1
|
Wissenbach DK, Steuer AE. Advances in testing for sample manipulation in clinical and forensic toxicology - Part A: urine samples. Anal Bioanal Chem 2023:10.1007/s00216-023-04711-w. [PMID: 37145190 PMCID: PMC10404192 DOI: 10.1007/s00216-023-04711-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
In many countries, adherence testing is used to monitor consumption behavior or to prove abstinence. Urine and hair are most commonly used, although other biological fluids are available. Positive test results are usually associated with serious legal or economic consequences. Therefore, various sample manipulation and adulteration strategies are used to circumvent such a positive result. In these critical review articles on sample adulteration of urine (part A) and hair samples (part B) in the context of clinical and forensic toxicology, recent trends and strategies to improve sample adulteration and manipulation testing published in the past 10 years are described and discussed. Typical manipulation and adulteration strategies include undercutting the limits of detection/cut-off by dilution, substitution, and adulteration. New or alternative strategies for detecting sample manipulation attempts can be generally divided into improved detection of established urine validity markers and direct and indirect techniques or approaches to screening for new adulteration markers. In this part A of the review article, we focused on urine samples, where the focus in recent years has been on new (in)direct substitution markers, particularly for synthetic (fake) urine. Despite various and promising advances in detecting manipulation, it remains a challenge in clinical and forensic toxicology, and simple, reliable, specific, and objective markers/techniques are still lacking, for example, for synthetic urine.
Collapse
Affiliation(s)
- Dirk K Wissenbach
- Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Steuer AE, Sutter L, Steuer C, Kraemer T. New gamma-hydroxybutyric acid (GHB) biomarkers: Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of GHB amino acid, carnitine, and fatty acid conjugates in urine. Drug Test Anal 2022; 15:426-443. [PMID: 36562189 DOI: 10.1002/dta.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gamma-hydroxybutyric acid (GHB) represents an important drug in clinical and forensic toxicology, particularly in the context of drug-facilitated crimes. Analytically, GHB remains a major challenge given its endogenous occurrence and short detection window. Previous studies identified a number of potential interesting novel conjugates of GHB with carnitine, amino acids (AA, glutamate, glycine, and taurine), or fatty acids. As a basis for comprehensive studies on the suitability of these novel biomarkers, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in human urine. Additionally, already known markers 2,4-dihydroxy butyric acid (2,4-DHB), 3,4-DHB, glycolic acid, succinic acid, succinylcarnitine, and GHB glucuronide were included. The method was fully validated according to (inter)national guidelines. Synthetic urine proved suitable as a surrogate matrix for calibration. Matrix effects were observed for all analytes with suppression effects of about 50% at QC LOW, and approximately 20% to 40% at QC HIGH, but with consistent standard deviation of <25% at QC LOW and <15% at QC HIGH, respectively. All analytes showed acceptable intra- and inter-day imprecision of below 20%, except for inter-day variation of GHB taurine and FA conjugates at the lowest QC. Preliminary applicability studies proved the usefulness of the method and pointed towards GHB glycine, followed by other AA conjugates as the most promising candidates to improve GHB detection. FA conjugates were not detected in urine samples yet. The method can be used now for comprehensive sample analysis on (controlled) GHB administration to prove the usefulness of the novel GHB biomarkers.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Linda Sutter
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Keen B, Cawley A, Reedy B, Fu S. Metabolomics in clinical and forensic toxicology, sports anti-doping and veterinary residues. Drug Test Anal 2022; 14:794-807. [PMID: 35194967 PMCID: PMC9544538 DOI: 10.1002/dta.3245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Metabolomics is a multidisciplinary field providing workflows for complementary approaches to conventional analytical determinations. It allows for the study of metabolically related groups of compounds or even the study of novel pathways within the biological system. The procedural stages of metabolomics; experimental design, sample preparation, analytical determinations, data processing and statistical analysis, compound identification and validation strategies are explored in this review. The selected approach will depend on the type of study being conducted. Experimental design influences the whole metabolomics workflow and thus needs to be properly assessed to ensure sufficient sample size, minimal introduced and biological variation and appropriate statistical power. Sample preparation needs to be simple, yet potentially global in order to detect as many compounds as possible. Analytical determinations need to be optimised either for the list of targeted compounds or a universal approach. Data processing and statistical analysis approaches vary widely and need to be better harmonised for review and interpretation. This includes validation strategies that are currently deficient in many presented workflows. Common compound identification approaches have been explored in this review. Metabolomics applications are discussed for clinical and forensic toxicology, human and equine sports anti-doping and veterinary residues.
