1
|
Mazzarino M, Al-Mohammed H, Al-Darwish SK, Salama S, Al-Kaabi A, Samsam W, Kraiem S, Botré F, Beotra A, Mohamed-Ali V, Al-Maadheed M. Liquid vs dried blood matrices: Application to longitudinal monitoring of androstenedione, testosterone, and IGF-1 by LC-MS-based techniques. J Pharm Biomed Anal 2024; 242:116007. [PMID: 38367516 DOI: 10.1016/j.jpba.2024.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Dried blood spots have recently been approved by the World Anti-Doping Agency as an alternative biological matrix for testing of doping substances. However, their use is limited to the detection of non-threshold compounds without a Minimum Reporting Level due to the numerous issues related to quantitative analyses and the limitation on testing capabilities of a haemolysed matrix. AIM In this study androstenedione, testosterone and IGF-1 were longitudinally monitored in four different blood matrices to evaluate the potential of liquid capillary blood as an alternative matrix for quantitative determination in doping control analysis. METHODOLOGY The analytical protocols developed to pretreat 20 μL of the blood matrices selected were based: i) for testosterone and androstenedione, on supported liquid extraction for liquid blood matrices, and on ultrasonication in the presence of methanol for dried blood matrices; ii) for IGF-1, proteins precipitation followed by evaporation of the supernatant was used to pretreat both liquid and dried blood matrices. The detection for all the target analytes was performed using liquid chromatography coupled to mass spectrometry. The analytical workflows, once optimized, were fully validated according to the requirements of World Anti-Doping Agency and ISO 17025 standard and used for the analysis of venous (serum) and capillary (liquid plasma and dried whole blood collected using either volumetric or non-volumetric devices) blood samples collected from 7 healthy subjects. RESULTS The validation results showed satisfactory performance as related to specificity, sensitivity, matrix effects, linearity, accuracy, and precision in all the blood matrices evaluated despite the limited volume of sample used. The analysis of the different blood matrices collected from the subjects showed non-significant differences between the levels of testosterone and androstenedione measured in dried (fixed volume collected) and liquid matrices. An acceptable underestimation (lower than 15 %) was observed in capillary plasma compared to venous serum. The testosterone/androstenedione ratio was similar in all the blood matrices considered (bias lower than 5 %), indicating this parameter was not affected by either the blood matrix or collection device selected. For IGF-1, the levels measured in liquid blood matrices differed significantly (bias higher than 20 %) from those measured in dried whole blood matrices, suggesting haemolyzed blood might represent a challenge for the determination of macromolecules, mainly due to the complexity of the whole blood matrix in comparison to plasma/serum. NOVELTY The outcomes of our study suggest that liquid capillary blood might open new avenues to blood microsampling in doping control field. It represents an efficient alternative to overcome the issues related to venous blood and dried blood spot sampling. Furthermore, it also allows greater frequency of blood sampling, with minor discomfort and without needing a phlebotomist, for analyses that can only be performed in blood samples, with an increased probability to detect and report Adverse Analytical Finding.
Collapse
Affiliation(s)
- Monica Mazzarino
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Hana Al-Mohammed
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | | | - Sofia Salama
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - AlAnoud Al-Kaabi
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Waseem Samsam
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Suhail Kraiem
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Francesco Botré
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197, Italy; REDs - Research and Expertise on Doping in Sport, ISSUL - Institute of Sport Sciences, University of Lausanne, Synathlon - Quartier Centre, Lausanne 1015, Switzerland
| | - Alka Beotra
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Vidya Mohamed-Ali
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | - Mohammed Al-Maadheed
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK.
