1
|
Fernández-Iglesias Á, Fuente R, Gil-Peña H, Alonso-Durán L, Santos F, López JM. The Formation of the Epiphyseal Bone Plate Occurs via Combined Endochondral and Intramembranous-Like Ossification. Int J Mol Sci 2021; 22:ijms22020900. [PMID: 33477458 PMCID: PMC7830543 DOI: 10.3390/ijms22020900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
The formation of the epiphyseal bone plate, the flat bony structure that provides strength and firmness to the growth plate cartilage, was studied in the present study by using light, confocal, and scanning electron microscopy. Results obtained evidenced that this bone tissue is generated by the replacement of the lower portion of the epiphyseal cartilage. However, this process differs considerably from the usual bone tissue formation through endochondral ossification. Osteoblasts deposit bone matrix on remnants of mineralized cartilage matrix that serve as a scaffold, but also on non-mineralized cartilage surfaces and as well as within the perivascular space. These processes occur simultaneously at sites located close to each other, so that, a core of the sheet of bone is established very quickly. Subsequently, thickening and reshaping occurs by appositional growth to generate a dense parallel-fibered bone structurally intermediate between woven and lamellar bone. All these processes occur in close relationship with a cartilage but most of the bone tissue is generated in a manner that may be considered as intramembranous-like. Overall, the findings here reported provide for the first time an accurate description of the tissues and events involved in the formation of the epiphyseal bone plate and gives insight into the complex cellular events underlying bone formation at different sites on the skeleton.
Collapse
Affiliation(s)
- Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - Laura Alonso-Durán
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - José Manuel López
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain; (Á.F.-I.); (R.F.); (H.G.-P.); (L.A.-D.); (F.S.)
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Correspondence:
| |
Collapse
|
2
|
Xie M, Chagin AS. The epiphyseal secondary ossification center: Evolution, development and function. Bone 2021; 142:115701. [PMID: 33091640 DOI: 10.1016/j.bone.2020.115701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Bone age is used widely by pediatricians to assess the skeletal maturity of a child and predict growth potential. This entails measuring the size of secondary ossification centers (SOCs), which develop with age in the ends of long bones, which are initially cartilaginous. However, little is presently known about the developmental biology, evolution and functional role of these skeletal elements. Here, we summarize the knowledge currently available in this area and discuss potential primary functions of the SOC.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Institute for Regenerative Medicine, Sechenov University, Russia.
| |
Collapse
|
3
|
Zhang L, Du Y, Wen Y, Ma M, Cheng S, Cheng B, Li P, Qi X, Liang C, Liu L, Liang X, Guo X, Zhang F. Integrating transcriptome-wide association study and mRNA expression profiling identified candidate genes and pathways associated with osteomyelitis. Scand J Rheumatol 2019; 49:131-136. [PMID: 31657276 DOI: 10.1080/03009742.2019.1653492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Osteomyelitis (OM) is an acute or chronic inflammatory process, characterized by severe inflammation and progressive bone destruction. Limited efforts have been made to explore the genetic basis of OM.Method: The genome-wide association study data set of OM was obtained from the UK Biobank. A transcriptome-wide association study (TWAS) of OM was conducted by the FUSION tool using the gene expression reference weights of lymphocytes and blood. The OM-associated genes identified by TWAS were subjected to gene ontology (GO) enrichment analysis to explore OM-related gene sets. The TWAS results of OM were finally compared with a genome-wide mRNA expression profiling of OM to detect common genes and gene sets.Results: TWAS of OM detected 86 genes for lymphocytes and 387 genes for blood. Comparing the genes identified by TWAS and mRNA expression profiling detected eight common genes for OM, including VWF (pTWAS = 0.0030, pmRNA = 3.44 × 10-9), CCDC50 (pTWAS = 0.0130, pmRNA = 0.0003), and TPD52 (pTWAS = 0.0180, pmRNA = 1 × 10-6). GO analysis of the genes identified by TWAS detected multiple OM-associated GO terms, e.g. peroxisomal matrix (pTWAS = 0.0082), extracellular exosome (pTWAS = 0.0248), and monooxygenase activity (pTWAS = 0.0040). Further comparing the GO results of TWAS and mRNA expression profiling detected one common GO term, named extracellular exosome (pTWAS = 0.0248, pmRNA = 0.0027).Conclusion: This integrative study of TWAS and mRNA expression profiling detected multiple candidate genes and GO terms for OM. Our results provide novel clues for understanding the pathogenesis of OM.
Collapse
Affiliation(s)
- L Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - Y Du
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - Y Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - M Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - S Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - B Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - P Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - X Qi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - C Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - L Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - X Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - X Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| | - F Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China
| |
Collapse
|
4
|
Shibata S, Amano H, Nagayama M, Takahashi M, Watanabe M, Tanaka M. Immunohistochemical and ultrastructural evaluation of matrix components in mandibular condylar cartilage in comparison with growth plate cartilage in cartilage calcification insufficient rats. Anat Sci Int 2019; 95:54-66. [PMID: 31214944 DOI: 10.1007/s12565-019-00493-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/02/2019] [Indexed: 01/17/2023]
Abstract
Matrix components of growth plate cartilage and mandibular condylar cartilage were immunohistochemically analyzed in cartilage calcification insufficient (CCI) rats, a model for dwarf rats. Reduction in total tibial length, elongation of growth plate, and appearance of noncartilaginous regions in the growth plate were observed in CCI rats. Immunoreactivity for type I collagen and hyaluronic acid (HA) staining were observed in the noncartilaginous region. However, weak immunoreactivity was observed for aggrecan, collagen types II and X, and decorin in this region. Transmission electron microscopy indicated that the noncartilaginous region showed a loose network of thin collagen fibrils, indicating that HA is predominantly involved in capturing space of the noncartilaginous region in the growth plate. Meanwhile, the mandibular condylar cartilage in CCI rats also showed elongation of the cartilaginous region and had a noncartilaginous region, predominantly comprising thick collagen fibrils. The structural difference between the two types of cartilages in CCI rats may be due to the presence of the fibrous cell zone and the fibrocartilaginous nature of the normal condylar cartilage. Additionally, the reduction in mandibular length was relatively less than the reduction in tibial length. The outline of the condylar process showed only slight abnormality. These results suggest that the condylar cartilage compensated its growth by supplying the characteristic noncartilaginous region effectively and may adapt to severe structural changes observed in CCI rats.
Collapse
Affiliation(s)
- Shunichi Shibata
- Department of Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan.
| | - Hitoshi Amano
- Department of Pharmacology, Osaka Dental University, Hirakata, 573-1121, Japan
| | - Motohiko Nagayama
- Department of Oral Pathology, Asahi University School of Dentistry, Hozumi, 501-0296, Japan
| | - Masato Takahashi
- Department of Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Masami Tanaka
- Department of Nutritional Sciences, Tohto College of Health Sciences, Fukaya, 366-0052, Japan
| |
Collapse
|
5
|
Marcucio RS, Qin L, Alsberg E, Boerckel JD. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering. J Orthop Res 2017; 35:2356-2368. [PMID: 28660712 DOI: 10.1002/jor.23636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017.
Collapse
Affiliation(s)
- Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania.,Department of Bioengineering, University of Pennslyvania, Philadelphia, Pennsylvania.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
6
|
Gabner S, Häusler G, Böck P. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products. Anat Rec (Hoboken) 2017; 300:1067-1082. [PMID: 27997075 DOI: 10.1002/ar.23537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 11/07/2022]
Abstract
Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simone Gabner
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Austria
| | | | - Peter Böck
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
7
|
Martel G, Couture CA, Gilbert G, Bancelin S, Richard H, Moser T, Kiss S, Légaré F, Laverty S. Femoral epiphyseal cartilage matrix changes at predilection sites of equine osteochondrosis: Quantitative MRI, second-harmonic microscopy, and histological findings. J Orthop Res 2016; 34:1743-1752. [PMID: 27734566 DOI: 10.1002/jor.23176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/21/2016] [Indexed: 02/04/2023]
Abstract
Osteochondrosis is an ischemic chondronecrosis of epiphyseal growth cartilage that results in focal failure of endochondral ossification and osteochondritis dissecans at specific sites in the epiphyses of humans and animals, including horses. The upstream events leading to the focal ischemia remain unknown. The epiphyseal growth cartilage matrix is composed of proteoglycan and collagen macromolecules and encases its vascular tree in canals. The matrix undergoes major dynamic changes in early life that could weaken it biomechanically and predispose it to focal trauma and vascular failure. Subregions in neonatal foal femoral epiphyses (n = 10 osteochondrosis predisposed; n = 6 control) were assessed for proteoglycan and collagen structure/content employing 3T quantitative MRI (3T qMRI: T1ρ and T2 maps). Site-matched validations were made with histology, immunohistochemistry, and second-harmonic microscopy. Growth cartilage T1ρ and T2 relaxation times were significantly increased (p < 0.002) within the proximal third of the trochlea, a site predisposed to osteochondrosis, when compared with other regions. However, this was observed in both control and osteochondrosis predisposed specimens. Microscopic evaluation of this region revealed an expansive area with low proteoglycan content and a hypertrophic-like appearance on second-harmonic microscopy. We speculate that this matrix structure and composition, though physiological, may weaken the epiphyseal growth cartilage biomechanically in focal regions and could enhance the risk of vascular failure with trauma leading to osteochondrosis. However, additional investigations are now required to confirm this. 3T qMRI will be useful for future non-invasive longitudinal studies to track the osteochondrosis disease trajectory in animals and humans. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1743-1752, 2016.
