1
|
Mu H, Yu H, Yan S, Lu J, Mao J, Sun D, Jin N, Fang Z, Lu X, Dong J, Su Y, Chen S, Wang X. High concentration of estrogen resulted by COH may affect the secretion of pro-angiogenic factors in uNK cells by downregulating the expression of IL-11 in decidual stromal cells. J Assist Reprod Genet 2024:10.1007/s10815-024-03241-3. [PMID: 39276273 DOI: 10.1007/s10815-024-03241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE High serum estrogen concentrations after controlled ovarian hyperstimulation (COH) and fresh embryo transfers are associated with the increased risk of pregnancy complications resulting from aberrant placentation. Uterine natural killer (uNK) cells are important for establishment of pregnancy and normal placentation. It has been found that the proliferation and function of uNK cells are compromised by COH. However, the underlying role of high concentration of estrogen following COH in the abnormalities of uNK cells is poorly understood. METHODS Expression of cytokines and immunophenotype study of uNK was performed by flow cytometry analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to quantify RNA expression; Western blot was performed to quantify protein levels. RESULTS The secretion level of pro-angiogenic factors in uNK cells is significantly reduced by co-culture with decidual stromal cells (DSCs) induced by high estrogen. It was discovered that COH and supraphysiologic levels of estrogen downregulated IL-11 in decidual tissue of mice. Additionally, we found that the downregulation of IL-11 is a major factor contributing to the downregulation of VEGF and PLGF in uNK cells. Moreover, we found that uNK cells may acquire IL-11Rα sequentially during differentiation and that only a portion of uNK cells are IL-11Rα positive. Lastly, we discovered that IL-11 may regulate VEGF and PLGF secretion in uNK cells via the ERK signaling pathway. CONCLUSION These results suggested the downregulation of IL-11 expression in DSCs caused by high estrogen levels affects the secretion of pro-angiogenic factors in uNK cells, which provided an explanation for the pregnancy complications caused by COH.
Collapse
Affiliation(s)
- Hui Mu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Haikun Yu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Air Force Medical Center, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Song Yan
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jie Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jiaqin Mao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Dan Sun
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ni Jin
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Zheng Fang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xueyan Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ying Su
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China.
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Paul M, Ain R. Evaluation of Molecular Interactions and Cellular Dynamics at the Maternal-Fetal Interface During Placental Morphogenesis. Methods Mol Biol 2024; 2728:45-76. [PMID: 38019391 DOI: 10.1007/978-1-0716-3495-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Molecular events at the maternal-fetal interface establish successful pregnancies. Identifying and characterizing the heterogeneous cell population and their cross-talk at the cellular and molecular levels are essential to expand our knowledge on the progression and maintenance of pregnancy. In this chapter, we briefly discuss the organization of maternal-fetal interface in mice/rats and humans. We illustrate methods for studying the cell composition using flow cytometry, immunocytochemical and biochemical studies, intercellular interaction using co-culture system and spheroid assay, and function of trophoblast cells using ELISA, RNA sequencing, mass spectrometry (MS) to analyze the proteome, invasion assay, and scratch wound assay.
Collapse
Affiliation(s)
- Madhurima Paul
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
3
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
4
|
Godakumara K, Ord J, Lättekivi F, Dissanayake K, Viil J, Boggavarapu NR, Faridani OR, Jääger K, Velthut-Meikas A, Jaakma Ü, Salumets A, Fazeli A. Trophoblast derived extracellular vesicles specifically alter the transcriptome of endometrial cells and may constitute a critical component of embryo-maternal communication. Reprod Biol Endocrinol 2021; 19:115. [PMID: 34289864 PMCID: PMC8293585 DOI: 10.1186/s12958-021-00801-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The period of time when the embryo and the endometrium undergo significant morphological alterations to facilitate a successful implantation-known as "window of implantation"-is a critical moment in human reproduction. Embryo and the endometrium communicate extensively during this period, and lipid bilayer bound nanoscale extracellular vesicles (EVs) are purported to be integral to this communication. METHODS To investigate the nature of the EV-mediated embryo-maternal communication, we have supplemented trophoblast analogue spheroid (JAr) derived EVs to an endometrial analogue (RL 95-2) cell layer and characterized the transcriptomic alterations using RNA sequencing. EVs derived from non-trophoblast cells (HEK293) were used as a negative control. The cargo of the EVs were also investigated through mRNA and miRNA sequencing. RESULTS Trophoblast spheroid derived EVs induced drastic transcriptomic alterations in the endometrial cells while the non-trophoblast cell derived EVs failed to induce such changes demonstrating functional specificity in terms of EV origin. Through gene set enrichment analysis (GSEA), we found that the response in endometrial cells was focused on extracellular matrix remodelling and G protein-coupled receptors' signalling, both of which are of known functional relevance to endometrial receptivity. Approximately 9% of genes downregulated in endometrial cells were high-confidence predicted targets of miRNAs detected exclusively in trophoblast analogue-derived EVs, suggesting that only a small proportion of reduced expression in endometrial cells can be attributed directly to gene silencing by miRNAs carried as cargo in the EVs. CONCLUSION Our study reveals that trophoblast derived EVs have the ability to modify the endometrial gene expression, potentially with functional importance for embryo-maternal communication during implantation, although the exact underlying signalling mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Kasun Godakumara
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - James Ord
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Keerthie Dissanayake
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Janeli Viil
