1
|
Dang Y, Zhu L, Yuan P, Liu Q, Guo Q, Chen X, Gao S, Liu X, Ji S, Yuan Y, Lian Y, Li R, Yan L, Wong CCL, Qiao J. Functional profiling of stage-specific proteome and translational transition across human pre-implantation embryo development at a single-cell resolution. Cell Discov 2023; 9:10. [PMID: 36693841 PMCID: PMC9873803 DOI: 10.1038/s41421-022-00491-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/03/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Yujiao Dang
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liu Zhu
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China
| | - Peng Yuan
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Liu
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qianying Guo
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Shuaixin Gao
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China
| | - Xiao Liu
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China
| | - Shushen Ji
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China
| | - Yifeng Yuan
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ying Lian
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liying Yan
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing, China
| | - Catherine C. L. Wong
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.452723.50000 0004 7887 9190Peking-Tsinghua Center for Life Sciences, Beijing, China ,grid.413106.10000 0000 9889 6335Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jie Qiao
- grid.11135.370000 0001 2256 9319Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Precision Medicine Multi-Omics Research, Third Hospital, Peking University, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing, China ,grid.452723.50000 0004 7887 9190Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
2
|
Hidalgo-Sánchez M, Andreu-Cervera A, Villa-Carballar S, Echevarria D. An Update on the Molecular Mechanism of the Vertebrate Isthmic Organizer Development in the Context of the Neuromeric Model. Front Neuroanat 2022; 16:826976. [PMID: 35401126 PMCID: PMC8987131 DOI: 10.3389/fnana.2022.826976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
A crucial event during the development of the central nervous system (CNS) is the early subdivision of the neural tube along its anterior-to-posterior axis to form neuromeres, morphogenetic units separated by transversal constrictions and programed for particular genetic cascades. The narrower portions observed in the developing neural tube are responsible for relevant cellular and molecular processes, such as clonal restrictions, expression of specific regulatory genes, and differential fate specification, as well as inductive activities. In this developmental context, the gradual formation of the midbrain-hindbrain (MH) constriction has been an excellent model to study the specification of two major subdivisions of the CNS containing the mesencephalic and isthmo-cerebellar primordia. This MH boundary is coincident with the common Otx2-(midbrain)/Gbx2-(hindbrain) expressing border. The early interactions between these two pre-specified areas confer positional identities and induce the generation of specific diffusible morphogenes at this interface, in particular FGF8 and WNT1. These signaling pathways are responsible for the gradual histogenetic specifications and cellular identity acquisitions with in the MH domain. This review is focused on the cellular and molecular mechanisms involved in the specification of the midbrain/hindbrain territory and the formation of the isthmic organizer. Emphasis will be placed on the chick/quail chimeric experiments leading to the acquisition of the first fate mapping and experimental data to, in this way, better understand pioneering morphological studies and innovative gain/loss-of-function analysis.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Sergio Villa-Carballar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Diego Echevarria
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| |
Collapse
|
3
|
Dutrow EV, Emera D, Yim K, Uebbing S, Kocher AA, Krenzer M, Nottoli T, Burkhardt DB, Krishnaswamy S, Louvi A, Noonan JP. Modeling uniquely human gene regulatory function via targeted humanization of the mouse genome. Nat Commun 2022; 13:304. [PMID: 35027568 PMCID: PMC8758698 DOI: 10.1038/s41467-021-27899-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
The evolution of uniquely human traits likely entailed changes in developmental gene regulation. Human Accelerated Regions (HARs), which include transcriptional enhancers harboring a significant excess of human-specific sequence changes, are leading candidates for driving gene regulatory modifications in human development. However, insight into whether HARs alter the level, distribution, and timing of endogenous gene expression remains limited. We examined the role of the HAR HACNS1 (HAR2) in human evolution by interrogating its molecular functions in a genetically humanized mouse model. We find that HACNS1 maintains its human-specific enhancer activity in the mouse embryo and modifies expression of Gbx2, which encodes a transcription factor, during limb development. Using single-cell RNA-sequencing, we demonstrate that Gbx2 is upregulated in the limb chondrogenic mesenchyme of HACNS1 homozygous embryos, supporting that HACNS1 alters gene expression in cell types involved in skeletal patterning. Our findings illustrate that humanized mouse models provide mechanistic insight into how HARs modified gene expression in human evolution.