Collapse
Affiliation(s)
- Gabrielle Martel
- Comparative Orthopaedic Research Laboratory, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | | | | | | | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | - Thomas Moser
- Department of Radiology, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| | - Sabrina Kiss
- Department of Radiology, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| | | | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada.
| |
Collapse
|
8
|
Odgren PR, Witwicka H, Reyes-Gutierrez P. The cast of clasts: catabolism and vascular invasion during bone growth, repair, and disease by osteoclasts, chondroclasts, and septoclasts. Connect Tissue Res 2016; 57:161-74. [PMID: 26818783 PMCID: PMC4912663 DOI: 10.3109/03008207.2016.1140752] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three named cell types degrade and remove skeletal tissues during growth, repair, or disease: osteoclasts, chondroclasts, and septoclasts. A fourth type, unnamed and less understood, removes nonmineralized cartilage during development of secondary ossification centers. "Osteoclasts," best known and studied, are polykaryons formed by fusion of monocyte precursors under the influence of colony stimulating factor 1 (CSF)-1 (M-CSF) and RANKL. They resorb bone during growth, remodeling, repair, and disease. "Chondroclasts," originally described as highly similar in cytological detail to osteoclasts, reside on and degrade mineralized cartilage. They may be identical to osteoclasts since to date there are no distinguishing markers for them. Because osteoclasts also consume cartilage cores along with bone during growth, the term "chondroclast" might best be reserved for cells attached only to cartilage. "Septoclasts" are less studied and appreciated. They are mononuclear perivascular cells rich in cathepsin B. They extend a cytoplasmic projection with a ruffled membrane and degrade the last transverse septum of hypertrophic cartilage in the growth plate, permitting capillaries to bud into it. To do this, antiangiogenic signals in cartilage must give way to vascular trophic factors, mainly vascular endothelial growth factor (VEGF). The final cell type excavates cartilage canals for vascular invasion of articular cartilage during development of secondary ossification centers. The "clasts" are considered in the context of fracture repair and diseases such as arthritis and tumor metastasis. Many observations support an essential role for hypertrophic chondrocytes in recruiting septoclasts and osteoclasts/chondroclasts by supplying VEGF and RANKL. The intimate relationship between blood vessels and skeletal turnover and repair is also examined.
Collapse
Affiliation(s)
- Paul R. Odgren
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655,Corresponding author: Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue, North, Worcester, MA 01655, USA, Phone: 508 856 8609, Fax: 508 856 1033,
| | - Hanna Witwicka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Pablo Reyes-Gutierrez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
9
|
Mort JS, Geng Y, Fisher WD, Roughley PJ. Aggrecan heterogeneity in articular cartilage from patients with osteoarthritis. BMC Musculoskelet Disord 2016; 17:89. [PMID: 26891838 PMCID: PMC4758135 DOI: 10.1186/s12891-016-0944-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/13/2016] [Indexed: 12/04/2022] Open
Abstract
Background Aggrecan degradation is the hallmark of cartilage degeneration in osteoarthritis (OA), though it is unclear whether a common proteolytic process occurs in all individuals. Methods Aggrecan degradation in articular cartilage from the knees of 33 individuals with OA, who were undergoing joint replacement surgery, was studied by immunoblotting of tissue extracts. Results Matrix metalloproteinases (MMPs) and aggrecanases are the major proteases involved in aggrecan degradation within the cartilage, though the proportion of aggrecan cleavage attributable to MMPs or aggrecanases was variable between individuals. However, aggrecanases were more associated with the increase in aggrecan loss associated with OA than MMPs. While the extent of aggrecan cleavage was highly variable between individuals, it was greatest in areas of cartilage adjacent to sites of cartilage erosion compared to sites more remote within the same joint. Analysis of link protein shows that in some individuals additional proteolytic mechanisms must also be involved to some extent. Conclusions The present studies indicate that there is no one protease, or a fixed combination of proteases, responsible for cartilage degradation in OA. Thus, rather than targeting the individual proteases for OA therapy, directing research to techniques that control global protease generation may be more productive.
Collapse
Affiliation(s)
- John S Mort
- Research Unit, Shriners Hospital for Children, 1003, boul. Décarie, Montreal, Quebec, H4A 0A9, Canada. .,Department of Surgery, McGill University, Montreal, Quebec, Canada.
| | - Yeqing Geng
- Research Unit, Shriners Hospital for Children, 1003, boul. Décarie, Montreal, Quebec, H4A 0A9, Canada.
| | - William D Fisher
- Department of Surgery, McGill University, Montreal, Quebec, Canada. .,Division of Orthopaedics, McGill University Health Center, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| | - Peter J Roughley
- Research Unit, Shriners Hospital for Children, 1003, boul. Décarie, Montreal, Quebec, H4A 0A9, Canada. .,Department of Surgery, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Nasto LA, Ngo K, Leme AS, Robinson AR, Dong Q, Roughley P, Usas A, Sowa GA, Pola E, Kang J, Niedernhofer LJ, Shapiro S, Vo NV. Investigating the role of DNA damage in tobacco smoking-induced spine degeneration. Spine J 2014; 14:416-23. [PMID: 24211096 PMCID: PMC3944725 DOI: 10.1016/j.spinee.2013.08.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 07/15/2013] [Accepted: 08/23/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Tobacco smoking is a key risk factor for spine degeneration. However, the underlying mechanism by which smoking induces degeneration is not known. Recent studies implicate DNA damage as a cause of spine and intervertebral disc degeneration. Because tobacco smoke contains many genotoxins, we hypothesized that tobacco smoking promotes spine degeneration by inducing cellular DNA damage. PURPOSE To determine if DNA damage plays a causal role in smoking-induced spine degeneration. STUDY DESIGN To compare the effect of chronic tobacco smoke inhalation on intervertebral disc and vertebral bone in normal and DNA repair-deficient mice to determine the contribution of DNA damage to degenerative changes. METHODS Two-month-old wild-type (C57BL/6) and DNA repair-deficient Ercc1(-/Δ) mice were exposed to tobacco smoke by direct inhalation (4 cigarettes/day, 5 days/week for 7 weeks) to model first-hand smoking in humans. Total disc proteoglycan (PG) content (1,9-dimethylmethylene blue assay), PG synthesis ((35)S-sulfate incorporation assay), aggrecan proteolysis (immunoblotting analysis), and vertebral bone morphology (microcomputed tomography) were measured. RESULTS Exposure of wild-type mice to tobacco smoke led to a 19% increase in vertebral porosity and a 61% decrease in trabecular bone volume. Intervertebral discs of smoke-exposed animals also showed a 2.6-fold decrease in GAG content and an 8.1-fold decrease in new PG synthesis. These smoking-induced degenerative changes were similar but not worse in Ercc1(-/Δ) mice. CONCLUSIONS Short-term exposure to high levels of primary tobacco smoke inhalation promotes degeneration of vertebral bone and discs. Disc degeneration is primarily driven by reduced synthesis of proteoglycans needed for vertebral cushioning. Degeneration was not exacerbated in congenic DNA repair-deficient mice, indicating that DNA damage per se does not have a significant causal role in driving smoke-induced spine degeneration.