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Nageswara Rao Boggavarapu
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Omid R Faridani
- Garvan Institute of Medical Research, Sydney, Australia
- Lowy Cancer Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Kersti Jääger
- Competence Centre On Health Technologies, Tartu, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Ülle Jaakma
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Andres Salumets
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Competence Centre On Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alireza Fazeli
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Yao T, Hou H, Liu G, Wu J, Qin Z, Sun Y, Jin X, Chen J, Chen Y, Xu Z. Quantitative proteomics suggest a potential link between early embryonic death and trisomy 16. Reprod Fertil Dev 2020; 31:1116-1126. [PMID: 30922443 DOI: 10.1071/rd17319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/26/2019] [Indexed: 01/04/2023] Open
Abstract
Activation of extracellular signal-regulated kinase (ERK) signalling, alteration of the uterine microenvironment and a reduction in human chorionic gonadotrophin production have been linked with fetal trisomy 16-induced early embryonic death (EED). However, the detailed biological mechanism of EED remains unclear. Using quantitative proteomics we successfully screened differentially expressed proteins in the villous tissues from patients with EED and fetal trisomy 16 (EEDT16), patients with EED but normal fetal chromosomes (EEDNC) and patients undergoing elective abortion with normal fetal chromosomes (EANC) as the reference group. Compared with the reference group, we identified 337 and 220 differentially expressed proteins in EEDT16 patients and EEDNC patients respectively; these were involved in critical biological processes including immune response, superoxide metabolism, inflammatory responses and so on. We found that differential expression of immunological function-related molecules, such as human leukocyte antigen-g (HLA-G), HLA-C, Fc Fragment Of IgG Receptor III (FcγR III), also named CD16, interleukin 18 (IL-18) and transforming growth factor β1 (TGF-β1), might induce EED in both EEDT16 and EEDNC patients. More severe immunological dysfunction was observed in EEDT16 patients than that in EEDNC patients. Furthermore, differential expression of implantation and invasion-related molecules, such as cytochrome b-245 light chain (CYBA), neutrophil cytosol factor 2 (NCF2), Mitogen-activated protein kinase kinase kinase 4 (MAP3K4), matrix metalloproteinase 2 (MMP2), MMP9 and tumour necrosis factor α (TNF-α) might induce EED in both EEDT16 and EEDNC patients, although more severe dysfunction in the implantation and invasion ability of villous tissues was observed in EEDT16 patients.
Collapse
Affiliation(s)
- Ting Yao
- Department of Obstetrics and Gynaecology, Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China; and Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Haiyan Hou
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; and Department of Obstetrics and Gynaecology, Affiliated Hospital of the Chinese People's Armed Police Force Logistics College, Tianjin 300162, China
| | - Guozhong Liu
- Department of Obstetrics and Gynaecology, CongraMarie Women and Children's Hospital, Tianjin 300100, China
| | - Jun Wu
- Program in Public Health, Anteater Instruction & Research Bldg (AIRB) # 2034, University of California, Irvine CA 92697-3957, USA
| | - Zhe Qin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China; and Department of Obstetrics and Gynaecology, Affiliated Hospital of the Chinese People's Armed Police Force Logistics College, Tianjin 300162, China
| | - Yang Sun
- Department of Obstetrics and Gynaecology, Affiliated Hospital of the Chinese People's Armed Police Force Logistics College, Tianjin 300162, China
| | - Xiaohan Jin
- Department of Obstetrics and Gynaecology, Affiliated Hospital of the Chinese People's Armed Police Force Logistics College, Tianjin 300162, China; and Tianjin Key Laboratory of Cardiovascular Remodelling and Target Organ Injury, Pingjin Hospital Heart Centre, Tianjin 300162, China
| | - Jun Chen
- Department of Obstetrics and Gynaecology, Affiliated Hospital of the Chinese People's Armed Police Force Logistics College, Tianjin 300162, China
| | - Yaqiong Chen
- Department of Obstetrics and Gynaecology, Affiliated Hospital of the Chinese People's Armed Police Force Logistics College, Tianjin 300162, China; and Corresponding authors. Emails: ;
| | - Zhongwei Xu
- Department of Obstetrics and Gynaecology, Affiliated Hospital of the Chinese People's Armed Police Force Logistics College, Tianjin 300162, China; and Tianjin Key Laboratory of Cardiovascular Remodelling and Target Organ Injury, Pingjin Hospital Heart Centre, Tianjin 300162, China; and Corresponding authors. Emails: ;
| |
Collapse
|
6
|
Ban Z, Knöspel F, Schneider MR. Shedding light into the black box: Advances in in vitro systems for studying implantation. Dev Biol 2020; 463:1-10. [DOI: 10.1016/j.ydbio.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
|
7
|
Olmos-Ortiz A, Flores-Espinosa P, Mancilla-Herrera I, Vega-Sánchez R, Díaz L, Zaga-Clavellina V. Innate Immune Cells and Toll-like Receptor-Dependent Responses at the Maternal-Fetal Interface. Int J Mol Sci 2019; 20:ijms20153654. [PMID: 31357391 PMCID: PMC6695670 DOI: 10.3390/ijms20153654] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
During pregnancy, the placenta, the mother and the fetus exploit several mechanisms in order to avoid fetal rejection and to maintain an immunotolerant environment throughout nine months. During this time, immune cells from the fetal and maternal compartments interact to provide an adequate defense in case of an infection and to promote a tolerogenic milieu for the fetus to develop peacefully. Trophoblasts and decidual cells, together with resident natural killer cells, dendritic cells, Hofbauer cells and other macrophages, among other cell types, contribute to the modulation of the uterine environment to sustain a successful pregnancy. In this review, the authors outlined some of the various roles that the innate immune system plays at the maternal-fetal interface. First, the cell populations that are recruited into gestational tissues and their immune mechanisms were examined. In the second part, the Toll-like receptor (TLR)-dependent immune responses at the maternal-fetal interface was summarized, in terms of their specific cytokine/chemokine/antimicrobial peptide expression profiles throughout pregnancy.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Rodrigo Vega-Sánchez
- Departamento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico.