Collapse
Affiliation(s)
- Emily V Dutrow
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Kristina Yim
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martina Krenzer
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Neuroscience Research Training Program, Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Daniel B Burkhardt
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Cellarity, Cambridge, MA, 02139, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Comprehensive analysis of target genes in zebrafish embryos reveals gbx2 involvement in neurogenesis. Dev Biol 2017; 430:237-248. [DOI: 10.1016/j.ydbio.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/21/2022]
|
5
|
Lai HC, Seal RP, Johnson JE. Making sense out of spinal cord somatosensory development. Development 2017; 143:3434-3448. [PMID: 27702783 DOI: 10.1242/dev.139592] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits.
Collapse
Affiliation(s)
- Helen C Lai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Rollins NK, Booth TN, Chahrour MH. Variability of Ponto-cerebellar Fibers by Diffusion Tensor Imaging in Diverse Brain Malformations. J Child Neurol 2017; 32:271-285. [PMID: 27920266 DOI: 10.1177/0883073816680734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To describe pontine axonal anomalies across diverse brain malformations. Institutional review board-approved review of magnetic resonance imaging (MRI) and genetic testing of 31 children with brain malformations and abnormal pons by diffusion tensor imaging. Anomalous dorsal pontocerebellar tracts were seen in mid-hindbrain anomalies and in diffuse malformations of cortical development including lissencephaly, gyral disorganization with dysplastic basal ganglia, presumed congenital fibrosis of extraocular muscles type 3, and in callosal agenesis without malformations of cortical development. Heterotopic and hypoplastic corticospinal tracts were seen in callosal agenesis and in focal malformations of cortical development. There were no patterns by chromosomal microarray analysis in the non-lissencephalic brains. In lissencephaly, there was no relationship between severity, deletion size, or appearance of the pontocerebellar tract. Pontine axonal anomalies may relate to defects in precerebellar neuronal migration, chemotactic signaling of the pontine neurons, and/or corticospinal tract pathfinding and collateral branching not detectable with routine genetic testing.
Collapse
Affiliation(s)
- Nancy K Rollins
- 1 Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Department of Radiology, Children's Health System of Texas, Dallas, TX, USA
| | - Timothy N Booth
- 1 Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Department of Radiology, Children's Health System of Texas, Dallas, TX, USA
| | - Maria H Chahrour
- 3 Departments of Neuroscience and Psychiatry, Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Proudfoot A, Geralt M, Elsliger MA, Wilson IA, Wüthrich K, Serrano P. Dynamic Local Polymorphisms in the Gbx1 Homeodomain Induced by DNA Binding. Structure 2016; 24:1372-1379. [PMID: 27396829 DOI: 10.1016/j.str.2016.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
The Gastrulation Brain Homeobox 1 (Gbx1) gene encodes the Gbx1 homeodomain that targets TAATTA motifs in double-stranded DNA (dsDNA). Residues Glu17 and Arg52 in Gbx1 form a salt bridge, which is preserved in crystal structures and molecular dynamics simulations of homologous homeodomain-DNA complexes. In contrast, our nuclear magnetic resonance (NMR) studies show that DNA binding to Gbx1 induces dynamic local polymorphisms, which include breaking of the Glu17-Arg52 salt bridge. To study this interaction, we produced a variant with Glu17Arg and Arg52Glu mutations, which exhibited the same fold as the wild-type protein, but a 2-fold reduction in affinity for dsDNA. Analysis of the NMR structures of the Gbx1 homeodomain in the free form, the Gbx1[E17R,R52E] variant, and a Gbx1 homeodomain-DNA complex showed that stabilizing interactions of the Arg52 side chain with the DNA backbone are facilitated by transient breakage of the Glu17-Arg52 salt bridge in the DNA-bound Gbx1.
Collapse
Affiliation(s)
- Andrew Proudfoot
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | - Marc-Andre Elsliger
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Joint Center for Structural Genomics, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
|
9
|
Del Barrio MG, Bourane S, Grossmann K, Schüle R, Britsch S, O’Leary DD, Goulding M. A transcription factor code defines nine sensory interneuron subtypes in the mechanosensory area of the spinal cord. PLoS One 2013; 8:e77928. [PMID: 24223744 PMCID: PMC3817166 DOI: 10.1371/journal.pone.0077928] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022] Open
Abstract
Interneurons in the dorsal spinal cord process and relay innocuous and nociceptive somatosensory information from cutaneous receptors that sense touch, temperature and pain. These neurons display a well-defined organization with respect to their afferent innervation. Nociceptive afferents innervate lamina I and II, while cutaneous mechanosensory afferents primarily innervate sensory interneurons that are located in lamina III-IV. In this study, we outline a combinatorial transcription factor code that defines nine different inhibitory and excitatory interneuron populations in laminae III-IV of the postnatal cord. This transcription factor code reveals a high degree of molecular diversity in the neurons that make up laminae III-IV, and it lays the foundation for systematically analyzing and manipulating these different neuronal populations to assess their function. In addition, we find that many of the transcription factors that are expressed in the dorsal spinal cord at early postnatal times continue to be expressed in the adult, raising questions about their function in mature neurons and opening the door to their genetic manipulation in adult animals.