Collapse
Affiliation(s)
- Luigi A Nasto
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, "A. Gemelli" University Hospital, l.go Agostino Gemelli 8, 00168 Roma, Italy
| | - Kevin Ngo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Adriana S Leme
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA 15213, USA
| | - Andria R Robinson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Qing Dong
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Peter Roughley
- McGill Scoliosis and Spine Group, Genetics Unit, Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | - Arvydas Usas
- Department of Orthopaedic Surgery of UPMC, Stem Cell Research Center, Pittsburgh, PA 15261, USA
| | - Gwendolyn A Sowa
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Enrico Pola
- Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, "A. Gemelli" University Hospital, l.go Agostino Gemelli 8, 00168 Roma, Italy
| | - James Kang
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura J Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter, FL 33458-5284, USA
| | - Steven Shapiro
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA 15213, USA
| | - Nam V Vo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
11
|
Zhang X, Zhu J, Li Y, Lin T, Siclari VA, Chandra A, Candela EM, Koyama E, Enomoto-Iwamoto M, Qin L. Epidermal growth factor receptor (EGFR) signaling regulates epiphyseal cartilage development through β-catenin-dependent and -independent pathways. J Biol Chem 2013; 288:32229-32240. [PMID: 24047892 DOI: 10.1074/jbc.m113.463554] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is an essential player in the development of multiple organs during embryonic and postnatal stages. To understand its role in epiphyseal cartilage development, we generated transgenic mice with conditionally inactivated EGFR in chondrocytes. Postnatally, these mice exhibited a normal initiation of cartilage canals at the perichondrium, but the excavation of these canals into the cartilage was strongly suppressed, resulting in a delay in the formation of the secondary ossification center (SOC). This delay was accompanied by normal chondrocyte hypertrophy but decreased mineralization and apoptosis of hypertrophic chondrocytes and reduced osteoclast number at the border of marrow space. Immunohistochemical analyses demonstrated that inactivation of chondrocyte-specific EGFR signaling reduced the amounts of matrix metalloproteinases (MMP9, -13, and -14) and RANKL (receptor activator of NF-κB ligand) in the hypertrophic chondrocytes close to the marrow space and decreased the cartilage matrix degradation in the SOC. Analyses of EGFR downstream signaling pathways in primary epiphyseal chondrocytes revealed that up-regulation of MMP9 and RANKL by EGFR signaling was partially mediated by the canonical Wnt/β-catenin pathway, whereas EGFR-enhanced MMP13 expression was not. Further biochemical studies suggested that EGFR signaling stimulates the phosphorylation of LRP6, increases active β-catenin level, and induces its nuclear translocation. In line with these in vitro studies, deficiency in chondrocyte-specific EGFR activity reduced β-catenin amount in hypertrophic chondrocytes in vivo. In conclusion, our work demonstrates that chondrocyte-specific EGFR signaling is an important regulator of cartilage matrix degradation during SOC formation and epiphyseal cartilage development and that its actions are partially mediated by activating the β-catenin pathway.
Collapse
Affiliation(s)
- Xianrong Zhang
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Department of Physiology, School of Basic Medical Science, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Ji Zhu
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yumei Li
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tiao Lin
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Valerie A Siclari
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Abhishek Chandra
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Elena M Candela
- the Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Eiki Koyama
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Motomi Enomoto-Iwamoto
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; the Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Ling Qin
- From the Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,.
| |
Collapse
|
12
|
Nasto LA, Wang D, Robinson AR, Clauson CL, Ngo K, Dong Q, Roughley P, Epperly M, Huq SM, Pola E, Sowa G, Robbins PD, Kang J, Niedernhofer LJ, Vo NV. Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs. Mech Ageing Dev 2012; 134:35-42. [PMID: 23262094 DOI: 10.1016/j.mad.2012.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 01/09/2023]
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of debilitating spinal disorders such as chronic lower back pain. Aging is the greatest risk factor for IDD. Previously, we demonstrated IDD in a murine model of a progeroid syndrome caused by reduced expression of a key DNA repair enzyme. This led us to hypothesize that DNA damage promotes IDD. To test our hypothesis, we chronically exposed adult wild-type (Wt) and DNA repair-deficient Ercc1(-/Δ) mice to the cancer therapeutic agent mechlorethamine (MEC) or ionization radiation (IR) to induce DNA damage and measured the impact on disc structure. Proteoglycan, a major structural matrix constituent of the disc, was reduced 3-5× in the discs of MEC- and IR-exposed animals compared to untreated controls. Expression of the protease ADAMTS4 and aggrecan proteolytic fragments was significantly increased. Additionally, new PG synthesis was reduced 2-3× in MEC- and IR-treated discs compared to untreated controls. Both cellular senescence and apoptosis were increased in discs of treated animals. The effects were more severe in the DNA repair-deficient Ercc1(-/Δ) mice than in Wt littermates. Local irradiation of the vertebra in Wt mice elicited a similar reduction in PG. These data demonstrate that genotoxic stress drives degenerative changes associated with IDD.
Collapse
Affiliation(s)
- Luigi A Nasto
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hatfield JT, Anderson PJ, Powell BC. Retinol-binding protein 4 is expressed in chondrocytes of developing mouse long bones: implications for a local role in formation of the secondary ossification center. Histochem Cell Biol 2012; 139:727-34. [PMID: 23224267 DOI: 10.1007/s00418-012-1062-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2012] [Indexed: 12/14/2022]
Abstract
Retinol-binding protein 4 (Rbp4) is the major carrier of retinol in the bloodstream, a retinoid whose metabolites influence osteogenesis, chondrogenesis and adipogenesis. Rbp4 is mainly produced in the liver where it mobilizes hepatic retinol stores to supply other tissues. However, Rbp4 is also expressed in several extrahepatic tissues, including limbs, where its role is largely unknown. This study aimed to identify the cellular localization of Rbp4 to gain insight into its involvement in limb development and bone growth. Using immunohistochemistry, we discovered that Rbp4 was present in a variety of locations in developing embryonic and postnatal mouse hindlimbs. Rbp4 was present in a restricted population of epiphyseal chondrocytes and perichondral cells correlating to the future region of secondary ossification. With the onset of secondary ossification, Rbp4 was detected in chondrocytes of the resting zone and in chondrocytes that bordered invading cartilage canals and the expanding front of ossification. Rbp4 was less abundant in proliferating chondrocytes involved in primary ossification. Our data implicate the involvement of chondrocytic Rbp4 in bone growth, particularly in the formation of the secondary ossification center of the limb.
Collapse
Affiliation(s)
- Jodie T Hatfield
- Craniofacial Research Group, Women's and Children's Health Research Institute, 72 King William Rd, North Adelaide, SA 5006, Australia
| | | | | |
Collapse
|
14
|
Wang D, Nasto LA, Roughley P, Leme AS, Houghton M, Usas A, Sowa G, Lee J, Niedernhofer L, Shapiro S, Kang J, Vo N. Spine degeneration in a murine model of chronic human tobacco smokers. Osteoarthritis Cartilage 2012; 20:896-905. [PMID: 22531458 PMCID: PMC3389285 DOI: 10.1016/j.joca.2012.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/28/2012] [Accepted: 04/13/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the mechanisms by which chronic tobacco smoking promotes intervertebral disc degeneration (IDD) and vertebral degeneration in mice. METHODS Three month old C57BL/6 mice were exposed to tobacco smoke by direct inhalation (4 cigarettes/day, 5 days/week for 6 months) to model long-term smoking in humans. Total disc proteoglycan (PG) content [1,9-dimethylmethylene blue (DMMB) assay], aggrecan proteolysis (immunobloting analysis), and cellular senescence (p16INK4a immunohistochemistry) were analyzed. PG and collagen syntheses ((35)S-sulfate and (3)H-proline incorporation, respectively) were measured using disc organotypic culture. Vertebral osteoporosity was measured by micro-computed tomography. RESULTS Disc PG content of smoke-exposed mice was 63% of unexposed control, while new PG and collagen syntheses were 59% and 41% of those of untreated mice, respectively. Exposure to tobacco smoke dramatically increased metalloproteinase-mediated proteolysis of disc aggrecan within its interglobular domain (IGD). Cellular senescence was elevated two-fold in discs of smoke-exposed mice. Smoke exposure increased vertebral endplate porosity, which closely correlates with IDD in humans. CONCLUSIONS These findings further support tobacco smoke as a contributor to spinal degeneration. Furthermore, the data provide a novel mechanistic insight, indicating that smoking-induced IDD is a result of both reduced PG synthesis and increased degradation of a key disc extracellular matrix protein, aggrecan. Cleavage of aggrecan IGD is extremely detrimental as this results in the loss of the entire glycosaminoglycan-attachment region of aggrecan, which is vital for attracting water necessary to counteract compressive forces. Our results suggest identification and inhibition of specific metalloproteinases responsible for smoke-induced aggrecanolysis as a potential therapeutic strategy to treat IDD.
Collapse
Affiliation(s)
- Dong Wang
- Beijing Haidian Hospital, Department of Orthopaedics. 29 Zhong-Guan-Cun Street, Beijing 100080, China
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Luigi A Nasto
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
- Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, “A. Gemelli” University Hospital, l.go Agostino Gemelli 8, 00168 Roma, Italy
| | - Peter Roughley
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, Canada
| | - Adriana S. Leme
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - McGarry Houghton
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery of UPMC, Pittsburgh PA 15261
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Joon Lee
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Laura Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Steven Shapiro
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - James Kang
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| |
Collapse
|
15
|
Dao DY, Jonason JH, Zhang Y, Hsu W, Chen D, Hilton MJ, O'Keefe RJ. Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res 2012; 27:1680-94. [PMID: 22508079 PMCID: PMC3399946 DOI: 10.1002/jbmr.1639] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The WNT/β-catenin signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. Although the importance of β-catenin signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-catenin in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-catenin in committed growth-plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-catenin in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2Cre(ERT2) transgene in combination with β-catenin(fx(exon3)/wt) or β-catenin(fx/fx) floxed alleles, respectively. From these genetic models and biochemical data, three significant and novel findings were uncovered. First, cartilage-specific β-catenin signaling promotes chondrocyte maturation, possibly involving a bone morphogenic protein 2 (BMP2)-mediated mechanism. Second, cartilage-specific β-catenin facilitates primary and secondary ossification center formation via the induction of chondrocyte hypertrophy, possibly through enhanced matrix metalloproteinase (MMP) expression at sites of cartilage degradation, and potentially by enhancing Indian hedgehog (IHH) signaling activity to recruit vascular tissues. Finally, cartilage-specific β-catenin signaling promotes perichondrial bone formation possibly via a mechanism in which BMP2 and IHH paracrine signals synergize to accelerate perichondrial osteoblastic differentiation. The work presented here supports the concept that the cartilage-derived β-catenin signal is a central mediator for major events during endochondral bone formation, including chondrocyte maturation, primary and secondary ossification center development, vascularization, and perichondrial bone formation.