| |
Collapse
|
8
|
Böing M, Brand-Saberi B, Napirei M. Murine transcription factor Math6 is a regulator of placenta development. Sci Rep 2018; 8:14997. [PMID: 30301918 PMCID: PMC6177472 DOI: 10.1038/s41598-018-33387-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
The murine basic helix-loop-helix transcription (bHLH) factor mouse atonal homolog 6 (Math6) is expressed in numerous organs and supposed to be involved in several developmental processes. However, so far neither all aspects nor the molecular mechanisms of Math6 function have been explored exhaustively. To analyze the in vivo function of Math6 in detail, we generated a constitutive knockout (KO) mouse (Math6−/−) and performed an initial histological and molecular biological investigation of its main phenotype. Pregnant Math6−/− females suffer from a disturbed early placental development leading to the death of the majority of embryos independent of the embryonic Math6 genotype. A few placentas and fetuses survive the severe uterine hemorrhagic events at late mid-gestation (E13.5) and subsequently develop regularly. However, these fetuses could not be born due to obstructions within the gravid uterus, which hinder the birth process. Characterization of the endogenous spatiotemporal Math6 expression during placenta development reveals that Math6 is essential for an ordered decidualization and an important regulator of the maternal-fetal endocrine crosstalk regulating endometrial trophoblast invasion and differentiation. The strongly disturbed vascularization observed in the maternal placenta appears as an additional consequence of the altered endocrine status and as the main cause for the general hemorrhagic crisis.
Collapse
Affiliation(s)
- Marion Böing
- Ruhr University Bochum, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany
| | - Beate Brand-Saberi
- Ruhr University Bochum, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany.
| | - Markus Napirei
- Ruhr University Bochum, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany
| |
Collapse
|
9
|
Tang L, He G, Liu X, Xu W. Progress in the understanding of the etiology and predictability of fetal growth restriction. Reproduction 2018; 153:R227-R240. [PMID: 28476912 DOI: 10.1530/rep-16-0287] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
Fetal growth restriction (FGR) is defined as the failure of fetus to reach its growth potential for various reasons, leading to multiple perinatal complications and adult diseases of fetal origins. Shallow extravillous trophoblast (EVT) invasion-induced placental insufficiency and placental dysfunction are considered the main reasons for idiopathic FGR. In this review, first we discuss the major characteristics of anti-angiogenic state and the pro-inflammatory bias in FGR. We then elaborate major abnormalities in placental insufficiency at molecular levels, including the interaction between decidual leukocytes and EVT, alteration of miRNA expression and imprinted gene expression pattern in FGR. Finally, we review current animal models used in FGR, an experimental intervention based on animal models and the progress of predictive biomarker studies in FGR.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/R215/suppl/DC1.
Collapse
Affiliation(s)
- Li Tang
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education.,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guolin He
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinghui Liu
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wenming Xu
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education .,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Winship A, Dimitriadis E. Interleukin 11 is upregulated in preeclampsia and leads to inflammation and preeclampsia features in mice. J Reprod Immunol 2017; 125:32-38. [PMID: 29195119 DOI: 10.1016/j.jri.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/31/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a dangerous pregnancy complication, which is often associated with fetal growth restriction and can have serious life-long effects for both mother and baby. While the establishment of the placenta in the first trimester is the sentinel event in the development of preeclampsia little is known of the critical mechanisms of placentation that lead to the syndrome. Locally produced inflammatory cytokines are thought to play a role in the development of preeclampsia. This review summarizes the evidence that interleukin 11 is dysregulated in preeclampsia and contributes to the initiation of preeclampsia via effects on placentation. It discusses the benefits and drawbacks of targeting IL11 as a novel treatment option for preeclampsia.
Collapse
Affiliation(s)
- Amy Winship
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Eva Dimitriadis
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|
11
|
Winship A, Menkhorst E, Van Sinderen M, Dimitriadis E. Interleukin 11: similar or opposite roles in female reproduction and reproductive cancer? Reprod Fertil Dev 2017; 28:395-405. [PMID: 25151993 DOI: 10.1071/rd14128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022] Open
Abstract
During placental development and carcinogenesis, cell invasion and migration are critical events in establishing a self-supporting vascular supply. Interleukin (IL)-11 is a pleiotropic cytokine that affects the invasive and migratory capabilities of trophoblast cells that form the placenta during pregnancy, as well as various malignant cell types. The endometrium is the site of embryo implantation during pregnancy; conversely, endometrial carcinoma is the most common gynaecological malignancy. Here, we review what is known about the role of IL-11 in trophoblast function and in gynaecological malignancies, focusing primarily on the context of the uterine environment.
Collapse
Affiliation(s)
- Amy Winship
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Ellen Menkhorst
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Michelle Van Sinderen
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| |
Collapse
|
12
|
The role of decidual NK cells in pregnancies with impaired vascular remodelling. J Reprod Immunol 2016; 119:81-84. [PMID: 27680579 DOI: 10.1016/j.jri.2016.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
The pathologies of the dangerous pregnancy complications pre-eclampsia (PE) and fetal growth restriction (FGR) are established in the first trimester of human pregnancy yet we know little of how this happens. Finely tuned interactions between maternal and placental cells are essential for pregnancy to progress without complications; however, the precise nature of this cross-talk and how it can go wrong are crucial questions that remain to be answered. This review summarises recent studies examining the role played by natural killer cells in regulating normal placentation and remodelling. Their involvement when it is impaired in PE/FGR pregnancies will additionally be discussed.