Collapse
Affiliation(s)
- Marta Garcia Del Barrio
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Katja Grossmann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Roland Schüle
- Urologische Klinik/Frauenklinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Stefan Britsch
- Department of Medical Genetics, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Molecular and Cellular Anatomy Ulm University, Ulm, Germany
| | - Dennis D.M. O’Leary
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Nakayama Y, Kikuta H, Kanai M, Yoshikawa K, Kawamura A, Kobayashi K, Wang Z, Khan A, Kawakami K, Yamasu K. Gbx2 functions as a transcriptional repressor to regulate the specification and morphogenesis of the mid–hindbrain junction in a dosage- and stage-dependent manner. Mech Dev 2013; 130:532-52. [DOI: 10.1016/j.mod.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022]
|
11
|
Su CY, Kemp HA, Moens CB. Cerebellar development in the absence of Gbx function in zebrafish. Dev Biol 2013; 386:181-90. [PMID: 24183937 DOI: 10.1016/j.ydbio.2013.10.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/26/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is a well-known organizing center during vertebrate brain development. The MHB forms at the expression boundary of Otx2 and Gbx2, mutually repressive homeodomain transcription factors expressed in the midbrain/forebrain and anterior hindbrain, respectively. The genetic hierarchy of gene expression at the MHB is complex, involving multiple positive and negative feedback loops that result in the establishment of non-overlapping domains of Wnt1 and Fgf8 on either side of the boundary and the consequent specification of the cerebellum. The cerebellum derives from the dorsal part of the anterior-most hindbrain segment, rhombomere 1 (r1), which undergoes a distinctive morphogenesis to give rise to the cerebellar primordium within which the various cerebellar neuron types are specified. Previous studies in the mouse have shown that Gbx2 is essential for cerebellar development. Using zebrafish mutants we show here that in the zebrafish gbx1 and gbx2 are required redundantly for morphogenesis of the cerebellar primordium and subsequent cerebellar differentiation, but that this requirement is alleviated by knocking down Otx. Expression of fgf8, wnt1 and the entire MHB genetic program is progressively lost in gbx1-;gbx2- double mutants but is rescued by Otx knock-down. This rescue of the MHB genetic program depends on rescued Fgf signaling, however the rescue of cerebellar primordium morphogenesis is independent of both Gbx and Fgf. Based on our findings we propose a revised model for the role of Gbx in cerebellar development.
Collapse
Affiliation(s)
- Chen-Ying Su
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hilary A Kemp
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Meziane H, Fraulob V, Riet F, Krezel W, Selloum M, Geffarth M, Acampora D, Hérault Y, Simeone A, Brand M, Dollé P, Rhinn M. The homeodomain factor Gbx1 is required for locomotion and cell specification in the dorsal spinal cord. PeerJ 2013; 1:e142. [PMID: 24010020 PMCID: PMC3757465 DOI: 10.7717/peerj.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 08/04/2013] [Indexed: 12/22/2022] Open
Abstract
Dorsal horn neurons in the spinal cord integrate and relay sensory information to higher brain centers. These neurons are organized in specific laminae and different transcription factors are involved in their specification. The murine homeodomain Gbx1 protein is expressed in the mantle zone of the spinal cord at E12.5-13.5, correlating with the appearance of a discernable dorsal horn around E14 and eventually defining a narrow layer in the dorsal horn around perinatal stages. At postnatal stages, Gbx1 identifies a specific subpopulation of GABAergic neurons in the dorsal spinal cord. We have generated a loss of function mutation for Gbx1 and analyzed its consequences during spinal cord development. Gbx1−/− mice are viable and can reproduce as homozygous null mutants. However, the adult mutant mice display an altered gait during forward movement that specifically affects the hindlimbs. This abnormal gait was evaluated by a series of behavioral tests, indicating that locomotion is impaired, but not muscle strength or motor coordination. Molecular analysis showed that the development of the dorsal horn is not profoundly affected in Gbx1−/− mutant mice. However, analysis of terminal neuronal differentiation revealed that the proportion of GABAergic inhibitory interneurons in the superficial dorsal horn is diminished. Our study unveiled a role for Gbx1 in specifying a subset of GABAergic neurons in the dorsal horn of the spinal cord involved in the control of posterior limb movement.