Collapse
Affiliation(s)
- Debbie Y Dao
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Stempel J, Fritsch H, Pfaller K, Blumer MJF. Development of articular cartilage and the metaphyseal growth plate: the localization of TRAP cells, VEGF, and endostatin. J Anat 2011; 218:608-18. [PMID: 21457260 DOI: 10.1111/j.1469-7580.2011.01377.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During long bone development the original cartilaginous model in mammals is replaced by bone, but at the long bone endings the avascular articular cartilage remains. Before the articular cartilage attains structural maturity it undergoes reorganization, and molecules such as vascular endothelial growth factor (VEGF) and endostatin could be involved in this process. VEGF attracts blood vessels, whereas endostatin blocks their formation. The present study therefore focused on the spatio-temporal localization of these two molecules during the development of the articular cartilage. Furthermore, we investigated the distribution of the chondro/osteoclasts at the chondro-osseous junction of the articular cartilage with the subchondral bone. Mice served as our animal model, and we examined several postnatal stages of the femur starting with week (W) 4. Our results indicated that during the formation of the articular cartilage, VEGF and endostatin had an overlapping localization. The former molecule was, however, down-regulated, whereas the latter was uniformly intensely localized until W12. At the chondro-osseous junction, the number of tartrate-resistant acid phosphatase (TRAP)-positive chondro/osteoclasts declined with increasing age. Until W3 the articular cartilage was not well organized but at W8 it appeared structurally mature. At that time only a few TRAP cells were present, indicative of a low resorptive activity at the chondro-osseous junction. Subsequently, we examined the metaphyseal growth plate that is closed when skeletal maturity is attained. Within its hypertrophic zone, localization of endostatin and VEGF was observed until W6 and W8, respectively. At the chondro-osseous junction of the growth plate, chondro/osteoclasts remained numerous until W12 to allow for its complete resorption. According to former findings, VEGF is critical for a normal skeleton development, whereas endostatin has almost no effect on this process. In conclusion, our findings suggest that both VEGF and endostatin play a role in the structural reorganization of the articular cartilage and endostatin may be involved in the maintenance of its avascularity. In the growth plate, however, endostatin does not appear to counteract VEGF, allowing vascular invasion of hypertrophic cartilage and bone growth.
Collapse
Affiliation(s)
- Judith Stempel
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
17
|
Allerstorfer D, Longato S, Schwarzer C, Fischer-Colbrie R, Hayman AR, Blumer MJF. VEGF and its role in the early development of the long bone epiphysis. J Anat 2011; 216:611-24. [PMID: 20525089 DOI: 10.1111/j.1469-7580.2010.01223.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In long bones of murine species, undisturbed development of the epiphysis depends on the generation of vascularized cartilage canals shortly after birth. Despite its importance, it is still under discussion how this event is exactly regulated. It was suggested previously that, following increased hypoxia in the epiphyseal core, angiogenic factors are expressed and hence stimulate the ingrowth of the vascularized canals. In the present study, we tested this model and examined the spatio-temporal distribution of two angiogenic molecules during early development in mice. In addition, we investigated the onset of cartilage hypertrophy and mineralization. Our results provide evidence that the vascular endothelial growth factor is expressed in the epiphyseal resting cartilage prior to the moment of canal formation and is continuously expressed until the establishment of a large secondary ossification centre. Interestingly, we found no expression of secretoneurin before the establishment of the canals although this factor attracts blood vessels under hypoxic conditions. Epiphyseal development further involves maturation of the resting chondrocytes into hypertrophic ones, associated with the mineralization of the cartilage matrix and eventual death of the latter cells. Our results suggest that vascular endothelial growth factor is the critical molecule for the generation of the epiphyseal vascular network in mice long bones. Secretoneurin, however, does not appear to be a player in this event. Hypertrophic chondrocytes undergo cell death by a mechanism interpreted as chondroptosis.
Collapse
Affiliation(s)
- Doris Allerstorfer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Moffatt P, Lee ER, St-Jacques B, Matsumoto K, Yamaguchi Y, Roughley PJ. Hyaluronan production by means of Has2 gene expression in chondrocytes is essential for long bone development. Dev Dyn 2011; 240:404-12. [PMID: 21246657 DOI: 10.1002/dvdy.22529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2010] [Indexed: 12/19/2022] Open
Abstract
Mice possessing no Has2 expression in chondrocytes died near birth and displayed abnormalities throughout their skeleton. By embryonic day 18.5, the long bones were short and wide, and possessed excessive mineralization within their diaphysis, with little evidence of diaphyseal bone modeling. However, this does not appear to be associated with an absence of blood vessel invasion or the reduced presence of osteoclasts. There was no evidence for the formation of an organized growth plate between the epiphysis and diaphysis, and while hypertrophic chondrocytes were present in this region they were abnormal in both appearance and organization. There was also increased cellularity in the epiphyseal cartilage and a corresponding decrease in the abundance of extracellular matrix, but aggrecan was still present. Thus, hyaluronan production by chondrocytes is not only essential for formation of an organized growth plate and subsequent long bone growth but also for normal modeling of the diaphyseal bone.
Collapse
Affiliation(s)
- Pierre Moffatt
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Gartland A, Mason-Savas A, Yang M, MacKay CA, Birnbaum MJ, Odgren PR. Septoclast deficiency accompanies postnatal growth plate chondrodysplasia in the toothless (tl) osteopetrotic, colony-stimulating factor-1 (CSF-1)-deficient rat and is partially responsive to CSF-1 injections. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2668-75. [PMID: 19893052 DOI: 10.2353/ajpath.2009.090185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The septoclast is a specialized, cathepsin B-rich, perivascular cell type that accompanies invading capillaries on the metaphyseal side of the growth plate during endochondral bone growth. The putative role of septoclasts is to break down the terminal transverse septum of growth plate cartilage and permit capillaries to bud into the lower hypertrophic zone. This process fails in osteoclast-deficient, osteopetrotic animal models, resulting in a progressive growth plate dysplasia. The toothless rat is severely osteopetrotic because of a frameshift mutation in the colony-stimulating factor-1 (CSF-1) gene (Csf1(tl)). Whereas CSF-1 injections quickly restore endosteal osteoclast populations, they do not improve the chondrodysplasia. We therefore investigated septoclast populations in Csf1(tl)/Csf1(tl) rats and wild-type littermates, with and without CSF-1 treatment, at 2 weeks, before the dysplasia is pronounced, and at 4 weeks, by which time it is severe. Tibial sections were immunolabeled for cathepsin B and septoclasts were counted. Csf1(tl)/Csf1(tl) mutants had significant reductions in septoclasts at both times, although they were more pronounced at 4 weeks. CSF-1 injections increased counts in wild-type and mutant animals at both times, restoring mutants to normal levels at 2 weeks. In all of the mutants, septoclasts seemed misoriented and had abnormal ultrastructure. We conclude that CSF-1 promotes angiogenesis at the chondroosseous junction, but that, in Csf1(tl)/Csf1(tl) rats, septoclasts are unable to direct their degradative activity appropriately, implying a capillary guidance role for locally supplied CSF-1.
Collapse
Affiliation(s)
- Alison Gartland
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lee ER, Lamplugh L, Kluczyk B, Leblond CP, Mort JS. Neoepitopes reveal the features of type II collagen cleavage and the identity of a collagenase involved in the transformation of the epiphyses anlagen in development. Dev Dyn 2009; 238:1547-63. [DOI: 10.1002/dvdy.21960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Miwa HE, Gerken TA, Huynh TD, Duesler LR, Cotter M, Hering TM. Conserved sequence in the aggrecan interglobular domain modulates cleavage by ADAMTS-4 and ADAMTS-5. Biochim Biophys Acta Gen Subj 2008; 1790:161-72. [PMID: 19101611 DOI: 10.1016/j.bbagen.2008.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/03/2008] [Accepted: 11/19/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cleavage of aggrecan by ADAMTS proteinases at specific sites within highly conserved regions may be important to normal physiological enzyme functions, as well as pathological degradation. METHODS To examine ADAMTS selectivity, we assayed ADAMTS-4 and -5 cleavage of recombinant bovine aggrecan mutated at amino acids N-terminal or C-terminal to the interglobular domain cleavage site. RESULTS Mutations of conserved amino acids from P18 to P12 to increase hydrophilicity resulted in ADAMTS-4 cleavage inhibition. Mutation of Thr, but not Asn within the conserved N-glycosylation motif Asn-Ile-Thr from P6 to P4 enhanced cleavage. Mutation of conserved Thr residues from P22 to P17 to increase hydrophobicity enhanced ADAMTS-4 cleavage. A P4' Ser377Gln mutant inhibited cleavage by ADAMTS-4 and -5, while a neutral Ser377Ala mutant and species mimicking mutants Ser377Thr, Ser377Asn, and Arg375Leu were cleaved normally by ADAMTS-4. The Ser377Thr mutant, however, was resistant to cleavage by ADAMTS-5. CONCLUSION We have identified multiple conserved amino acids within regions N- and C-terminal to the site of scission that may influence enzyme-substrate recognition, and may interact with exosites on ADAMTS-4 and ADAMTS-5. GENERAL SIGNIFICANCE Inhibition of the binding of ADAMTS-4 and ADAMTS-5 exosites to aggrecan should be explored as a therapeutic intervention for osteoarthritis.