Collapse
|
13
|
A panoramic review and in silico analysis of IL-11 structure and function. Cytokine Growth Factor Rev 2016; 32:41-61. [PMID: 27312790 DOI: 10.1016/j.cytogfr.2016.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/21/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022]
Abstract
Human Interleukin (IL)-11 is a multifunctional cytokine, recognized for its thrombopoietic effects for more than two decades; clinically, IL-11 is used in the treatment of thrombocytopenia. IL-11 shares structural and functional similarities with IL-6, a related family member. In recent years, there has been a renewed interest in IL-11, because its distinct biological activities associated with cancers of epithelial origin and inflammatory disorders have been revealed. Although the crystal structure of IL-11 was resolved more than two years, a better understanding of the mechanisms of IL-11 action is required to further extend the clinical use of IL-11. This review will discuss the available structural, functional, and bioinformatics knowledge concerning IL-11 and will summarize its relationship with several diseases.
Collapse
|
14
|
Abstract
IL-11 is a member of the IL-6 family of cytokines. While it was discovered over 20 years ago, we have very little understanding of the role of IL-11 during normal homeostasis and disease. Recently, IL-11 has gained interest for its newly recognized role in the pathogenesis of diseases that are attributed to deregulated mucosal homeostasis, including gastrointestinal cancers. IL-11 can increase the tumorigenic capacity of cells, including survival of the cell or origin, proliferation of cancerous cells and survival of metastatic cells at distant organs. Here we outline our current understanding of IL-11 biology and recent advances in our understanding of its role in cancer. We advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.
Collapse
Affiliation(s)
- Tracy L Putoczki
- The Walter & Eliza Hall Institute of Medical Research & Department of Medical Biology, University of Melbourne, Parkville Victoria 3052, Australia
| | | |
Collapse
|
15
|
Winship AL, Koga K, Menkhorst E, Van Sinderen M, Rainczuk K, Nagai M, Cuman C, Yap J, Zhang JG, Simmons D, Young MJ, Dimitriadis E. Interleukin-11 alters placentation and causes preeclampsia features in mice. Proc Natl Acad Sci U S A 2015; 112:15928-33. [PMID: 26655736 PMCID: PMC4702983 DOI: 10.1073/pnas.1515076112] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal-fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE.
Collapse
Affiliation(s)
- Amy L Winship
- Embryo Implantation Laboratory, Hudson Institute, Clayton, VIC 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Kaori Koga
- Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Ellen Menkhorst
- Embryo Implantation Laboratory, Hudson Institute, Clayton, VIC 3168, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Michelle Van Sinderen
- Embryo Implantation Laboratory, Hudson Institute, Clayton, VIC 3168, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Katarzyna Rainczuk
- Embryo Implantation Laboratory, Hudson Institute, Clayton, VIC 3168, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miwako Nagai
- Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | - Carly Cuman
- Embryo Implantation Laboratory, Hudson Institute, Clayton, VIC 3168, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Joanne Yap
- Embryo Implantation Laboratory, Hudson Institute, Clayton, VIC 3168, Australia
| | - Jian-Guo Zhang
- Cancer and Haemotology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David Simmons
- School of Biomedical Sciences, University of Queensland, QLD 4072, Australia
| | - Morag J Young
- Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia; Cardiovascular Endocrinology Lab, Hudson Institute, Clayton, VIC 3168, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, Hudson Institute, Clayton, VIC 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
16
|
Uterine glucocorticoid receptors are critical for fertility in mice through control of embryo implantation and decidualization. Proc Natl Acad Sci U S A 2015; 112:15166-71. [PMID: 26598666 DOI: 10.1073/pnas.1508056112] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to the well-characterized role of the sex steroid receptors in fertility and reproduction, organs of the female reproductive tract are also regulated by the hypothalamic-pituitary-adrenal axis. These endocrine organs are sensitive to stress-mediated actions of glucocorticoids, and the mouse uterus contains high levels of the glucocorticoid receptor (GR). Although the presence of GR in the uterus is well established, uterine glucocorticoid signaling has been largely ignored in terms of its reproductive and/or immunomodulatory functions on fertility. To define the direct in vivo function of glucocorticoid signaling in adult uterine physiology, we generated a uterine-specific GR knockout (uterine GR KO) mouse using the PR(cre) mouse model. The uterine GR KO mice display a profound subfertile phenotype, including a significant delay to first litter and decreased pups per litter. Early defects in pregnancy are evident as reduced blastocyst implantation and subsequent defects in stromal cell decidualization, including decreased proliferation, aberrant apoptosis, and altered gene expression. The deficiency in uterine GR signaling resulted in an exaggerated inflammatory response to induced decidualization, including altered immune cell recruitment. These results demonstrate that GR is required to establish the necessary cellular context for maintaining normal uterine biology and fertility through the regulation of uterine-specific actions.
Collapse
|
17
|
Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MAK. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:247-59. [PMID: 25023691 DOI: 10.1387/ijdb.140083ms] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Implantation of the embryo into the uterus triggers the initiation of hemochorial placentation. The hemochorial placenta facilitates the acquisition of maternal resources required for embryo/fetal growth. Uterine spiral arteries form the nutrient supply line for the placenta and fetus. This vascular conduit undergoes gestation stage-specific remodeling directed by maternal natural killer cells and embryo-derived invasive trophoblast lineages. The placentation site, including remodeling of the uterine spiral arteries, is shaped by environmental challenges. In this review, we discuss the cellular participants controlling pregnancy-dependent uterine spiral artery remodeling and mechanisms responsible for their development and function.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | |
Collapse
|
18
|
Bulmer JN, Lash GE. The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:95-126. [PMID: 26178847 DOI: 10.1007/978-3-319-18881-2_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human endometrium contains a substantial population of leucocytes which vary in distribution during the menstrual cycle and pregnancy. An unusual population of natural killer (NK) cells, termed uterine NK (uNK) cells, are the most abundant of these cells in early pregnancy. The increase in number of uNK cells in the mid-secretory phase of the cycle with further increases in early pregnancy has focused attention on the role of uNK cells in early pregnancy. Despite many studies, the in vivo role of these cells is uncertain. This chapter reviews current information regarding the role of uNK cells in healthy human pregnancy and evidence indicating their importance in various reproductive and pregnancy problems. Studies in humans are limited by the availability of suitable tissues and the limitations of extrapolation from animal models.
