1
|
Dube DK, Wang J, Pellenz C, Fan Y, Dube S, Han M, Linask K, Sanger JM, Sanger JW. Expression of myotilin during chicken development. Anat Rec (Hoboken) 2014; 297:1596-603. [PMID: 25125173 PMCID: PMC4135462 DOI: 10.1002/ar.22964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/07/2013] [Indexed: 12/12/2022]
Abstract
Several missense mutations in the Z-band protein, myotilin, have been implicated in human muscle diseases such as myofibrillar myopathy, spheroid body myopathy, and distal myopathy. Recently, we have reported the cloning of chicken myotilin cDNA. In this study, we have investigated the expression of myotilin in cross-striated muscles from developing chicken by qRT-PCR and in situ hybridizations. In situ hybridization of embryonic stages shows myotilin gene expression in heart, somites, neural tissue, eyes and otocysts. RT-PCR and qRT-PCR data, together with in situ hybridization results point to a biphasic transcriptional pattern for MYOT gene during early heart development with maximum expression level in the adult. In skeletal muscle, the expression level starts decreasing after embryonic day 20 and declines in the adult skeletal muscles. Western blot assays of myotilin in adult skeletal muscle reveal a decrease in myotilin protein compared with levels in embryonic skeletal muscle. Our results suggest that MYOT gene may undergo transcriptional activation and repression that varies between tissues in developing chicken. We believe this is the first report of the developmental regulation on myotilin expression in non-mammalian species.
Collapse
Affiliation(s)
- Dipak K. Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Christopher Pellenz
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Mingda Han
- Department of Pediatrics, University of South Morsani College of Medicine Florida, Tampa, FL 33701
| | - Kersti Linask
- Department of Pediatrics, University of South Morsani College of Medicine Florida, Tampa, FL 33701
| | - Jean M. Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Joseph W. Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
2
|
A novel perfused rotary bioreactor for cardiomyogenesis of embryonic stem cells. Biotechnol Lett 2014; 36:947-60. [PMID: 24652542 DOI: 10.1007/s10529-014-1456-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 10(5) cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.
Collapse
|
3
|
Bai J, Hu Y, Wang YR, Liu LF, Chen J, Su SP, Wang Y. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity. J Geriatr Cardiol 2012; 9:166-71. [PMID: 22916064 PMCID: PMC3418907 DOI: 10.3724/sp.j.1263.2011.12091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 11/25/2022] Open
Abstract
Objective To compare the characterization and myocardial differentiation capacity of amniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, α-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities of WJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, α-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.
Collapse
Affiliation(s)
- Jing Bai
- Department of Cardiology, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Bai J, Wang Y, Liu L, Chen J, Yang W, Gao L, Wang Y. Human amniotic fluid-derived c-kit(+) and c-kit (-) stem cells: growth characteristics and some differentiation potential capacities comparison. Cytotechnology 2012; 64:577-89. [PMID: 22410808 DOI: 10.1007/s10616-012-9441-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/14/2012] [Indexed: 01/22/2023] Open
Abstract
Amniotic fluid (AF) contains heterogeneous and multipotential cell types. A pure mesenchymal stem cells group can be sorted from AF using flow cytometry. In order to evaluate a possible therapeutic application of these cells, the human AF-derived c-kit(+) stem cells (c-kit(+) AFS) were compared with the c-kit(-) (unselected) stem cells (c-kit(-) AFS). Our findings revealed that the optimal period to obtain c-kit(+) AFS cells was between 16 and 22 weeks of gestation. Following cell sorting, c-kit(+) AFS cells shared similar morphological and proliferative characteristics as the c-kit(-) AFS cells. Both c-kit(+) and c-kit(-) AFS cells had the characteristics of mesenchymal stem cells through surface marker identification by flow cytometric and immunocytochemical analysis. Both c-kit(+) and c-kit(-) AFS cells could differentiate along adipogenic and osteogenic lineages. However, the myocardial differentiation capacity was enhanced in c-kit(+) AFS cells by detecting GATA-4, cTnT, α-actin, Cx43 mRNA and protein expression after myocardial induction; whereas induced c-kit(-) AFS cells were only detected with GATA-4 mRNA and protein expression. The c-kit(+) AFS cells could have potential clinical application for myogenesis in cardiac regenerative therapy.