Collapse
Affiliation(s)
- Hazuki E Miwa
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
22
|
Blumer MJF, Longato S, Fritsch H. Localization of tartrate-resistant acid phosphatase (TRAP), membrane type-1 matrix metalloproteinases (MT1-MMP) and macrophages during early endochondral bone formation. J Anat 2008; 213:431-41. [PMID: 18643874 DOI: 10.1111/j.1469-7580.2008.00958.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Endochondral bone formation, the process by which most parts of our skeleton evolve, leads to the establishment of the diaphyseal primary (POC) and epiphyseal secondary ossification centre (SOC) in long bones. An essential event for the development of the SOC is the early generation of vascularized cartilage canals that requires the proteolytic cleavage of the cartilaginous matrix. This in turn will allow the canals to grow into the epiphysis. In the present study we therefore initially investigated which enzymes and types of cells are involved in this process. We have chosen the mouse as an animal model and focused our studies on the distal part of the femur during early stages after birth. The formation of the cartilage canals was promoted by tartrate-resistant acid phosphatase (TRAP) and membrane type-1 matrix metalloproteinases (MT1-MMP). In addition, macrophages and cells containing numerous lysosomes contributed to the establishment of the canals and enabled their further advancement into the epiphysis. As development continued, the SOC was formed, and in mice aged 10 days a distinct layer of type I collagen (= osteoid) was laid down onto the cartilage scaffold. The events leading to the establishment of the SOC were compared with those of the POC. Basically these processes were quite similar, and in both ossification centers, TRAP-positive chondroclasts resorbed the cartilage matrix. However, occasionally co-expression of TRAP and MT1-MMP was noted in a small subpopulation of this cell type. Furthermore, numerous osteoblasts expressed MT1-MMP from the start of endochondral ossification, whereas others did not. In osteocytogenesis, MT1-MMP has been shown to be critical for the establishment of the cytoplasmic processes mediating the communication between osteocytes and bone-lining cells. Considering the well-known fact that not all osteoblasts transform into osteocytes, and in accordance with the present data, we suggest that MT1-MMP is needed at the very beginning of osteocytogenesis and may additionally determine whether an osteoblast further differentiates into an osteocyte.
Collapse
Affiliation(s)
- Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
23
|
Blumer MJF, Longato S, Fritsch H. Structure, formation and role of cartilage canals in the developing bone. Ann Anat 2008; 190:305-15. [PMID: 18602255 DOI: 10.1016/j.aanat.2008.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 02/14/2008] [Indexed: 11/29/2022]
Abstract
In the long bones, endochondral bone formation proceeds via the development of a diaphyseal primary ossification centre (POC) and an epiphyseal secondary ossification centre (SOC). The growth plate, the essential structure for longitudinal bone growth, is located between these two sites of ossification. Basically, endochondral bone development depends upon neovascularization, and the early generation of vascularized cartilage canals is an initial event, clearly preceding the formation of the SOC. These canals form a discrete network within the cartilaginous epiphysis giving rise to the formation of the marrow space followed by the establishment of the SOC. These processes require excavation of the provisional cartilaginous matrix which is eventually replaced by permanent bone matrix. In this review, we discuss the formation of the cartilage canals and the importance of their cells in the ossification process. Special attention is paid to the enzymes required in disintegration of the cartilaginous matrix which, in turn, will allow for the invasion of new vessels. Furthermore, we show that the mesenchymal cells of the cartilage canals express bone-relevant proteins and transform into osteocytes. We conclude that the canals are essential for normal epiphyseal bone development, the establishment of the growth plate and ultimately longitudinal growth of the bones.
Collapse
Affiliation(s)
- Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Innsbruck Medical University, Müllerstrasse 59, Innsbruck, Austria.
| | | | | |
Collapse
|
24
|
Little CB, Meeker CT, Golub SB, Lawlor KE, Farmer PJ, Smith SM, Fosang AJ. Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 2007; 117:1627-36. [PMID: 17510707 PMCID: PMC1866253 DOI: 10.1172/jci30765] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 03/13/2007] [Indexed: 11/17/2022] Open
Abstract
Aggrecan loss from cartilage in arthritis is mediated by aggrecanases. Aggrecanases cleave aggrecan preferentially in the chondroitin sulfate-2 (CS-2) domain and secondarily at the E(373) downward arrow(374)A bond in the interglobular domain (IGD). However, IGD cleavage may be more deleterious for cartilage biomechanics because it releases the entire CS-containing portion of aggrecan. Recent studies identifying aggrecanase-2 (ADAMTS-5) as the predominant aggrecanase in mouse cartilage have not distinguished aggrecanolysis in the IGD from aggrecanolysis in the CS-2 domain. We generated aggrecan knockin mice with a mutation that rendered only the IGD resistant to aggrecanases in order to assess the contribution of this specific cleavage to cartilage pathology. The knockin mice were viable and fertile. Aggrecanase cleavage in the aggrecan IGD was not detected in knockin mouse cartilage in situ nor following digestion with ADAMTS-5 or treatment of cartilage explant cultures with IL-1 alpha. Blocking cleavage in the IGD not only diminished aggrecan loss and cartilage erosion in surgically induced osteoarthritis and a model of inflammatory arthritis, but appeared to stimulate cartilage repair following acute inflammation. We conclude that blocking aggrecanolysis in the aggrecan IGD alone protects against cartilage erosion and may potentiate cartilage repair.
Collapse
Affiliation(s)
- Christopher B. Little
- Arthritis Research Group, University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.
Raymond Purves Bone and Joint Research Laboratories, University of Sydney at the Royal North Shore Hospital, St. Leonards, New South Wales, Australia.
Surgical Research, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Clare T. Meeker
- Arthritis Research Group, University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.
Raymond Purves Bone and Joint Research Laboratories, University of Sydney at the Royal North Shore Hospital, St. Leonards, New South Wales, Australia.
Surgical Research, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Suzanne B. Golub
- Arthritis Research Group, University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.
Raymond Purves Bone and Joint Research Laboratories, University of Sydney at the Royal North Shore Hospital, St. Leonards, New South Wales, Australia.
Surgical Research, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Kate E. Lawlor
- Arthritis Research Group, University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.
Raymond Purves Bone and Joint Research Laboratories, University of Sydney at the Royal North Shore Hospital, St. Leonards, New South Wales, Australia.
Surgical Research, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Pamela J. Farmer
- Arthritis Research Group, University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.
Raymond Purves Bone and Joint Research Laboratories, University of Sydney at the Royal North Shore Hospital, St. Leonards, New South Wales, Australia.
Surgical Research, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Susan M. Smith
- Arthritis Research Group, University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.
Raymond Purves Bone and Joint Research Laboratories, University of Sydney at the Royal North Shore Hospital, St. Leonards, New South Wales, Australia.
Surgical Research, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Amanda J. Fosang
- Arthritis Research Group, University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.
Raymond Purves Bone and Joint Research Laboratories, University of Sydney at the Royal North Shore Hospital, St. Leonards, New South Wales, Australia.
Surgical Research, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| |
Collapse
|
25
|
|
26
|
Blumer MJF, Longato S, Schwarzer C, Fritsch H. Bone development in the femoral epiphysis of mice: The role of cartilage canals and the fate of resting chondrocytes. Dev Dyn 2007; 236:2077-88. [PMID: 17626280 DOI: 10.1002/dvdy.21228] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In mammals, the exact role of cartilage canals is still under discussion. Therefore, we studied their development in the distal femoral epiphysis of mice to define the importance of these canals. Various approaches were performed to examine the histological, cellular, and molecular events leading to bone formation. Cartilage canals started off as invaginations of the perichondrium at day (D) 5 after birth. At D 10, several small ossification nuclei originated around the canal branched endings. Finally, these nuclei coalesced and at D 18 a large secondary ossification centre (SOC) occupied the whole epiphysis. Cartilage canal cells expressed type I collagen, a major bone-relevant protein. During canal formation, several resting chondrocytes immediately around the canals were active caspase 3 positive but others were freed into the canal cavity and appeared to remain viable. We suggest that cartilage canal cells belong to the bone lineage and, hence, they contribute to the formation of the bony epiphysis. Several resting chondrocytes are assigned to die but others, after freeing into the canal cavity, may differentiate into osteoblasts.