Collapse
Affiliation(s)
- Judith N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK,
| | | |
Collapse
|
19
|
Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 2014; 35:851-905. [PMID: 25141152 DOI: 10.1210/er.2014-1045] [Citation(s) in RCA: 652] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cAMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and, ultimately, resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure.
Collapse
Affiliation(s)
- Birgit Gellersen
- Endokrinologikum Hamburg (B.G.), 20251 Hamburg, Germany; and Division of Reproductive Health (J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
20
|
Kwak-Kim J, Bao S, Lee SK, Kim JW, Gilman-Sachs A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol 2014; 72:129-40. [PMID: 24661472 DOI: 10.1111/aji.12234] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022] Open
Abstract
Inflammatory immune response plays a key role in reproductive failures such as multiple implantation failures (MIF), early pregnancy loss, and recurrent pregnancy losses (RPL). Cellular immune responses particularly mediated by natural killer (NK), and T cells are often dysregulated in these conditions. Excessive or inappropriate recruitment of peripheral blood NK cells to the uterus may lead to cytotoxic environment in utero, in which proliferation and differentiation of trophoblast is hampered. In addition, inadequate angiogenesis by uterine NK cells often leads to abnormal vascular development and blood flow patterns, which, in turn, leads to increased oxidative stress or ischemic changes in the invading trophoblast. T-cell abnormalities with increased Th1 and Th17 immunity, and decreased Th2 and T regulatory immune responses may play important roles in RPL and MIF. A possible role of stress in inflammatory immune response is also reviewed.
Collapse
Affiliation(s)
- Joanne Kwak-Kim
- Reproductive Medicine, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA; Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | |
Collapse
|
21
|
Bovine lactoferrin ingestion protects against inflammation via IL-11 induction in the small intestine of mice with hepatitis. Br J Nutr 2014; 111:1801-10. [PMID: 24472388 DOI: 10.1017/s0007114513004315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accumulating evidence suggests that orally ingested lactoferrin protects against inflammation. To assess the efficacy of orally administered bovine lactoferrin (bLF) against hepatitis and to identify the underlying mechanism, in the present study, we used four mouse models of hepatitis induced by d-galactosamine (GalN), carbon tetrachloride (CCl4), GalN plus lipopolysaccharide (LPS) and zymosan plus LPS. Intraperitoneal (i.p.) injection of GalN (500 mg/kg body weight) in mice treated with bovine serum albumin (BSA) for 14 d significantly increased serum aspartate aminotransferase (AST) concentrations compared with the untreated mice. However, orally administered bLF reduced AST concentrations compared with BSA treatment. In mice that received a single injection (0·4 ml/kg) and twice-weekly injections (0·08 ml/kg) of CCl4 for 24 weeks and pretreated with bLF for 14 d and 24 weeks, respectively, significantly suppressed alanine aminotransferase and AST concentrations were observed compared with the BSA-treated control. Oral administration of bLF for 14 d before i.p. injection of LPS (5 mg/kg) plus GalN (1 g/kg) significantly improved the survival rate. In mice that received intravenous injection of zymosan (25 mg/kg) and LPS (15 μg/kg) at 7 d intervals, bLF reduced the elevation of AST concentrations and enhanced the production of IL-11 and bone morphogenetic protein 2 in the small intestine compared with the BSA-treated control. To evaluate the effects of IL-11, we used IL-11 receptor α-null mice treated with GalN, CCl4 and zymosan plus LPS. In this group, the activity of bLF was not significantly different from that of BSA. These data indicate that orally ingested bLF enhances the expression of IL-11 in the small intestine and up-regulates protective activity in mice with hepatitis.
Collapse
|
22
|
Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation. Mol Cell Biol 2014; 34:1158-69. [PMID: 24421391 DOI: 10.1128/mcb.01202-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer cells belong to the family of innate lymphoid cells comprising the frontline defense against infected and transformed cells. Development and activation of natural killer cells is highly dependent on interleukin-15 signaling. However, very little is known about the transcription program driving this process. The transcription factor Runx3 is highly expressed in natural killer cells, but its function in these cells is largely unknown. We show that loss of Runx3 impaired interleukin-15-dependent accumulation of mature natural killer cells in vivo and under culture conditions and pregnant Runx3(-/-) mice completely lack the unique population of interleukin-15-dependent uterine natural killer cells. Combined chromatin immunoprecipitation sequencing and differential gene expression analysis of wild-type versus Runx3-deficient in vivo activated splenic natural killer cells revealed that Runx3 cooperates with ETS and T-box transcription factors to drive the interleukin-15-mediated transcription program during activation of these cells. Runx3 functions as a nuclear regulator during interleukin-15-dependent activation of natural killer cells by regulating the expression of genes involved in proliferation, maturation, and migration. Similar studies with additional transcription factors will allow the construction of a more detailed transcriptional network that controls natural killer cell development and function.
