, Johannes Gutenberg University, Mainz, Germany
| | - Simon Rumpel
- Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University, Mainz, Germany; Institute of Physiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
31
|
Monday HR, Castillo PE. Closing the gap: long-term presynaptic plasticity in brain function and disease. Curr Opin Neurobiol 2017; 45:106-112. [PMID: 28570863 DOI: 10.1016/j.conb.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
Synaptic plasticity is critical for experience-dependent adjustments of brain function. While most research has focused on the mechanisms that underlie postsynaptic forms of plasticity, comparatively little is known about how neurotransmitter release is altered in a long-term manner. Emerging research suggests that many of the features of canonical 'postsynaptic' plasticity, such as associativity, structural changes and bidirectionality, also characterize long-term presynaptic plasticity. Recent studies demonstrate that presynaptic plasticity is a potent regulator of circuit output and function. Moreover, aberrant presynaptic plasticity is a convergent factor of synaptopathies like schizophrenia, addiction, and Autism Spectrum Disorders, and may be a potential target for treatment.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
32
|
Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning. Neurobiol Learn Mem 2016; 138:39-53. [PMID: 27794462 DOI: 10.1016/j.nlm.2016.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
Activity-dependent pruning of synaptic contacts plays a critical role in shaping neuronal circuitry in response to the environment during postnatal brain development. Although there is compelling evidence that shrinkage of dendritic spines coincides with synaptic long-term depression (LTD), and that LTD is accompanied by synapse loss, whether NMDA receptor (NMDAR)-dependent LTD is a required step in the progression toward synapse pruning is still unknown. Using repeated applications of NMDA to induce LTD in dissociated rat neuronal cultures, we found that synapse density, as measured by colocalization of fluorescent markers for pre- and postsynaptic structures, was decreased irrespective of the presynaptic marker used, post-treatment recovery time, and the dendritic location of synapses. Consistent with previous studies, we found that synapse loss could occur without apparent net spine loss or cell death. Furthermore, synapse loss was unlikely to require direct contact with microglia, as the number of these cells was minimal in our culture preparations. Supporting a model by which NMDAR-LTD is required for synapse loss, the effect of NMDA on fluorescence colocalization was prevented by phosphatase and caspase inhibitors. In addition, gene transcription and protein translation also appeared to be required for loss of putative synapses. These data support the idea that NMDAR-dependent LTD is a required step in synapse pruning and contribute to our understanding of the basic mechanisms of this developmental process.
Collapse
|