Collapse
Affiliation(s)
- Bethany Keen
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Adam Cawley
- Australian Racing Forensic LaboratoryRacing NSWSydneyNew South WalesAustralia
| | - Brian Reedy
- School of Mathematical and Physical SciencesUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Shanlin Fu
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| |
Collapse
|
4
|
Cawley A, Keen B, Tou K, Elbourne M, Keledjian J. Biomarker ratios. Drug Test Anal 2022; 14:983-990. [PMID: 35293161 DOI: 10.1002/dta.3250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, Australia
| | - Bethany Keen
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Kathy Tou
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Madysen Elbourne
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, Australia
| | - John Keledjian
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, Australia
| |
Collapse
|
5
|
Streun GL, Steuer AE, Ebert LC, Dobay A, Kraemer T. Interpretable machine learning model to detect chemically adulterated urine samples analyzed by high resolution mass spectrometry. Clin Chem Lab Med 2021; 59:1392-1399. [PMID: 33742969 DOI: 10.1515/cclm-2021-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Urine sample manipulation including substitution, dilution, and chemical adulteration is a continuing challenge for workplace drug testing, abstinence control, and doping control laboratories. The simultaneous detection of sample manipulation and prohibited drugs within one single analytical measurement would be highly advantageous. Machine learning algorithms are able to learn from existing datasets and predict outcomes of new data, which are unknown to the model. METHODS Authentic human urine samples were treated with pyridinium chlorochromate, potassium nitrite, hydrogen peroxide, iodine, sodium hypochlorite, and water as control. In total, 702 samples, measured with liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, were used. After retention time alignment within Progenesis QI, an artificial neural network was trained with 500 samples, each featuring 33,448 values. The feature importance was analyzed with the local interpretable model-agnostic explanations approach. RESULTS Following 10-fold cross-validation, the mean sensitivity, specificity, positive predictive value, and negative predictive value was 88.9, 92.0, 91.9, and 89.2%, respectively. A diverse test set (n=202) containing treated and untreated urine samples could be correctly classified with an accuracy of 95.4%. In addition, 14 important features and four potential biomarkers were extracted. CONCLUSIONS With interpretable retention time aligned liquid chromatography high-resolution mass spectrometry data, a reliable machine learning model could be established that rapidly uncovers chemical urine manipulation. The incorporation of our model into routine clinical or forensic analysis allows simultaneous LC-MS analysis and sample integrity testing in one run, thus revolutionizing this field of drug testing.
Collapse
Affiliation(s)
- Gabriel L Streun
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Lars C Ebert
- Department of Forensic Imaging/Virtopsy, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Akos Dobay
- Department of Forensic Imaging/Virtopsy, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.,Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Maurer HH. Hyphenated high-resolution mass spectrometry-the "all-in-one" device in analytical toxicology? Anal Bioanal Chem 2020; 413:2303-2309. [PMID: 33247339 PMCID: PMC7987635 DOI: 10.1007/s00216-020-03064-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
This trend article reviews papers with hyphenated high-resolution mass spectrometry (HRMS) approaches applied in analytical toxicology, particularly in clinical and forensic toxicology published since 2016 and referenced in PubMed. The article focuses on the question of whether HRMS has or will become the all-in-one device in these fields as supposed by the increasing number of HRMS presentations at scientific meetings, corresponding original papers, and review articles. Typical examples for the different application fields are discussed such as targeted or untargeted drug screening, quantification, drug metabolism studies, and metabolomics approaches. Considering the reviewed papers, HRMS is currently the only technique that fulfills the criteria of an all-in-one device for the various applications needed in analytical toxicology. Graphical abstract![]()
Collapse
Affiliation(s)
- Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421, Homburg (Saar), Germany.
| |
Collapse
|
7
|
Maurer HH. Pitfalls in drug testing by hyphenated low- and high-resolution mass spectrometry. Drug Test Anal 2020; 12:172-179. [PMID: 31804756 DOI: 10.1002/dta.2744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
This paper reviews various pitfalls observed during developing, validation, application, and interpretation of drug testing approaches using GC-MS and low- and high-resolution LC-MS. They include sampling and storage of body samples, sample adulteration and contamination, analyte stability, sample preparation without or with cleavage of conjugates, extraction, derivatization, internal standardization, false negative and positive results by GC-MS or LC-MS screening and/or confirmation procedures including artifact formation, ion suppression or enhancement by electrospray ionization, and finally pitfalls in data interpretation. Conclusions and prospects close the Tutorial.
Collapse
Affiliation(s)
- Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, D-66421, Homburg, Germany
| |
Collapse
|
8
|
(Un)targeted hair metabolomics: first considerations and systematic evaluation on the impact of sample preparation. Anal Bioanal Chem 2019; 411:3963-3977. [DOI: 10.1007/s00216-019-01873-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022]
|
9
|
Steuer AE, Brockbals L, Kraemer T. Metabolomic Strategies in Biomarker Research-New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Front Chem 2019; 7:319. [PMID: 31134189 PMCID: PMC6523029 DOI: 10.3389/fchem.2019.00319] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Drug of abuse (DOA) consumption is a growing problem worldwide, particularly with increasing numbers of new psychoactive substances (NPS) entering the drug market. Generally, little information on their adverse effects and toxicity are available. The direct detection and identification of NPS is an analytical challenge due to their ephemerality on the drug scene. An approach that does not directly focus on the structural detection of an analyte or its metabolites, would be beneficial for this complex analytical scenario and the development of alternative screening methods could help to provide fast response on suspected NPS consumption. A metabolomics approach might represent such an alternative strategy for the identification of biomarkers for different questions in DOA testing. Metabolomics is the monitoring of changes in small (endogenous) molecules (<1,000 Da) in response to a certain stimulus, e.g., DOA consumption. For this review, a literature search targeting "metabolomics" and different DOAs or NPS was conducted. Thereby, different applications of metabolomic strategies in biomarker research for DOA identification were identified: (a) as an additional tool for metabolism studies bearing the major advantage that particularly a priori unknown or unexpected metabolites can be identified; and (b) for identification of endogenous biomarker or metabolite patterns, e.g., for synthetic cannabinoids or also to indirectly detect urine manipulation attempts by chemical adulteration or replacement with artificial urine samples. The majority of the currently available literature in that field, however, deals with metabolomic studies for DOAs to better assess their acute or chronic effects or to find biomarkers for drug addiction and tolerance. Certain changes in endogenous compounds are detected for all studied DOAs, but often similar compounds/pathways are influenced. When evaluating these studies with regard to possible biomarkers for drug consumption, the observed changes appear, albeit statistically significant, too small to reliably work as biomarker for drug consumption. Further, different drugs were shown to affect the same pathways. In conclusion, metabolomic approaches possess potential for detection of biomarkers indicating drug consumption. More studies, including more sensitive targeted analyses, multi-variant statistical models or deep-learning approaches are needed to fully explore the potential of omics science in DOA testing.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Lana Brockbals
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|