Collapse
Affiliation(s)
- Hamid Meziane
- Mouse Clinical Institute / Institut Clinique de la Souris, PHENOMIN, GIE CERBM, Illkirch Cedex, France
| | - Valérie Fraulob
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Illkirch Cedex, France
| | - Fabrice Riet
- Mouse Clinical Institute / Institut Clinique de la Souris, PHENOMIN, GIE CERBM, Illkirch Cedex, France
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Illkirch Cedex, France
| | - Mohammed Selloum
- Mouse Clinical Institute / Institut Clinique de la Souris, PHENOMIN, GIE CERBM, Illkirch Cedex, France
| | - Michaela Geffarth
- DFG-Center for Regenerative Therapies / Cluster of Excellence, and Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Dario Acampora
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Naples, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Yann Hérault
- Mouse Clinical Institute / Institut Clinique de la Souris, PHENOMIN, GIE CERBM, Illkirch Cedex, France
| | - Antonio Simeone
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Naples, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Michael Brand
- DFG-Center for Regenerative Therapies / Cluster of Excellence, and Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Illkirch Cedex, France
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Illkirch Cedex, France
| |
Collapse
|
13
|
Buckley DM, Burroughs-Garcia J, Lewandoski M, Waters ST. Characterization of the Gbx1-/- mouse mutant: a requirement for Gbx1 in normal locomotion and sensorimotor circuit development. PLoS One 2013; 8:e56214. [PMID: 23418536 PMCID: PMC3572027 DOI: 10.1371/journal.pone.0056214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/08/2013] [Indexed: 01/13/2023] Open
Abstract
The Gbx class of homeobox genes encodes DNA binding transcription factors involved in regulation of embryonic central nervous system (CNS) development. Gbx1 is dynamically expressed within spinal neuron progenitor pools and becomes restricted to the dorsal mantle zone by embryonic day (E) 12.5. Here, we provide the first functional analysis of Gbx1. We generated mice containing a conditional Gbx1 allele in which exon 2 that contains the functional homeodomain is flanked with loxP sites (Gbx1(flox)); Cre-mediated recombination of this allele results in a Gbx1 null allele. In contrast to mice homozygous for a loss-of-function allele of Gbx2, mice homozygous for the Gbx1 null allele, Gbx1(-/-), are viable and reproductively competent. However, Gbx1(-/-) mice display a gross locomotive defect that specifically affects hindlimb gait. Analysis of embryos homozygous for the Gbx1 null allele reveals disrupted assembly of the proprioceptive sensorimotor circuit within the spinal cord, and a reduction in ISL1(+) ventral motor neurons. These data suggest a functional requirement for Gbx1 in normal development of the neural networks that contribute to locomotion. The generation of this null allele has enabled us to functionally characterize a novel role for Gbx1 in development of the spinal cord.
Collapse
Affiliation(s)
- Desirè M. Buckley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jessica Burroughs-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Samuel T. Waters
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Obinata A, Akimoto Y. Effects of retinoic acid and Gbx1 on feather-bud formation and epidermal transdifferentiation in chick embryonic cultured dorsal skin. Dev Dyn 2012; 241:1405-12. [PMID: 22826214 DOI: 10.1002/dvdy.23834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Retinoic acid, an active metabolite of retinol, is known to regulate cell proliferation, differentiation, and morphogenesis during normal development of many tissues. Using chick embryonic tarsometatarsal skin, we showed previously that the expression of Gbx1, a divergent homeobox gene, is increased in the epidermis through interaction with retinol-pretreated dermal fibroblasts followed by epidermal transdifferentiation to mucous epithelium. This present study was performed to elucidate the effects of retinoic acid and Gbx1 on feather-bud formation and epidermal transdifferentiation. RESULTS We showed that Gbx1 was expressed in the chick embryonic dorsal epidermis as early as at placode stage (Hamburger and Hamilton stage 31) and increased in amount during feather-bud formation. Treatment with 1 μM retinoic acid for 24 hr inhibited feather-bud formation and induced the transdifferentiation of the epidermis to a mucosal epithelium with a concomitant increase in Gbx1 mRNA expression in the epithelium. Furthermore, transient transfection of the epidermis with Gbx1 cDNA by electroporation induced elongation of the feather bud, but did not result in transdifferentiation. CONCLUSIONS These results indicate that Gbx1 was involved in the feather-bud formation and was one of target genes of retinoic acid and that other signals in addition to Gbx1 were required for epidermal mucous transdifferentiation.