Collapse
Affiliation(s)
- Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | |
Collapse
|
27
|
Structural features of incremental line-like striations in mandibular condylar cartilage of c-src-deficient mice. Arch Oral Biol 2006; 51:951-9. [DOI: 10.1016/j.archoralbio.2006.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/17/2006] [Accepted: 05/22/2006] [Indexed: 11/21/2022]
|
28
|
Lee ER, Lamplugh L, Kluczyk B, Mort JS, Leblond CP. Protease analysis by neoepitope approach reveals the activation of MMP-9 is achieved proteolytically in a test tissue cartilage model involved in bone formation. J Histochem Cytochem 2006; 54:965-80. [PMID: 16709729 DOI: 10.1369/jhc.5a6789.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A principle of regulation of matrix metalloproteinase (MMP) activity has been introduced as the cysteine-switch mechanism of activation (Springman et al. 1990). According to this mechanism, a critical Cys residue found in the auto-inhibitory propeptide domain of latent proenzyme is important to determine whether or not activation is turned on or off. The mechanism further allows for multiple modes of activation. To determine whether or not activation is accomplished proteolytically within a rat test cartilage model, protease analysis by the neoepitope approach, which relies upon a set of antibodies, was applied. One is used to identify the MMP-9 proenzyme bearing the critical cysteine residue, the other to identify any enzyme present bearing a new NH2-terminus 89FQTFD. This is indicative of MMP-9 lacking the cysteine switch. The antibody set has been applied to frozen tissue sections and analyzed by light and electron microscopic methods. Results reveal that activation of the MMP-9 protease involves limited proteolysis resulting in propeptide domain release. Here we report the observed changes of protease form to indigenous cells and extracellular matrix, thereby making it possible to uncover the features of MMP-9 activation within a specified set of tissue circumstances where a cartilage model is transformed into definitive bone. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Eunice R Lee
- Electron Microscopy Unit, Joint Diseases Laboratory, Shriners Hospital for Children, and Division of Surgical Research, Department of Surgery, McGill University, Montreal, Quebec, H3G 1A6, Canada.
| | | | | | | | | |
Collapse
|
29
|
Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, Kawaichi M, Oka C. Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 2005; 37:323-36. [PMID: 15993670 DOI: 10.1016/j.bone.2005.03.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 03/21/2005] [Indexed: 11/19/2022]
Abstract
Levels of HtrA1 protein in cartilage have been reported to elevate in joints of human osteoarthritis patients. To understand roles of HtrA1 in normal osteogenesis as well as in pathogenesis of arthritis, we examine HtrA1 expression pattern during bone and cartilage development and in articular cartilage affected by experimental arthritis. HtrA1 is not expressed in mesenchymal or cartilage condensations before initiation of ossification. When ossification begins in the condensations, the expression of HtrA1 starts in chondrocytes undergoing hypertrophic differentiation near the ossification center. Hypertrophic chondrocytes found in adult articular cartilage and epiphyseal growth plates also express HtrA1. When arthritis is induced by injection of anti-collagen antibodies and lipopolysaccharide, resting chondrocytes proceed to terminal hypertrophic differentiation and start expressing HtrA1. These data suggest that hypertrophic change induces HtrA1 expression in chondrocytes both in normal and pathological conditions. HtrA1 has been reported to inhibit TGF-beta signaling. We show that HtrA1 digests major components of cartilage, such as aggrecan, decorin, fibromodulin, and soluble type II collagen. HtrA1 may, therefore, promote degeneration of cartilage by inducing terminal hypertrophic chondrocyte differentiation and by digesting cartilage matrix though its TGF-beta inhibitory activity and protease activity, respectively. In bone, active cuboidal osteoblasts barely express HtrA1, but osteoblasts which flatten and adhere to the bone matrix and osteocytes embedded in bone are strongly positive for HtrA1 production. The bone matrix shows a high level of HtrA1 protein deposition akin to that of TGF-beta, suggesting a close functional interaction between TGF-beta and HtrA1.
Collapse
Affiliation(s)
- Akiho Tsuchiya
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Little CB, Mittaz L, Belluoccio D, Rogerson FM, Campbell IK, Meeker CT, Bateman JF, Pritchard MA, Fosang AJ. ADAMTS-1-knockout mice do not exhibit abnormalities in aggrecan turnover in vitro or in vivo. ACTA ACUST UNITED AC 2005; 52:1461-72. [PMID: 15880348 DOI: 10.1002/art.21022] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine the role of the proteinase ADAMTS-1 in normal and accelerated catabolism of aggrecan in articular and growth plate cartilage of mice. METHODS Expression of ADAMTS-1 was determined using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of RNA isolated from microdissected chondrocytes from different zones of mouse growth plate and articular cartilage. Real-time RT-PCR for ADAMTS-4, ADAMTS-5, and ADAMTS-9 was performed on femoral head cartilage of wild-type (WT) and ADAMTS-1-knockout (KO) mice. Histologic and immunohistologic evaluation of growth plate and articular cartilage was performed in WT and KO mice from birth to 12 weeks of age. The effect of ADAMTS-1 ablation on cartilage proteoglycan loss was studied in antigen-induced arthritis (AIA). Aggrecan catabolism in WT and KO mice was studied in an in vitro model of cartilage degradation, by quantitation of glycosaminoglycan loss and histologic, immunohistologic, and Western immunoblot analyses. RESULTS ADAMTS-1 messenger RNA (mRNA) was expressed in normal mouse articular and growth plate cartilage and was up-regulated in terminal hypertrophic differentiation of growth plate chondrocytes. There was no difference in mRNA levels in the cartilage of WT compared with KO mice for the other potential aggrecanases ADAMTS-4, ADAMTS-5, or ADAMTS-9. ADAMTS-1-KO mice were significantly smaller than their WT littermates; however, no morphologic differences between the genotypes were evident in growth plate or articular cartilage from birth to skeletal maturity (12-16 weeks). Similarly, no difference in cartilage aggrecan content or presence of aggrecan degradation products was detected between WT and KO mice. There was no difference between WT and KO mice in the degree of synovial inflammation or depletion of cartilage aggrecan in AIA. There was no difference between WT and KO cartilage in either basal or stimulated aggrecan loss in vitro; however, subtle changes in the aggrecanase-generated aggrecan catabolites were observed in interleukin-1-treated cartilage. CONCLUSION Although ADAMTS-1 is expressed in articular and growth plate cartilage and is able to cleave aggrecan at physiologically relevant sites, our results indicate that it does not play a significant nonredundant role in normal cartilage and bone development and growth. Similarly, ablation of ADAMTS-1 offered no protection from accelerated aggrecanolysis in an inflammatory model of arthritis or in an in vitro model of early cartilage degradation. ADAMTS-1 does not appear to be a viable target for treatment of cartilage destruction in arthritis.
Collapse
Affiliation(s)
- Chris B Little
- Arthritis Research Group, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Alvarez J, Costales L, Serra R, Balbín M, López JM. Expression patterns of matrix metalloproteinases and vascular endothelial growth factor during epiphyseal ossification. J Bone Miner Res 2005; 20:1011-21. [PMID: 15883642 DOI: 10.1359/jbmr.050204] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 11/12/2004] [Accepted: 02/03/2005] [Indexed: 02/08/2023]
Abstract
UNLABELLED In situ hybridization studies allowed for the localization of three MMPs and the angiogenic factor VEGF during secondary ossification. MMPs were widely expressed during ossification of the secondary center, whereas expression of VEGF was restricted to later stages. INTRODUCTION The spatiotemporal expression patterns of the matrix metalloproteinases gelatinase-B (MMP-9), collagenase-3 (MMP-13), and membrane-type 1 metalloproteinase (MMP-14) and the angiogenic peptide vascular endothelial growth factor (VEGF) were studied during development of the proximal epiphysis of the rat tibia. MATERIALS AND METHODS Cell expression was analyzed by in situ hybridization. Studies on osteoclastic activity, matrix mineralization, cell proliferation, and vascular progression were also performed. RESULTS MMP-9, MMP-13, and MMP-14 were expressed in discrete perichondrial cells that gave way to sites of intrachondral canal formation. High expression levels for the three MMPs were found at the blind ends of advancing intrachondral canals and at the expanding borders of the marrow space. Signals for MMP-9 and MMP-13 were in close proximity but did not overlap, whereas MMP-14 was expressed in both MMP-9+ and MMP-13+ cells. VEGF was not expressed during formation of intrachondral vascular canals but was observed in hypertrophic chondrocytes during formation of the bone marrow cavity. CONCLUSIONS Expression of MMPs and VEGF are constant events during development of the secondary ossification center. We propose that MMPs are involved in targeting proteolytic activity during epiphyseal development. VEGF is not expressed during early formation of vascular canals, but it may have a role in the formation of the bone marrow cavity.