Collapse
Affiliation(s)
- Jing Bai
- Department of Cardiology, First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Lopez-Sanchez C, Garcia-Martinez V. Molecular determinants of cardiac specification. Cardiovasc Res 2011; 91:185-95. [DOI: 10.1093/cvr/cvr127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Darnell DK, Stanislaw S, Kaur S, Antin PB. Whole mount in situ hybridization detection of mRNAs using short LNA containing DNA oligonucleotide probes. RNA (NEW YORK, N.Y.) 2010; 16:632-637. [PMID: 20086052 PMCID: PMC2822927 DOI: 10.1261/rna.1775610] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 11/19/2009] [Indexed: 05/28/2023]
Abstract
In situ hybridization is widely used to visualize transcribed sequences in embryos, tissues, and cells. For whole mount detection of mRNAs in embryos, hybridization with an antisense RNA probe is followed by visual or fluorescence detection of target mRNAs. A limitation of this approach is that a cDNA template of the target RNA must be obtained in order to generate the antisense RNA probe. Here we investigate the use of short (12-24 nucleotides) locked nucleic acid (LNA) containing DNA probes for whole mount in situ hybridization detection of mRNAs. Following extensive protocol optimization, we show that LNA probes can be used to localize several mRNAs of varying abundances in chicken embryos. LNA probes also detected alternatively spliced exons that are processed in a tissue specific manner. The use of LNA probes for whole mount in situ detection of mRNAs will enable in silico design and chemical synthesis and will expand the general use of in situ hybridization for studies of transcriptional regulation and alternative splicing.
Collapse
Affiliation(s)
- Diana K Darnell
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
7
|
Nakajima Y, Sakabe M, Matsui H, Sakata H, Yanagawa N, Yamagishi T. Heart development before beating. Anat Sci Int 2009; 84:67-76. [DOI: 10.1007/s12565-009-0025-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/21/2008] [Indexed: 12/21/2022]
|
8
|
|
9
|
Kamaid A, Giráldez F. Btg1 and Btg2 gene expression during early chick development. Dev Dyn 2008; 237:2158-69. [PMID: 18651656 DOI: 10.1002/dvdy.21616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Btg/Tob genes encode for a new family of proteins with antiproliferative functions, which are also able to stimulate cell differentiation. Btg1 and Btg2 are the most closely related members in terms of gene sequence. We analyzed their expression patterns in avian embryos by in situ hybridization, from embryonic day 1 to 3. Btg1 was distinctively expressed in the Hensen's node, the notochord, the cardiogenic mesoderm, the lens vesicle, and in the apical ectodermal ridge and mesenchyme of the limb buds. On the other hand, Btg2 expression domains included the neural plate border, presomitic mesoderm, trigeminal placode, and mesonephros. Both genes were commonly expressed in the myotome, epibranchial placodes, and dorsal neural tube. The results suggest that Btg1 and Btg2 are involved in multiple developmental processes. Overlapping expression of Btg1 and Btg2 may imply redundant functions, but unique expression patterns suggest also differential regulation and function.
Collapse
Affiliation(s)
- Andrés Kamaid
- Developmental Biology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
10
|
Hardy KM, Garriock RJ, Yatskievych TA, D'Agostino SL, Antin PB, Krieg PA. Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation. Dev Biol 2008; 320:391-401. [PMID: 18602094 DOI: 10.1016/j.ydbio.2008.05.546] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/05/2008] [Accepted: 05/21/2008] [Indexed: 12/31/2022]
Abstract
Knowledge of the molecular mechanisms regulating cell ingression, epithelial-mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediate mesoderm, and in differentiated myocardial cells, but not in the streak. Here, we identify a previously uncharacterized chicken Wnt11 gene, Wnt11b, that is orthologous to the frog Wnt11 and zebrafish Wnt11 (silberblick) genes. Chicken Wnt11b is expressed in the primitive streak in a pattern similar to chicken Wnt5a and Wnt5b. When non-canonical Wnt signaling is blocked using a Dishevelled dominant-negative protein, gastrulation movements are inhibited and cells accumulate in the primitive streak. Furthermore, disruption of non-canonical Wnt signaling by overexpression of full-length or dominant-negative Wnt11b or Wnt5a constructions abrogates normal cell migration through the primitive streak. We conclude that non-canonical Wnt signaling, mediated in part by Wnt11b, is important for regulation of gastrulation cell movements in the avian embryo.