Collapse
Affiliation(s)
- Akiko Obinata
- Department of Physiological Chemistry II, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan
| | | |
Collapse
|
15
|
Mesías-Gansbiller C, Sánchez JL, Pazos AJ, Lozano V, Martínez-Escauriaza R, Luz Pérez-Parallé M. Conservation of Gbx genes from EHG homeobox in bivalve molluscs. Mol Phylogenet Evol 2012; 63:213-7. [PMID: 22245384 DOI: 10.1016/j.ympev.2011.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/21/2011] [Accepted: 12/30/2011] [Indexed: 12/15/2022]
Abstract
Homeobox-containing genes encode a set of transcription factors that have been shown to control spatial patterning mechanisms in bilaterian organism development. The homeobox gene Gbx, included in the EHGbox cluster, is implicated in the development of the nervous system. In this study, we surveyed five different families of Bivalvia for the presence of Gbx genes by means of PCR with degenerate primers. We were able to recover seven Gbx gene fragments from five bivalve species: Solen marginatus, Mimachlamys varia, Venerupis pullastra, Ostrea edulis and Mytilus galloprovincialis (the derived amino acid sequence were designated Sma-Gbx, Cva-Gbx, Vpu-Gbx, Oed-Gbx and Mga-Gbx, respectively). These genes are orthologous to various Gbx genes present in bilaterian genomes. The Gbx genes in four Bivalvia families, namely Solenidae, Veneridae, Ostreidae and Mytilidae, are newly reported here and we also showed additional information of the Gbx genes of Pectinidae. The phylogenetic analyses by neighbour-joining, UPGMA, maximum parsimony and Bayesian analysis clearly indicated that the Gbx sequences formed a well supported clade and assigned these Gbx genes to the Gbx family. These data permit to confirm that the homeodomain of the Gbx family is highly conserved among these five distinct families of bivalve molluscs.
Collapse
Affiliation(s)
- Crimgilt Mesías-Gansbiller
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
16
|
The mouse homeobox gene Gbx2 is required for the development of cholinergic interneurons in the striatum. J Neurosci 2010; 30:14824-34. [PMID: 21048141 DOI: 10.1523/jneurosci.3742-10.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mammalian forebrain cholinergic neurons are composed of local circuit neurons in the striatum and projection neurons in the basal forebrain. These neurons are known to arise from a common pool of progenitors that primarily resides in the medial ganglionic eminence (MGE). However, little is known about the genetic programs that differentiate these two types of cholinergic neurons. Using inducible genetic fate mapping, here we examined the developmental fate of cells that express the homeodomain transcription factor Gbx2 in the MGE. We show that the Gbx2 lineage-derived cells that undergo tangential migration exclusively give rise to almost all cholinergic interneurons in the striatum, whereas those undergoing radial migration mainly produce noncholinergic neurons in the basal forebrain. Deletion of Gbx2 throughout the mouse embryo or specifically in the MGE results in abnormal distribution and significant reduction of cholinergic neurons in the striatum. We show that early-born (before embryonic day 12.5) cholinergic interneurons preferentially populate the lateral aspect of the striatum and mature earlier than late-born (after embryonic day 12.5) neurons, which normally reside in the medial part of the striatum. In the absence of Gbx2, early-born striatal cholinergic precursors display abnormal neurite outgrowth and increased complexity, and abnormally contribute to the medial part of the caudate-putamen, whereas late-born striatal cholinergic interneurons are mostly missing. Together, our data demonstrate that Gbx2 is required for the development of striatal cholinergic interneurons, perhaps by regulating tangential migration of the striatal cholinergic precursors.
Collapse
|
17
|
Rhinn M, Lun K, Ahrendt R, Geffarth M, Brand M. Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal. Neural Dev 2009; 4:12. [PMID: 19341460 PMCID: PMC2674439 DOI: 10.1186/1749-8104-4-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/02/2009] [Indexed: 12/27/2022] Open
Abstract
Background Studies in mouse, Xenopus and chicken have shown that Otx2 and Gbx2 expression domains are fundamental for positioning the midbrain-hindbrain boundary (MHB) organizer. Of the two zebrafish gbx genes, gbx1 is a likely candidate to participate in this event because its early expression is similar to that reported for Gbx2 in other species. Zebrafish gbx2, on the other hand, acts relatively late at the MHB. To investigate the function of zebrafish gbx1 within the early neural plate, we used a combination of gain- and loss-of-function experiments. Results We found that ectopic gbx1 expression in the anterior neural plate reduces forebrain and midbrain, represses otx2 expression and repositions the MHB to a more anterior position at the new gbx1/otx2 border. In the case of gbx1 loss-of-function, the initially robust otx2 domain shifts slightly posterior at a given stage (70% epiboly), as does MHB marker expression. We further found that ectopic juxtaposition of otx2 and gbx1 leads to ectopic activation of MHB markers fgf8, pax2.1 and eng2. This indicates that, in zebrafish, an interaction between otx2 and gbx1 determines the site of MHB development. Our work also highlights a novel requirement for gbx1 in hindbrain development. Using cell-tracing experiments, gbx1 was found to cell-autonomously transform anterior neural tissue into posterior. Previous studies have shown that gbx1 is a target of Wnt8 graded activity in the early neural plate. Consistent with this, we show that gbx1 can partially restore hindbrain patterning in cases of Wnt8 loss-of-function. We propose that in addition to its role at the MHB, gbx1 acts at the transcriptional level to mediate Wnt8 posteriorizing signals that pattern the developing hindbrain. Conclusion Our results provide evidence that zebrafish gbx1 is involved in positioning the MHB in the early neural plate by refining the otx2 expression domain. In addition to its role in MHB formation, we have shown that gbx1 is a novel mediator of Wnt8 signaling during hindbrain patterning.