Collapse
Affiliation(s)
- Jesús Alvarez
- Departamento de Morfología y Biología Celular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
32
|
Alvarez J, Costales L, López-Muñiz A, López JM. Chondrocytes are released as viable cells during cartilage resorption associated with the formation of intrachondral canals in the rat tibial epiphysis. Cell Tissue Res 2005; 320:501-7. [PMID: 15846519 DOI: 10.1007/s00441-004-1034-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 11/02/2004] [Indexed: 11/29/2022]
Abstract
The development of cartilage canals is the first event of the ossification of the epiphyses in mammals. Canal formation differs from vascular invasion during primary ossification, since the former involves resorption of resting cartilage and is uncoupled from bone deposition. To learn more about the fate of resorbed chondrocytes during this process, we have carried out structural, cell proliferation, and in situ hybridization studies during the first stages of ossification of the rat tibial proximal epiphysis. Results concerning the formation of the cartilage canals implied the release of resting chondrocytes from the cartilage matrix to the canal cavity. Released chondrocytes had a well-preserved structure, expressed type-II collagen, and maintained the capacity to divide. All these data suggested that chondrocytes released into the canals remained viable for a specific time. Analysis of the proliferative activity at different regions of the cartilage canals showed that the percentage of proliferative chondrocytes at areas of active cartilage resorption was significantly higher than that in zones of low resorption. These results are consistent with the hypothesis that resting chondrocytes surrounding canals have a role in supplying cells for the development of the secondary ossification center. Since released chondrocytes are at an early stage of differentiation greatly preceding their entry into the apoptotic pathway and are exposed to a specific matrix, cellular, and humoral microenvironment, they might differentiate to other cell types and contribute to the ossification of the epiphysis.
Collapse
Affiliation(s)
- Jesús Alvarez
- Departamento de Morfología y Biología Celular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, 33006, Asturias, Spain
| | | | | | | |
Collapse
|
33
|
Little CB, Meeker CT, Hembry RM, Sims NA, Lawlor KE, Golub SB, Last K, Fosang AJ. Matrix metalloproteinases are not essential for aggrecan turnover during normal skeletal growth and development. Mol Cell Biol 2005; 25:3388-99. [PMID: 15798221 PMCID: PMC1069612 DOI: 10.1128/mcb.25.8.3388-3399.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/09/2004] [Accepted: 01/07/2005] [Indexed: 11/20/2022] Open
Abstract
The growth plate is a transitional region of cartilage and highly diversified chondrocytes that controls long bone formation. The composition of growth plate cartilage changes markedly from the epiphysis to the metaphysis, notably with the loss of type II collagen, concomitant with an increase in MMP-13; type X collagen; and the C-propeptide of type II collagen. In contrast, the fate of aggrecan in the growth plate is not clear: there is biosynthesis and loss of aggrecan from hypertrophic cartilage, but the mechanism of loss is unknown. All matrix metalloproteinases (MMPs) cleave aggrecan between amino acids N341 and F342 in the proteinase-sensitive interglobular domain (IGD), and MMPs in the growth plate are thought to have a role in aggrecanolysis. We have generated mice with aggrecan resistant to proteolysis by MMPs in the IGD and found that the mice develop normally with no skeletal deformities. The mutant mice do not accumulate aggrecan, and there is no significant compensatory proteolysis occurring at alternate sites in the IGD. Our studies reveal that MMP cleavage in this key region is not a predominant mechanism for removing aggrecan from growth plate cartilage.
Collapse
Affiliation(s)
- Christopher B Little
- Arthritis Research Group, University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Morini S, Continenza MA, Ricciardi G, Gaudio E, Pannarale L. Development of the microcirculation of the secondary ossification center in rat humeral head. ACTA ACUST UNITED AC 2004; 278:419-27. [PMID: 15103736 DOI: 10.1002/ar.a.20016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work investigated the origin and development of microcirculation in the rat humeral head and the expression of vascular endothelial growth factor (VEGF) as a factor supporting the vascular growth and the development of the secondary ossification centers. Sixty rats aging 1, 3-4, 6-8, 11, and 21 days, 5 weeks, and 4 and 8 months were used. Samples of humeral head were collected for histology and immunohistochemistry for VEGF. Some animals were perfused with Mercox resin in order to obtain vascular corrosion casts (vcc) observed by scanning electron microscopy (SEM). No cartilage canals were present at birth. At 6 days postnatal, blood vessels coming from the perichondrium and the region near the capsule attachment invaded the cartilage; at 11 days postnatal, signs of calcification were present and within the third week some bone trabeculae were formed. Just before the vascular invasion of the epiphysis, a positive reaction for VEGF was localized in chondrocytes of the epiphyseal cartilage close to the capsule insertion. During the development and expansion of the secondary ossification center, VEGF expression was higher in chondrocytes but decreased when epiphysis was diffusely ossified. VEGF was expressed also by mesenchymal cells present in and around the fibrous tissue where the secondary ossification center will develop. SEM vcc confirmed that vessels penetrating into the epiphysis arose merely from the periosteal and the capsular networks, and vascular connections with the diaphyseal circulation were not evident. These observations demonstrated that VEGF production by chondrocytes begun some days after birth, supported the rapid vascular growth from the surrounding soft tissues, and was chronologically related to the development of the secondary ossification center in rat proximal humerus. Finally, the possible role of VEGF as mediator of angiogenesis and, at least indirectly, as a trigger factor also in the ossification and the bone remodeling of the secondary ossification centers has been discussed.
Collapse
Affiliation(s)
- Sergio Morini
- Department of Biomedical Sciences, University Campus Bio-Medico of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Melrose J, Smith S, Whitelock J. Perlecan immunolocalizes to perichondrial vessels and canals in human fetal cartilaginous primordia in early vascular and matrix remodeling events associated with diarthrodial joint development. J Histochem Cytochem 2004; 52:1405-13. [PMID: 15505335 PMCID: PMC3957814 DOI: 10.1369/jhc.4a6261.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to ascertain how perlecan was localized in human fetal cartilaginous joint rudiment tissues. Perlecan was immunolocalized in human fetal (12-14-week-old) toe, finger, knee, elbow, shoulder, and hip joint rudiments using a monoclonal antibody to domain-1 of perlecan (MAb A76). Perlecan had a widespread distribution in the cartilaginous joint rudiments and growth plates and was also prominent in a network of convoluted hairpin loop-type vessels at the presumptive articulating surfaces of joints. Perlecan was also present in small perichondrial venules and arterioles along the shaft of the developing long bones, small blood vessels in the synovial lining and joint capsules, and in distinctive arrangements of cartilage canals in the knee, elbow, shoulder, and hip joint rudiments. Perlecan was notably absent from CD-31-positive metaphyseal vessels in the hip, knee, shoulder, and fingers. These vessels may have a role in the nutrition of the expanding cell populations in these developing joint tissues and in the establishment of the secondary centers of ossification in the long bones, which is essential for endochondral ossification.
Collapse
Affiliation(s)
- James Melrose
- Institute of Bone and Joint Research, Level 5, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| | | | | |
Collapse
|
36
|
Glasson SS, Askew R, Sheppard B, Carito BA, Blanchet T, Ma HL, Flannery CR, Kanki K, Wang E, Peluso D, Yang Z, Majumdar MK, Morris EA. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. ACTA ACUST UNITED AC 2004; 50:2547-58. [PMID: 15334469 DOI: 10.1002/art.20558] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine the importance of the enzymatic activity of ADAMTS-4 in normal growth and development and to evaluate the role of ADAMTS-4 in the progression of osteoarthritis (OA). METHODS We generated catalytic domain-deleted ADAMTS-4-transgenic mice and performed extensive gross and histologic analyses of various organs. The mice were challenged by surgical induction of joint instability leading to OA, to determine the importance of the enzymatic activity of ADAMTS-4 in the progression of the disease. The response of wild-type (WT) and ADAMTS-4-knockout (ADAMTS-4-KO) articular cartilage to interleukin-1 and retinoic acid challenge in vitro was also evaluated. RESULTS ADAMTS-4-KO mice up to 1 year of age exhibited no gross or histologic abnormalities in 36 tissue sites examined. Despite evidence of ADAMTS-4 expression and activity in growth plates of WT mice, catalytic silencing of this proteinase caused no abnormalities in skeletal development, growth, or remodeling. There was no effect of ADAMTS-4 knockout on the progression or severity of OA 4 weeks or 8 weeks after surgical induction of joint instability. Enzymatic cleavage of aggrecan at the TEGE(373-374)ARGS site was clearly evident after exposure of articular cartilage from ADAMTS-4-KO mice to inflammatory cytokines. CONCLUSION Although expression of the ADAMTS-4 gene has been found in many tissues throughout the body, deletion of enzymatic activity did not appear to have any effect on normal growth and physiology. Our study provides evidence that ADAMTS-4 is the primary aggrecanase in murine growth plates; however, deletion of its enzymatic activity did not affect normal long bone remodeling. Our results also lead to the hypothesis that, in the mouse, ADAMTS-4 is not the primary enzyme responsible for aggrecan degradation at the TEGE(373-374)ARGS site. The elucidation of the relative importance of ADAMTS-4 in the pathologic process of human OA will require examination of human OA tissues and evidence of disease modification in patients following therapeutic intervention.