Collapse
Affiliation(s)
- Katharine M Hardy
- Department of Cell Biology and Anatomy, Medical Research Building, 1656 E. Mabel Street, P.O. Box 245217, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
11
|
Matsui H, Sakabe M, Sakata H, Yanagawa N, Ikeda K, Yamagishi T, Nakajima Y. Induction of initial heart α-actin, smooth muscle α-actin, in chick pregastrula epiblast: The role of hypoblast and fibroblast growth factor-8. Dev Growth Differ 2008; 50:143-57. [DOI: 10.1111/j.1440-169x.2008.00987.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Druyan S, Cahaner A, Ashwell C. The Expression Patterns of Hypoxia-Inducing Factor Subunit α-1, Heme Oxygenase, Hypoxia Upregulated Protein 1, and Cardiac Troponin T During Development of the Chicken Heart. Poult Sci 2007; 86:2384-9. [DOI: 10.3382/ps.2007-00152] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Warkman AS, Yatskievych TA, Hardy KM, Krieg PA, Antin PB. Myocardin expression during avian embryonic heart development requires the endoderm but is independent of BMP signaling. Dev Dyn 2007; 237:216-21. [DOI: 10.1002/dvdy.21393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
14
|
Torlopp A, Breher SS, Schlüter J, Brand T. Comparative analysis of mRNA and protein expression of Popdc1 (Bves) during early development in the chick embryo. Dev Dyn 2006; 235:691-700. [PMID: 16444735 DOI: 10.1002/dvdy.20687] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The isolation of the Popeye gene family was based on its preferential expression in striated muscle tissue. Recently, a monoclonal antibody against chick Popdc1 (also known as Bves) became available and was used in this study to comparatively analyze the expression pattern of Popdc1 at both the protein and mRNA level during early chick embryogenesis. Using whole-mount immunohistochemistry, expression in the heart was first observed at Hamburger and Hamilton (HH) stage 10 in the presumptive left ventricular segment. Cardiac expression was confined to differentiated cardiac myocytes, and undifferentiated myocytes at the anterior and posterior pole showed little expression. After looping, the outer curvature myocardium showed prominent Popdc1 staining, whereas the inner curvature was unlabeled. Despite previous reports, Popdc1 protein was not detectable at any time point in the proepicardium, epicardium, or the smooth muscle layer of the coronary vessels. Whole-mount in situ hybridization using a full-length Popdc1 probe detected novel expression domains, which have not been described previously. Popdc1 mRNA was found in Hensen's node at HH stage 4, and by HH stage 5+, expression became asymmetric. In addition, Popdc1 mRNA was found in pharyngeal endoderm and in the notochordal plate. Subsequently, beginning at HH stage 9, Popdc1 mRNA expression was found in the cardiac mesoderm and expression was maintained in the heart in a pattern very similar to the one observed by antibody staining.
Collapse
Affiliation(s)
- Angela Torlopp
- Cell and Molecular Biology, Technical University of Braunschweig, Germany
| | | | | | | |
Collapse
|
15
|
Klewer SE, Yatskievych T, Pogreba K, Stevens MV, Antin PB, Camenisch TD. Has2 expression in heart forming regions is independent of BMP signaling. Gene Expr Patterns 2006; 6:462-70. [PMID: 16458617 DOI: 10.1016/j.modgep.2005.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/11/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
Heart septation and valve malformations constitute the most common birth defects. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of cardiac jelly and endocardial cushions, a loss of vascular integrity, and embryonic death at E9.5. Despite the requirements for Has2 and its synthetic product hyaluronan (HA) in the developing cardiovascular system, little is known about the normal expression pattern of Has2 or the factors regulating Has2 gene transcription during development. Bmp signaling is an important regulator of cardiac myogenesis, and is also important for endocardial cushion formation. The current study defines the embryonic expression pattern of Has2 and explores the regulation of Has2 gene expression by Bmp signaling. In situ hybridization studies demonstrate dynamic Has2 expression patterns during myocardial cell development and cardiac tube formation, formation of the cardiac endocardial cushions, and cushion invasion by valve primordial cells. Despite overlapping regional expression of Bmp2 in the late gastrula anterior lateral endoderm and Has2 in the adjacent cardiogenic mesoderm, application of noggin-expressing CHO cells beneath the endoderm failed to perturb normal Has2 expression. Thus, in contrast to many genes expressed in the heart forming region, regulation of Has2 in the cardiogenic mesoderm is independent of Bmp signaling.
Collapse
Affiliation(s)
- Scott E Klewer
- Department of Pediatrics, Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Moreno-Rodriguez RA, Krug EL, Reyes L, Villavicencio L, Mjaatvedt CH, Markwald RR. Bidirectional fusion of the heart-forming fields in the developing chick embryo. Dev Dyn 2006; 235:191-202. [PMID: 16252277 PMCID: PMC1855217 DOI: 10.1002/dvdy.20601] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory "butterfly"-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a bi-conal heart. A theoretical role of the ventral fusion line acting as a "heart organizer" and its role in cardia bifida is discussed.