Collapse
Affiliation(s)
- Muriel Rhinn
- Biotechnology Center, and Center for Regenerative Therapies Dresden, CRTD, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | |
Collapse
|
18
|
García-López M, Abellán A, Legaz I, Rubenstein JLR, Puelles L, Medina L. Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. J Comp Neurol 2008; 506:46-74. [PMID: 17990271 DOI: 10.1002/cne.21524] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amygdala controls emotional and social behavior and regulates instinctive reflexes such as defense and reproduction by way of descending projections to the hypothalamus and brainstem. The descending amygdalar projections are suggested to show a cortico-striato-pallidal organization similar to that of the basal ganglia (Swanson [2000] Brain Res 886:113-164). To test this model we investigated the embryological origin and molecular properties of the mouse centromedial and extended amygdalar subdivisions, which constitute major sources of descending projections. We analyzed the distribution of key regulatory genes that show restricted expression patterns within the subpallium (Dlx5, Nkx2.1, Lhx6, Lhx7/8, Lhx9, Shh, and Gbx1), as well as genes considered markers for specific subpallial neuronal subpopulations. Our results indicate that most of the centromedial and extended amygdala is formed by cells derived from multiple subpallial subdivisions. Contrary to a previous suggestion, only the central--but not the medial--amygdala derives from the lateral ganglionic eminence and has striatal-like features. The medial amygdala and a large part of the extended amygdala (including the bed nucleus of the stria terminalis) consist of subdivisions or cell groups that derive from subpallial, pallial (ventral pallium), or extratelencephalic progenitor domains. The subpallial part includes derivatives from the medial ganglionic eminence, the anterior peduncular area, and possibly a novel subdivision, called here commissural preoptic area, located at the base of the septum and related to the anterior commissure. Our study provides a molecular and morphological foundation for understanding the complex embryonic origins and adult organization of the centromedial and extended amygdala.
Collapse
Affiliation(s)
- Margarita García-López
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R. Hox gene expression patterns in Lethenteron japonicum embryos--insights into the evolution of the vertebrate Hox code. Dev Biol 2007; 308:606-20. [PMID: 17560975 DOI: 10.1016/j.ydbio.2007.05.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 12/22/2022]
Abstract
The Hox code of jawed vertebrates is characterized by the colinear and rostrocaudally nested expression of Hox genes in pharyngeal arches, hindbrain, somites, and limb/fin buds. To gain insights into the evolutionary path leading to the gnathostome Hox code, we have systematically analyzed the expression pattern of the Hox gene complement in an agnathan species, Lethenteron japonicum (Lj). We have isolated 15 LjHox genes and assigned them to paralogue groups (PG) 1-11, based on their deduced amino acid sequences. LjHox expression during development displayed gnathostome-like spatial patterns with respect to the PG numbers. Specifically, lamprey PG1-3 showed homologous expression patterns in the rostral hindbrain and pharyngeal arches to their gnathostome counterparts. Moreover, PG9-11 genes were expressed specifically in the tailbud, implying its posteriorizing activity as those in gnathostomes. We conclude that these gnathostome-like colinear spatial patterns of LjHox gene expression can be regarded as one of the features already established in the common ancestor of living vertebrates. In contrast, we did not find evidence for temporal colinearity in the onset of LjHox expression. The genomic and developmental characteristics of Hox genes from different chordate species are also compared, focusing on evolution of the complex body plan of vertebrates.