Collapse
|
37
|
Smith JO, Oreffo ROC, Clarke NMP, Roach HI. Changes in the antiangiogenic properties of articular cartilage in osteoarthritis. J Orthop Sci 2004; 8:849-57. [PMID: 14648276 DOI: 10.1007/s00776-003-0717-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/11/2003] [Indexed: 02/09/2023]
Abstract
Avascularity is important for the unique biomechanical properties of articular cartilage, and normal cartilage actively repels vascular invasion. This study investigated whether the antiangiogenic properties changed in the presence of osteoarthritis (OA) by culturing explants of human articular cartilage on the chorioallantoic membrane (CAM) of chick embryos and investigating the incidence of vascular invasion and the effects of exogenous vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9). The results were compared with those of non-OA cartilage obtained after femoral neck fractures. Altogether, 72% of OA samples but only 5% of non-OA samples were invaded by the CAM, indicating that changes in the antiangiogenic properties represented a fundamental difference between control and OA cartilage. Exogenous VEGF or MMP-9 increased the frequency of invasion to 70%-100%. Invasion most frequently occurred into cartilage matrix from which proteoglycans had been lost, the latter being detectable by sirius red staining of cartilage collagen. VEGF was synthesized by chondrocytes in proportion to the severity of degradation and might exacerbate the loss of resistance to invasion. These results indicate that loss of resistance to vascular invasion distinguishes OA cartilage from normal articular cartilage, which may be important in the pathogenesis of OA.
Collapse
Affiliation(s)
- James O Smith
- University Orthopaedics, University of Southampton, CF86, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|
38
|
Roughley PJ, Barnett J, Zuo F, Mort JS. Variations in aggrecan structure modulate its susceptibility to aggrecanases. Biochem J 2003; 375:183-9. [PMID: 12859252 PMCID: PMC1223671 DOI: 10.1042/bj20030609] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 06/18/2003] [Accepted: 07/15/2003] [Indexed: 11/17/2022]
Abstract
Proteoglycan aggregates and purified aggrecan from adult and fetal bovine cartilage and adult and neonatal human cartilage were subjected to in vitro degradation by recombinant aggrecanase-1 and aggrecanase-2. The ability of the aggrecanases to cleave within the aggrecan IGD (interglobular domain) and CS2 domain (chondroitin sulphate-rich domain 2) was monitored by SDS/PAGE and immunoblotting. Aggrecanase-2 showed a similar ability to cleave within the IGD of adult and immature aggrecan, whereas aggrecanase-1 was less efficient in cleavage in the IGD of immature aggrecan, for both the bovine and the human substrates. Both aggrecanases showed a similar ability to cleave within the CS2 domain of bovine aggrecan irrespective of age, but showed a much lower ability to cleave within the CS2 domain of human aggrecan. Equivalent results were obtained whether aggrecan was present in isolation or as part of proteoglycan aggregates. When proteoglycan aggregates were used, neither aggrecanase was able to cleave link protein. Thus, for aggrecan cleavage by aggrecanases, variations in cleavage efficiency exist with respect to the species and age of the animal from which the aggrecan is derived and the type of aggrecanase being used.
Collapse
Affiliation(s)
- Peter J Roughley
- Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, Quebec, Canada H3G 1A6.
| | | | | | | |
Collapse
|
39
|
Delaissé JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech 2003; 61:504-13. [PMID: 12879418 DOI: 10.1002/jemt.10374] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The best established proteolytic event of osteoclasts is bone matrix solubilization by the cysteine proteinase cathepsin K. Here, however, we draw the attention on osteoclastic activities depending on matrix metalloproteinases (MMPs). We discuss the observations supporting that MMPs contribute significantly to bone matrix solubilization in specific areas of the skeleton and in some developmental and pathological situations. Our discussion takes into account (1) the characteristics of the bone remodeling persisting in the absence of cathepsin K, (2) the ultrastructure of the resorption zone in response to inactivation of MMPs and of cathepsin K in different bone types, (3) bone resorption levels in MMP knockout mice compared to wild-type mice, (4) the identification of MMPs in osteoclasts and surrounding cells, and (5) the effect of different bone pathologies on the serum concentrations of specific collagen fragments believed to discriminate between cathepsin K and MMP cleavage. Next, we provide evidence that MMPs are very critical for osteoclast migration, thereby controlling also the cell-matrix interactions required for cell attachment/detachment. The evidence supporting this role is based on a model of osteoclast recruitment in primitive long bones, an assay of osteoclast invasion through collagen gel, and the effect of proteinase inhibitors/knockouts in these models. Furthermore, we mention observations indicating a role of MMPs in initiation of bone resorption. Finally, we emphasize the many distinct ways MMPs may alter focally the extracellular environment thereby regulating the osteoclast behavior. Although the understanding of MMPs in osteoclast biology is rapidly expanding, it is suspected that important roles remain to be discovered.
Collapse
Affiliation(s)
- Jean-Marie Delaissé
- Nordic Bioscience, Center for Clinical and Basic Research, DK-2730 Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 2003; 5:94-103. [PMID: 12718749 PMCID: PMC165039 DOI: 10.1186/ar630] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 01/14/2003] [Accepted: 01/21/2003] [Indexed: 11/28/2022] Open
Abstract
The loss of extracellular matrix macromolecules from the cartilage results in serious impairment of joint function. Metalloproteinases called 'aggrecanases' that cleave the Glu373-Ala374 bond of the aggrecan core protein play a key role in the early stages of cartilage destruction in rheumatoid arthritis and in osteoarthritis. Three members of the ADAMTS family of proteinases, ADAMTS-1, ADAMTS-4 and ADAMTS-5, have been identified as aggrecanases. Matrix metalloproteinases, which are also found in arthritic joints, cleave aggrecans, but at a distinct site from the aggrecanases (i.e. Asn341-Phe342). The present review discuss the enzymatic properties of the three known aggrecanases, the regulation of their activities, and their role in cartilage matrix breakdown during the development of arthritis in relation to the action of matrix metalloproteinases.
Collapse
Affiliation(s)
- Hideaki Nagase
- The Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|
41
|
Westling J, Fosang AJ, Last K, Thompson VP, Tomkinson KN, Hebert T, McDonagh T, Collins-Racie LA, LaVallie ER, Morris EA, Sandy JD. ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain. J Biol Chem 2002; 277:16059-66. [PMID: 11854269 DOI: 10.1074/jbc.m108607200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two major proteolytic cleavages, one at NITEGE(373)/A(374)RGSVI and the other at VDIPEN(341)/F(342)FGVGG, have been shown to occur in vivo within the interglobular domain of aggrecan. The Glu(373)-Ala(374) site is cleaved in vitro by aggrecanase-1 (ADAMTS4) and aggrecanase-2 (ADAMTS5), whereas the other site, at Asn(341)-Phe(342), is efficiently cleaved by matrix metalloproteinases (MMPs) and by cathepsin B at low pH. Accordingly, the presence of the cleavage products globular domain 1 (G1)-NITEGE(373) and G1-VDIPEN(341) in vivo has been widely interpreted as evidence for the specific involvement of ADAMTS enzymes and MMPs/cathepsin B, respectively, in aggrecan proteolysis in situ. We show here, in digests with native human aggrecan, that purified ADAMTS4 cleaves primarily at the Glu(373)-Ala(374) site, but also, albeit slowly and secondarily, at the Asn(341)-Phe(342) site. Cleavage at the Asn(341)-Phe(342) site in these incubations was due to bona fide ADAMTS4 activity (and not a contaminating MMP) because the cleavage was inhibited by TIMP-3 (a potent inhibitor of ADAMTS4), but not by TIMP-1 and TIMP-2, at concentrations that totally blocked MMP-3-mediated cleavage at this site. Digestion of recombinant human G1-G2 (wild-type and cleavage site mutants) confirmed the dual activity of ADAMTS4 and supported the idea that the enzyme cleaves primarily at the Glu(373)-Ala(374) site and secondarily generates G1-VDIPEN(341) by removal of the Phe(342)-Glu(373) peptide from G1-NITEGE(373). These results show that G1-VDIPEN(341) is a product of both MMP and ADAMTS4 activities and challenge the widely held assumption that this product represents a specific indicator of MMP- or cathepsin B-mediated aggrecan degradation.
Collapse
Affiliation(s)
- Jennifer Westling
- Center for Skeletal Development and Pediatric Orthopedic Research, Shriners Hospital for Children, University of South Florida, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|