Collapse
|
23
|
Lucas ES, Salker MS, Brosens JJ. Reprint of: Uterine plasticity and reproductive fitness. Reprod Biomed Online 2013; 27:664-72. [DOI: 10.1016/j.rbmo.2013.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Kuroda K, Venkatakrishnan R, James S, Šucurovic S, Mulac-Jericevic B, Lucas ES, Takeda S, Shmygol A, Brosens JJ, Quenby S. Elevated periimplantation uterine natural killer cell density in human endometrium is associated with impaired corticosteroid signaling in decidualizing stromal cells. J Clin Endocrinol Metab 2013; 98:4429-37. [PMID: 24025400 PMCID: PMC4207949 DOI: 10.1210/jc.2013-1977] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Decidualizing human endometrial stromal cells (HESCs) profoundly up-regulate 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1), the enzyme that converts inert cortisone to active cortisol. We postulated that the induction of a cortisol gradient upon decidualization of the periimplantation endometrium may impact on the uterine natural killer (uNK) cell population and on local expression of corticosteroid-dependent target genes. METHODS Midluteal endometrial biopsies (n = 55) were processed for uNK cell (CD56) analysis and primary HESC cultures. The cultures remained either untreated or were decidualized for 4 or 8 days. A tissue microarray was constructed from endometria with normal (n = 18) and elevated uNK cell (n = 18) scores. An abnormal uNK cell test was defined as greater than 5% CD56(+) cells in the subluminal stroma. RESULTS Increased uNK cell density was associated with lower endometrial expression of 11βHSD1 and mineralocorticoid receptor (MR) but not glucocorticoid receptor in vivo. Elevated uNK cell density also corresponded to impaired induction of key decidual markers (11βHSD1, prolactin, and insulin-like growth factor binding protein-1) and MR-dependent enzymes (dehydrogenase/reductase member 3 and retinol saturase) in differentiating HESC cultures. Increased uNK cell density in vivo was not associated with increased in vitro expression of either IL-15 or IL-11, two cytokines implicated in uNK cell regulation. CONCLUSIONS Elevated levels of uNK cells in the stroma underlying the surface epithelium are associated with inadequate cortisol biosynthesis by resident decidualizing cells and suboptimal induction of key MR-dependent enzymes involved in lipid biogenesis and the retinoid transport pathway. Our observations suggest that uNK cell testing identifies those women at risk of reproductive failure due to relative uterine cortisol deficiency.
Collapse
Affiliation(s)
- Keiji Kuroda
- Department of Reproductive Health, Clinical Science Research Institute, Warwick Medical School, University Hospital, Coventry CV2 2DX, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Uterine plasticity and reproductive fitness. Reprod Biomed Online 2013; 27:506-14. [DOI: 10.1016/j.rbmo.2013.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/22/2022]
|
26
|
Oliveira LJ, Mansourri-Attia N, Fahey AG, Browne J, Forde N, Roche JF, Lonergan P, Fair T. Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy. PLoS One 2013; 8:e75571. [PMID: 24204576 PMCID: PMC3808391 DOI: 10.1371/journal.pone.0075571] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
Despite extensive research in the area of cow fertility, the extent to which the maternal immune system is modulated during pregnancy in cattle remains unclear. Therefore, the objective of the current study was to characterize the presence and response profile of B, T-helper (LTh), T- cytotoxic (LTc), gamma delta-T (γδT) and natural killer (NK) lymphocytes in terms of cell number, distribution and cytokine expression in bovine endometrial tissue to pregnancy. Endometrial tissue samples were collected from beef heifers on Days 5, 7, 13 and 16 of the estrous cycle or pregnancy. Samples were analysed by immunofluorescence to identify the presence and abundance of B-B7 (B-cells), CD4 (LTh), CD8 (LTc), γδT cell receptor (TCR) and CD335/NKp46 (NK cells) -positive immune cells. Quantitative real time PCR (QPCR) was carried out to analyse mRNA relative abundance of FOXP3 (a marker of regulatory T (Treg) cells) and a panel of immune factors, including MHC-I, LIF, Interleukins 1, 2, 6, 8, 10, 11,12A, IFNa and IFNG. Results indicate that B-B7+ cells are quite populous in bovine endometrial tissue, CD4+ and CD8+ -cells are present in moderate numbers and γδTCR+ and CD335+ cells are present in low numbers. Pregnancy affected the total number and distribution pattern of the NK cell population, with the most significant variation observed on Day 16 of pregnancy. Neither B lymphocytes nor T lymphocyte subsets were regulated temporally during the oestrous cycle or by pregnancy prior to implantation. mRNA transcript abundance of the immune factors LIF, IL1b, IL8 and IL12A, IFNa and IFNG, expression was regulated temporally during the estrous cycle and LIF, IL1b, IL-10, IL11, IL12A were also temporally regulated during pregnancy. In conclusion, the endometrial immune profile of the oestrous cycle favours a Th2 environment in anticipation of pregnancy and the presence of an embryo acts to fine tune this environment.
Collapse
Affiliation(s)
- Lilian J. Oliveira
- Faculty of Food Engineering and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Alan G. Fahey
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John Browne
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - James F. Roche
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
27
|
Nagashima T, Li Q, Clementi C, Lydon JP, DeMayo FJ, Matzuk MM. BMPR2 is required for postimplantation uterine function and pregnancy maintenance. J Clin Invest 2013; 123:2539-50. [PMID: 23676498 DOI: 10.1172/jci65710] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 03/14/2013] [Indexed: 12/20/2022] Open
Abstract
Abnormalities in cell-cell communication and growth factor signaling pathways can lead to defects in maternal-fetal interactions during pregnancy, including immunologic rejection of the fetal/placental unit. In this study, we discovered that bone morphogenetic protein receptor type 2 (BMPR2) is essential for postimplantation physiology and fertility. Despite normal implantation and early placental/fetal development, deletion of Bmpr2 in the uterine deciduae of mice triggered midgestation abnormalities in decidualization that resulted in abnormal vascular development, trophoblast defects, and a deficiency of uterine natural killer cells. Absence of BMPR2 signaling in the uterine decidua consequently suppressed IL-15, VEGF, angiopoietin, and corin signaling. Disruption of these pathways collectively lead to placental abruption, fetal demise, and female sterility, thereby placing BMPR2 at a central point in the regulation of several physiologic signaling pathways and events at the maternal-fetal interface. Since trophoblast invasion and uterine vascular modification are implicated in normal placentation and fetal growth in humans, our findings suggest that abnormalities in uterine BMPR2-mediated signaling pathways can have catastrophic consequences in women for the maintenance of pregnancy.