Collapse
Affiliation(s)
- Yoko Takio
- RIKEN Center for Developmental Biology, Evolutionary Morphology Research Group, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Islam ME, Kikuta H, Inoue F, Kanai M, Kawakami A, Parvin MS, Takeda H, Yamasu K. Three enhancer regions regulate gbx2 gene expression in the isthmic region during zebrafish development. Mech Dev 2006; 123:907-24. [PMID: 17067785 DOI: 10.1016/j.mod.2006.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 08/16/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
In vertebrate embryos, positioning of the boundary between the midbrain and hindbrain (MHB) and subsequent isthmus formation are dependent upon the interaction between the Otx2 and Gbx genes. In zebrafish, sequential expression of gbx1 and gbx2 in the anterior hindbrain contributes to this process, whereas in mouse embryos, a single Gbx gene (Gbx2) is responsible for MHB development. In the present study, to investigate the regulatory mechanism of gbx2 in the MHB/isthmic region of zebrafish embryos, we cloned the gene and showed that its organization is conserved among different vertebrates. Promoter analyses revealed three enhancers that direct reporter gene expression after the end of epiboly in the anterior-most hindbrain, which is a feature of the zebrafish gbx2 gene. One of the enhancers is located upstream of gbx2 (AMH1), while the other two enhancers are located downstream of gbx2 (AMH2 and AMH3). Detailed analysis of the AMH1 enhancer showed that it directs expression in the rhombomere 1 (r1) region and the dorsal thalamus, as has been shown for gbx2, whereas no expression was induced by the AMH1 enhancer in other embryonic regions in which gbx2 is expressed. The AMH1 enhancer is composed of multiple regulatory subregions that share the same spatial specificity. The most active of the regulatory subregions is a 291-bp region that contains at least two Pax2-binding sites, both of which are necessary for the function of the main component (PB1-A region) of the AMH1 enhancer. In accordance with these results, enhancer activity in the PB1-A region, as well as gbx2 expression in r1, was missing in no isthmus mutant embryos that lacked functional pax2a. In addition, we identified an upstream conserved sequence of 227bp that suppresses the enhancer activity of AMH1. Taken together, these findings suggest that gbx2 expression during the somitogenesis stage in zebrafish is regulated by a complex mechanism involving Pax2 as well as activators and suppressors in the regions flanking the gene.
Collapse
Affiliation(s)
- Md Ekramul Islam
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Castro LFC, Rasmussen SLK, Holland PWH, Holland ND, Holland LZ. A Gbx homeobox gene in amphioxus: insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary. Dev Biol 2006; 295:40-51. [PMID: 16687133 DOI: 10.1016/j.ydbio.2006.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 11/24/2022]
Abstract
In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed Otx2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved.
Collapse
Affiliation(s)
- L Filipe C Castro
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | |
Collapse
|
22
|
John A, Wildner H, Britsch S. The homeodomain transcription factor Gbx1 identifies a subpopulation of late-born GABAergic interneurons in the developing dorsal spinal cord. Dev Dyn 2006; 234:767-71. [PMID: 16193514 DOI: 10.1002/dvdy.20568] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The dorsal spinal cord processes somatosensory information and relays it to higher brain centers and to motoneurons in the ventral spinal horn. These functions reside in a large number of distinct sensory interneurons that are organized in specific laminae within the dorsal spinal horn. Homeodomain and bHLH transcription factors can control the development of neuronal cell types in the dorsal horn. Here, we demonstrate that the murine homeodomain transcription factor Gbx1 is expressed specifically in a subset of Lbx1(+) (class B) neurons in the dorsal horn. Expression of Gbx1 in the dorsal spinal cord depends on Lbx1 function. Immunohistological analyses revealed that Gbx1 identifies a distinct population of late-born, Lhx1/5(+), Pax2(+) neurons. In the perinatal period as well as in the adult spinal cord, Gbx1 marks a subpopulation of GABAergic neurons. The expression of Gbx1 suggests that it controls development of a specific subset of GABAergic neurons in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- Anita John
- Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | | | | |
Collapse
|
23
|
Nagel S, Kaufmann M, Scherr M, Drexler HG, MacLeod RAF. Activation of HLXB9 by juxtaposition with MYB via formation of t(6;7)(q23;q36) in an AML-M4 cell line (GDM-1). Genes Chromosomes Cancer 2005; 42:170-8. [PMID: 15540222 DOI: 10.1002/gcc.20113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mutation or dysregulation of related homeobox genes occurs in leukemia. Using RT-PCR, we screened members of the EHG family of homeobox genes, comprising EN1 (at 2q14), GBX2 (at 2q36), and EN2, GBX1, and HLXB9 (at 7q36), for dysregulation in acute myeloid leukemia (AML) cell lines indicated by chromosomal breakpoints at these sites. Only one EHG-family gene was expressed, HLXB9, in cell line GDM-1 (AML-M4). Karyotypic analysis of GDM-1 revealed a unique t(6;7)(q23;q35), also present in the patient. Fluorescence in situ hybridization analysis showed chromosomal breakpoints close to the region upstream of HLXB9, at 7q36, a region rearranged in certain AML patients, and at 6q23 upstream of MYB, a gene activated in leukemia. Detailed expression analysis suggested ectopic activation of HLXB9 occurred via juxtaposition with regions upstream of MYB, which was highly expressed in GDM-1. Our data identified a cell line model for a novel leukemic translocation involving MYB with HLXB9, further implicating HLXB9 in leukemogenesis.