Collapse
Affiliation(s)
- R A Moreno-Rodriguez
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Afrakhte M, Schultheiss TM. Construction and analysis of a subtracted library and microarray of cDNAs expressed specifically in chicken heart progenitor cells. Dev Dyn 2005; 230:290-8. [PMID: 15162507 DOI: 10.1002/dvdy.20059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A subtracted library was constructed of genes expressed specifically in the chick precardiac mesoendoderm. The subtracted library was obtained by hybridization of nucleic acids derived from a starting tester library of stage 4-7 chick precardiac mesoendoderm and a starting driver library of stage 2 area pellucida. Approximately 11,000 clones from the resulting subtracted library were printed onto a microarray. Screening of the microarray with probes derived from cardiac and noncardiac tissues, followed by in situ hybridization during chick embryo development, has identified multiple cardiac-specific genes, including several that have not been characterized previously. The microarray will be useful for future attempts to identify additional novel cardiac-specific genes, as well as to characterize patterns of gene expression during heart differentiation.
Collapse
Affiliation(s)
- Mozhgan Afrakhte
- Department of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
18
|
Zhang W, Yatskievych TA, Baker RK, Antin PB. Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling. Dev Biol 2004; 268:312-26. [PMID: 15063170 DOI: 10.1016/j.ydbio.2004.01.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 11/25/2003] [Accepted: 01/08/2004] [Indexed: 11/15/2022]
Abstract
The vertebrate liver and heart arise from adjacent cell layers in the anterior lateral (AL) endoderm and mesoderm of late gastrula embryos, and the earliest stages of liver and heart development are interrelated through reciprocal tissue interactions. Although classical embryological studies performed several decades ago in chick and quail defined the timing of hepatogenic induction in birds and the important role for cardiogenic mesoderm in this process, almost nothing is known about the molecular aspects of avian liver development. Here we use in vivo and explantation assays to investigate tissue interactions and signaling pathways regulating Hex, a homeobox gene required for liver development, and the earliest stages of hepatogenesis in the chick embryo. We find that explants of late gastrula anterior lateral endoderm plus mesoderm, which have been used extensively for studies relating to heart development, also produce albumin-expressing hepatoblasts. Expression of Hex, the earliest known molecular marker for the hepatogenic endoderm, and albumin, indicative of early committed hepatoblasts, requires both autocrine Bmp signaling and a specific paracrine signal from the cardiogenic (anterior lateral) mesoderm. Endodermal expression of Fox2a, in contrast, requires the mesoderm but is independent of Bmp signaling. In vivo induction assays show that the ability of BMP2 to activate Hex expression in the endoderm is restricted to a region that is only slightly larger than the endogenous domain of Hex expression. Although Fgfs can substitute for the cardiogenic mesoderm to support the expression of Hex and albumin in the endoderm, several Fgf genes are expressed in the anterior lateral endoderm but an Fgf expressed predominantly in the mesoderm was not identified. Studies also showed that Fgf gene expression in the endoderm does not require a signal from the mesoderm. Mechanisms regulating endodermal signaling pathways activated by Fgfs may therefore be more complex than previously appreciated.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
19
|
Hsiao CD, Tsai WY, Horng LS, Tsai HJ. Molecular structure and developmental expression of three muscle-type troponin T genes in zebrafish. Dev Dyn 2003; 227:266-79. [PMID: 12761854 DOI: 10.1002/dvdy.10305] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin T (Tnnt), a troponin component, interacts with tropomyosin and is crucial to the regulation of striated muscle contraction. To gain insight into the molecular evolution and developmental regulation of Tnnt gene (Tnnt) in lower vertebrates, zebrafish Tnnt1 (slow Tnnt), Tnnt2 (cardiac Tnnt), and Tnnt3b (fast Tnnt isoform b) were characterized. The polypeptides of zebrafish Tnnt1, Tnnt2, and Tnnt3b were conserved in the central tropomyosin- and C-terminal troponin I-binding domains. However, the N-terminal hypervariable regions were highly extended and rich in glutamic acid in polypeptides of Tnnt1 and Tnnt2, but not Tnnt3b. The Tnnt2 and Tnnt3b contain introns, whereas Tnnt1 is intron-free. During development, large to small, alternatively spliced variants were detected in Tnnt2, but not in Tnnt1 or Tnnt3. Whole-mount in situ hybridization showed zebrafish Tnnt1 and Tnnt2 are activated during early somitogenesis (10 hr postfertilization, hpf) and cardiogenesis (14 hpf), respectively, but Tnnt3b is not activated until middle somitogenesis (18 hpf). Tnnt2 and Tnnt3b expression was cardiac- and fast-muscle specific, but Tnnt1 was expressed in both slow and fast muscles. We propose that three, distinct, muscle-type Tnnt evolved after the divergence of fish and deuterostome invertebrates. In zebrafish, the developmental regulation of Tnnt during somitogenesis and cardiogenesis is more restricted and simpler than in tetrapods. These new findings may provide insight into the developmental regulation and molecular evolution of vertebrate Tnnt.
Collapse
Affiliation(s)
- Chung-Der Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|