| |
Collapse
|
2
|
Richard V, Mitsa G, Eshghi A, Chaplygina D, Mohammed Y, Goodlett DR, Zahedi RP, Thevis M, Borchers CH. Establishing Personalized Blood Protein Reference Ranges Using Noninvasive Microsampling and Targeted Proteomics: Implications for Antidoping Strategies. J Proteome Res 2024; 23:1779-1787. [PMID: 38655860 PMCID: PMC11077581 DOI: 10.1021/acs.jproteome.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
To prevent doping practices in sports, the World Anti-Doping Agency implemented the Athlete Biological Passport (ABP) program, monitoring biological variables over time to indirectly reveal the effects of doping rather than detect the doping substance or the method itself. In the context of this program, a highly multiplexed mass spectrometry-based proteomics assay for 319 peptides corresponding to 250 proteins was developed, including proteins associated with blood-doping practices. "Baseline" expression profiles of these potential biomarkers in capillary blood (dried blood spots (DBS)) were established using multiple reaction monitoring (MRM). Combining DBS microsampling with highly multiplexed MRM assays is the best-suited technology to enhance the effectiveness of the ABP program, as it represents a cost-effective and robust alternative analytical method with high specificity and selectivity of targets in the attomole range. DBS data were collected from 10 healthy athlete volunteers over a period of 140 days (28 time points per participant). These comprehensive findings provide a personalized targeted blood proteome "fingerprint" showcasing that the targeted proteome is unique to an individual and likely comparable to a DNA fingerprint. The results can serve as a baseline for future studies investigating doping-related perturbations.
Collapse
Affiliation(s)
- Vincent
R. Richard
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Georgia Mitsa
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Division
of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1, Canada
| | - Azad Eshghi
- University
of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Daria Chaplygina
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Yassene Mohammed
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZC, The Netherlands
| | - David R. Goodlett
- University
of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Rene P. Zahedi
- Manitoba
Centre for Proteomics and Systems Biology, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- CancerCare
Manitoba Research Institute, Winnipeg, Manitoba R3E 0V9, Canada
| | - Mario Thevis
- Institute
of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Cologne 50933, Germany
- European
Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn 50933, Germany
| | - Christoph H. Borchers
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Division
of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1, Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montréal, Quebec H4A 3T2, Canada
- Department
of Pathology, McGill University, Montréal, Quebec H4A 3J1, Canada
| |
Collapse
|
3
|
Thomas A, Thevis M. Recent advances in mass spectrometry for the detection of doping. Expert Rev Proteomics 2024; 21:27-39. [PMID: 38214680 DOI: 10.1080/14789450.2024.2305432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The analysis of doping control samples is preferably performed by mass spectrometry, because obtained results meet the highest analytical standards and ensure an impressive degree of reliability. The advancement in mass spectrometry and all its associated technologies thus allow for continuous improvements in doping control analysis. AREAS COVERED Modern mass spectrometric systems have reached a status of increased sensitivity, robustness, and specificity within the last decade. The improved sensitivity in particular has, on the other hand, also led to the detection of drug residues that were attributable to scenarios where the prohibited substances were not administered consciously but rather by the unconscious ingestion of or exposure to contaminated products. These scenarios and their doubtless clarification represent a great challenge. Here, too, modern MS systems and their applications can provide good insights in the interpretation of dose-related metabolism of prohibited substances. In addition to the development of new instruments itself, software-assisted analysis of the sometimes highly complex data is playing an increasingly important role and facilitating the work of doping control laboratories. EXPERT OPINION The sensitive analysis and evaluation of a higher number of samples in a shorter time is made possible by the ongoing developments in mass spectrometry.
Collapse
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
4
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review 16 th edition-Analytical approaches in human sports drug testing 2022/2023. Drug Test Anal 2024; 16:5-29. [PMID: 37985429 DOI: 10.1002/dta.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
In this 16th edition of the annual banned-substance review on analytical approaches in human sports drug testing, literature on recent developments in this particular section of global anti-doping efforts that was published between October 2022 and September 2023 is summarized and discussed. Most recent additions to the continuously growing portfolio of doping control analytical approaches and investigations into analytical challenges in the context of adverse analytical findings are presented, taking into account existing as well as emerging challenges in anti-doping, with specific focus on substances and methods of doping recognized in the World Anti-Doping Agency's 2023 Prohibited List. As in previous years, focus is put particularly on new or enhanced analytical options in human doping controls, appreciating the exigence and core mission of anti-doping and, equally, the conflict arising from the opposingly trending extent of the athlete's exposome and the sensitivity of instruments nowadays commonly available in anti-doping laboratories.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|