Collapse
MESH Headings
- Cell Line, Tumor
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 7/genetics
- Cytogenetic Analysis/methods
- Gene Expression Regulation, Neoplastic/genetics
- Genes, myb/physiology
- HL-60 Cells/chemistry
- HL-60 Cells/metabolism
- HeLa Cells/chemistry
- HeLa Cells/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Jurkat Cells/chemistry
- Jurkat Cells/metabolism
- K562 Cells/chemistry
- K562 Cells/metabolism
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia, Myelomonocytic, Acute/pathology
- Proto-Oncogene Proteins c-myb/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Translocation, Genetic/genetics
- U937 Cells/chemistry
- U937 Cells/metabolism
Collapse
Affiliation(s)
- Stefan Nagel
- DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
24
|
Rhinn M, Lun K, Luz M, Werner M, Brand M. Positioning of the midbrain-hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development 2005; 132:1261-72. [PMID: 15703279 DOI: 10.1242/dev.01685] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The organizing center located at the midbrain-hindbrain boundary (MHB)patterns the midbrain and hindbrain primordia of the neural plate. Studies in several vertebrates showed that the interface between cells expressing Otx and Gbx transcription factors marks the location in the neural plate where the organizer forms, but it is unclear how this location is set up. Using mutant analyses and shield ablation experiments in zebrafish, we find that axial mesendoderm, as a candidate tissue, has only a minor role in positioning the MHB. Instead, the blastoderm margin of the gastrula embryo acts as a source of signal(s) involved in this process. We demonstrate that positioning of the MHB organizer is tightly linked to overall neuroectodermal posteriorization, and specifically depends on Wnt8 signaling emanating from lateral mesendodermal precursors. Wnt8 is required for the initial subdivision of the neuroectoderm,including onset of posterior gbx1 expression and establishment of the posterior border of otx2 expression. Cell transplantation experiments further show that Wnt8 signaling acts directly and non-cell-autonomously. Consistent with these findings, a GFP-Wnt8 fusion protein travels from donor cells through early neural plate tissue. Our findings argue that graded Wnt8 activity mediates overall neuroectodermal posteriorization and thus determines the location of the MHB organizer.
Collapse
Affiliation(s)
- Muriel Rhinn
- Department of Genetics, University of Technology Dresden, c/o Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | |
Collapse
|
25
|
Rhinn M, Lun K, Amores A, Yan YL, Postlethwait JH, Brand M. Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling. Mech Dev 2003; 120:919-36. [PMID: 12963112 DOI: 10.1016/s0925-4773(03)00135-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The organizer at the midbrain-hindbrain boundary (MHB) forms at the interface between Otx2 and Gbx2 expressing cell populations, but how these gene expression domains are set up and integrated with the remaining machinery controlling MHB development is unclear. Here we report the isolation, mapping, chromosomal synteny and spatiotemporal expression of gbx1 and gbx2 in zebrafish. We focus in particular on the expression of these genes during development of the midbrain-hindbrain territory. Our results suggest that these genes function in this area in a complex fashion, as evidenced by their highly dynamic expression patterns and relation to Fgf signaling. Analysis of gbx1 and gbx2 expression during formation of the MHB in mutant embryos for pax2.1, fgf8 and pou2 (noi, ace, spg), as well as Fgf-inhibition experiments, show that gbx1 acts upstream of these genes in MHB development. In contrast, gbx2 activation requires ace (fgf8) function, and in the hindbrain primordium, also spg (pou2). We propose that in zebrafish, gbx genes act repeatedly in MHB development, with gbx1 acting during the positioning period of the MHB at gastrula stages, and gbx2 functioning after initial formation of the MHB, from late gastrulation stages onwards. Transplantation studies furthermore reveal that at the gastrula stage, Fgf8 signals from the hindbrain primordium into the underlying mesendoderm. Apart from the general involvement of gbx genes in MHB development reported also in other vertebrates, these results emphasize that early MHB development can be divided into multiple steps with different genetic requirements with respect to gbx gene function and Fgf signaling. Moreover, our results provide an example for switching of a specific gene function of gbx1 versus gbx2 between orthologous genes in zebrafish and mammals.
Collapse
Affiliation(s)
- Muriel Rhinn
- Department of Genetics, Max Planck Institute for Molecular Cell Biology and Genetics, University of Dresden, Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|