Collapse
Affiliation(s)
- Takashi Nagashima
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
28
|
Rappolee DA, Zhou S, Puscheck EE, Xie Y. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells. Reproduction 2013; 145:R139-55. [PMID: 23463790 DOI: 10.1530/rep-12-0240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.
Collapse
Affiliation(s)
- D A Rappolee
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine.
| | | | | | | |
Collapse
|
29
|
Carlino C, Trotta E, Stabile H, Morrone S, Bulla R, Soriani A, Iannitto ML, Agostinis C, Mocci C, Minozzi M, Aragona C, Perniola G, Tedesco F, Sozzani S, Santoni A, Gismondi A. Chemerin regulates NK cell accumulation and endothelial cell morphogenesis in the decidua during early pregnancy. J Clin Endocrinol Metab 2012; 97:3603-12. [PMID: 22791765 PMCID: PMC3462933 DOI: 10.1210/jc.2012-1102] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Although decidual natural killer (NK) cell accumulation and vascular remodeling are critical steps to ensure successful pregnancy, the molecular mechanisms controlling these events are poorly defined. OBJECTIVE Herein we analyzed whether chemerin, a recently identified chemoattractant involved in many pathophysiological processes, could be expressed in the uterine compartment and could regulate events relevant for the good outcome of pregnancy. DESIGN Chemerin expression in human primary culture of stromal (ST) cells, extravillous trophoblast cells, and decidual endothelial cells (DEC) was analyzed by RT-PCR, ELISA, and Western blot. Migration through ST or DEC of peripheral blood and decidual (d) NK cells from pregnant women was performed using a transwell assay. A DEC capillary-like tube formation assay was used to evaluate endothelial morphogenesis. RESULTS Chemerin is differentially expressed by decidual cells during early pregnancy being present at high levels in ST and extravillous trophoblast cells but not in DEC. Notably, ST cells from pregnant women exhibit and release higher levels of chemerin as compared with ST cells from menopausal or fertile nonpregnant women. Chemerin can support peripheral blood NK cell migration through both DEC and ST cells. Although dNK cells exhibit lower chemerin receptor (CMKLR1) expression than their blood counterpart, CMKLR1 engagement on dNK cells resulted in both ERK activation and migration through decidual ST cells. Interestingly, DEC also express CMKLR1 and undergo ERK activation and capillary-like tube structure formation upon exposure to chemerin. CONCLUSIONS Our data indicate that chemerin is up-regulated during decidualization and might contribute to NK cell accumulation and vascular remodeling during early pregnancy.
Collapse
Affiliation(s)
- Claudia Carlino
- Department of Molecular Medicine, University La Sapienza, Viale Regina Elena 324, Rome 00161 Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
New generation contraceptives: interleukin 11 family cytokines as non-steroidal contraceptive targets. J Reprod Immunol 2011; 88:233-9. [DOI: 10.1016/j.jri.2010.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/09/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022]
|
31
|
Hook CD, Kuprash DV. Interleukin-11, an IL-6-like cytokine. Mol Biol 2011. [DOI: 10.1134/s0026893311010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Blois SM, Klapp BF, Barrientos G. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol 2011; 88:86-92. [PMID: 21227511 DOI: 10.1016/j.jri.2010.11.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 11/28/2022]
Abstract
Differentiation of endometrial stromal cells and formation of new maternal blood vessels at the time of embryo implantation are critical for the establishment and maintenance of gestation. The regulatory functions of decidual leukocytes during early pregnancy, particularly dendritic cells (DC) and NK cells, may be important not only for the generation of maternal immunological tolerance but also in the regulation of stromal cell differentiation and the vascular responses associated with the implantation process. However, the specific contributions of DC and NK cells during implantation are still difficult to dissect mainly due to reciprocal regulatory interactions established between them within the decidualizing microenvironment. The present review article discusses current evidence on the regulatory pathways driving decidualization in mice, suggesting that NK cells promote uterine vascular modifications that assist decidual growth but DC directly control stromal cell proliferation, angiogenesis and the homing and maturation of NK cell precursors in the pregnant uterus. Thus, successful implantation appears to result from an interplay between cellular components of the decidualizing endometrium involving immunoregulatory and pro-angiogenic functions of DC and NK cells.
Collapse
Affiliation(s)
- Sandra M Blois
- Charité Centrum 12 für Innere Medizin und Dermatologie, Reproductive Immunology Research Group, University Medicine of Berlin, Germany.
| | | | | |
Collapse
|
33
|
Tong W, Niklaus A, Zhu L, Pan H, Chen B, Aubuchon M, Santoro N, Pollard JW. Estrogen and progesterone regulation of cell proliferation in the endometrium of muridae and humans. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/9780203091500.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
34
|
Pavlov OV, Kramareva NL, Selkov SA. IL-11 Expression in Human Term Placental Macrophages. Am J Reprod Immunol 2010; 65:397-402. [DOI: 10.1111/j.1600-0897.2010.00909.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Das SK. Regional development of uterine decidualization: molecular signaling by Hoxa-10. Mol Reprod Dev 2010; 77:387-96. [PMID: 19921737 DOI: 10.1002/mrd.21133] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uterine decidualization, a key event in implantation, is critically controlled by stromal cell proliferation and differentiation. Although the molecular mechanism that controls this event is not well understood, the general consensus is that the factors derived locally at the site of implantation influence aspects of decidualization. Hoxa-10, a developmentally regulated homeobox transcription factor, is highly expressed in decidualizing stromal cells, and targeted deletion of Hoxa-10 in mice shows severe decidualization defects, primarily due to the reduced stromal cell responsiveness to progesterone (P(4)). While the increased stromal cell proliferation is considered to be an initiator of decidualization, the establishment of a full-grown functional decidua appears to depend on the aspects of regional proliferation and differentiation. In this regard, this article provides an overview of potential signaling mechanisms mediated by Hoxa-10 that can influence a host of genes and cell functions necessary for propagating regional decidual development.
