1
|
Early S, Du E, Boussaty E, Friedman R. Genetics of noise-induced hearing loss in the mouse model. Hear Res 2022; 425:108505. [DOI: 10.1016/j.heares.2022.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
|
2
|
Sheppard SE, Barrett B, Muraresku C, McKnight H, De Leon DD, Lord K, Ganetzky R. Heterozygous recurrent HNF4A variant p.Arg85Trp causes Fanconi renotubular syndrome 4 with maturity onset diabetes of the young, an autosomal dominant phenocopy of Fanconi Bickel syndrome with colobomas. Am J Med Genet A 2021; 185:566-570. [PMID: 33251707 PMCID: PMC8132289 DOI: 10.1002/ajmg.a.61978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/19/2020] [Accepted: 10/31/2020] [Indexed: 01/31/2023]
Abstract
Heterozygous pathogenic variants in HNF4A cause hyperinsulinism, maturity onset diabetes of the young type 1, and more rarely Fanconi renotubular syndrome. Specifically, the recurrent missense pathogenic variant c.253C>T (p.Arg85Trp) has been associated with a syndromic form of hyperinsulinism with additional features of macrosomia, renal tubular nephropathy, hypophosphatemic rickets, and liver involvement. We present an affected mother, who had been previously diagnosed clinically with the autosomal recessive Fanconi Bickel Syndrome, and her affected son. The son's presentation expands the clinical phenotype to include multiple congenital anomalies, including penile chordee with hypospadias and coloboma. This specific pathogenic variant should be considered in the differential diagnosis of Fanconi Bickel Syndrome when genetics are negative or the family history is suggestive of autosomal dominant inheritance. The inclusion of hyperinsulinism and maturity onset of the diabetes of the young changes the management of this syndrome and the recurrence risk is distinct. Additionally, this family also emphasizes the importance of genetic confirmation of clinical diagnoses, especially in adults who grew up in the premolecular era that are now coming to childbearing age. Finally, the expansion of the phenotype to include multiple congenital anomalies suggests that the full spectrum of HNF4A is likely unknown.
Collapse
Affiliation(s)
- Sarah E. Sheppard
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Brett Barrett
- Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Muraresku
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Heather McKnight
- Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Diva D. De Leon
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Katherine Lord
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rebecca Ganetzky
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
3
|
Forouzanfar F, Asgharzade S. MicroRNAs in Noise-Induced Hearing Loss and their Regulation by Oxidative Stress and Inflammation. Curr Drug Targets 2020; 21:1216-1224. [PMID: 32538724 DOI: 10.2174/1389450121666200615145552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
Abstract
Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Yu Y, Hu B, Bao J, Mulvany J, Bielefeld E, Harrison RT, Neton SA, Thirumala P, Chen Y, Lei D, Qiu Z, Zheng Q, Ren J, Perez-Flores MC, Yamoah EN, Salehi P. Otoprotective Effects of Stephania tetrandra S. Moore Herb Isolate against Acoustic Trauma. J Assoc Res Otolaryngol 2018; 19:653-668. [PMID: 30187298 PMCID: PMC6249158 DOI: 10.1007/s10162-018-00690-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/08/2018] [Indexed: 01/10/2023] Open
Abstract
Noise is the most common occupational and environmental hazard, and noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit. Although therapeutics that target the free-radical pathway have shown promise, none of these compounds is currently approved against NIHL by the United States Food and Drug Administration. The present study has demonstrated that tetrandrine (TET), a traditional Chinese medicinal alkaloid and the main chemical isolate of the Stephania tetrandra S. Moore herb, significantly attenuated NIHL in CBA/CaJ mice. TET is known to exert antihypertensive and antiarrhythmic effects through the blocking of calcium channels. Whole-cell patch-clamp recording from adult spiral ganglion neurons showed that TET blocked the transient Ca2+ current in a dose-dependent manner and the half-blocking concentration was 0.6 + 0.1 μM. Consistent with previous findings that modulations of calcium-based signaling pathways have both prophylactic and therapeutic effects against neural trauma, NIHL was significantly diminished by TET administration. Importantly, TET has a long-lasting protective effect after noise exposure (48 weeks) in comparison to 2 weeks after noise exposure. The otoprotective effects of TET were achieved mainly by preventing outer hair cell damage and synapse loss between inner hair cells and spiral ganglion neurons. Thus, our data indicate that TET has great potential in the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Yan Yu
- The First People’s Hospital of Zhangjiagang, 68 W Jiyang Road, Zhangjiagang City, 215600 Jiangsu China
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Bing Hu
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Jianxin Bao
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Jessica Mulvany
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Eric Bielefeld
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Ryan T. Harrison
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Sarah A. Neton
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Partha Thirumala
- The University of Pittsburgh Medical Center, Suite B-400, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Yingying Chen
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Debin Lei
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Jihao Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Maria Cristina Perez-Flores
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Pezhman Salehi
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| |
Collapse
|