Collapse
Affiliation(s)
- Sanjoy K Das
- Reproductive Sciences, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
36
|
Godbole G, Modi D. Regulation of decidualization, interleukin-11 and interleukin-15 by homeobox A 10 in endometrial stromal cells. J Reprod Immunol 2010; 85:130-9. [PMID: 20478621 DOI: 10.1016/j.jri.2010.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Cytokine production by the endometrial stromal and decidual cells is essential for successful differentiation of the endometrial stromal cells and uterine leukocytes to sustain pregnancy. Interleukin-11 and -15 (IL-11 and IL-15) secreted by the stromal and decidual cells are two key modulators of the process of decidualization and natural killer cell (NK) activity in the uterus and are essential for pregnancy. However, limited information exists on the maternal factors that regulate the production of these cytokines by the stromal cells. In this study, we investigated the role of homeobox A10 (HOXA10) in the regulation of expression of genes encoding the decidualization markers insulin-like growth factor binding protein-1 (IGFBP1), prolactin and the cytokines IL-11 and IL-15 by endometrial stromal and decidual cells in vitro. The results demonstrated that the expression of IGFBP1, Prolactin (PRL), HOXA10, IL11, and IL15 are co-regulated during steroid hormone-mediated decidualization of human endometrial stromal cells in vitro. In the predecidual cells, downregulation of HOXA10 by siRNA suppresses IGFBP1 and IL15, but increases IL11 expression. In the decidualized cells, knocking down HOXA10 inhibits IGFBP1 and PRL expression but elevates the expression of IL11 and IL15. In addition, our data also demonstrate that transient inhibition of HOXA10 expression in the predecidual cells does not influence its ability to subsequently decidualize or affect cytokine expression, suggesting that steroid hormone-mediated decidualization and cytokine production in vitro does not require HOXA10 preconditioning.
Collapse
Affiliation(s)
- Geeta Godbole
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | | |
Collapse
|
37
|
Cook IH, Evans J, Maldonado-Pérez D, Critchley HO, Sales KJ, Jabbour HN. Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway. Mol Hum Reprod 2009; 16:158-69. [PMID: 19801577 PMCID: PMC2816169 DOI: 10.1093/molehr/gap084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1-prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establishment of early pregnancy, including the cytokine interleukin (IL)-11. Here, we have shown that PROK1-PROKR1 induces the expression of IL-11 in PROKR1 Ishikawa cells and first trimester decidua via the calcium-calcineurin signalling pathway in a guanine nucleotide-binding protein (G(q/11)), extracellular signal-regulated kinases, Ca(2+) and calcineurin-nuclear factor of activated T cells dependent manner. Conversely, treatment of human decidua with a lentiviral miRNA to abolish endogenous PROK1 expression results in a significant reduction in IL-11 expression and secretion. Importantly, we have also shown a regulatory role for the regulator of calcineurin 1 isoform 4 (RCAN1-4). Overexpression of RCAN1-4 in PROKR1 Ishikawa cells using an adenovirus leads to a reduction in PROK1 induced IL-11 indicating that RCAN1-4 is a negative regulator in the calcineurin-mediated signalling to IL-11. Finally, we have shown the potential for both autocrine and paracrine signalling in the human endometrium by co-localizing IL-11, IL-11Ralpha and PROKR1 within the stromal and glandular epithelial cells of non-pregnant endometrium and first trimester decidua. Overall we have identified and characterized the signalling components of a novel PROK1-PROKR1 signalling pathway regulating IL-11.
Collapse
Affiliation(s)
- Ian H Cook
- Medical Research Council, Human Reproductive Sciences Unit, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | |
Collapse
|
38
|
Paiva P, Menkhorst E, Salamonsen L, Dimitriadis E. Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev 2009; 20:319-28. [PMID: 19647472 DOI: 10.1016/j.cytogfr.2009.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Blastocyst implantation into a receptive endometrium is critical to the establishment of pregnancy and is tightly regulated by factors within the blastocyst-endometrial micro-environment. Leukemia inhibitory factor (LIF) and interleukin-11 (IL11) have key roles during implantation. Female mice with a null mutation in the LIF or IL11RA gene are infertile due to a complete failure of implantation or a defective differentiation/decidualization response to the implanting blastocyst, respectively. LIF and IL11 deficiency during pregnancy is associated with infertility and miscarriage in women. Numerous cell populations at the maternal-fetal interface are regulated by LIF/IL11 including the endometrial epithelium, decidualizing stroma, placental trophoblasts and leukocytes. This review focuses on the roles of LIF/IL11 during early pregnancy and highlights their potential as contraceptive targets and therapeutic agents for infertility.
Collapse
Affiliation(s)
- Premila Paiva
- Prince Henry's Institute of Medical Research, 246, Clayton Road, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
39
|
Guzeloglu-Kayisli O, Kayisli UA, Taylor HS. The role of growth factors and cytokines during implantation: endocrine and paracrine interactions. Semin Reprod Med 2009; 27:62-79. [PMID: 19197806 DOI: 10.1055/s-0028-1108011] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Implantation, a critical step for establishing pregnancy, requires molecular and cellular events resulting in uterine growth and differentiation, blastocyst adhesion, invasion, and placental formation. Successful implantation requires a receptive endometrium, a normal and functional embryo at the blastocyst stage, and a synchronized dialogue between maternal and embryonic tissues. In addition to the well-characterized role of sex steroids, the complexity of embryo implantation and placentation is exemplified by the number of cytokines and growth factors with demonstrated roles in these processes. Disturbances in the normal expression and action of these cytokines result in an absolute or partial failure of implantation and abnormal placental formation in mice and human. Members of the gp130 cytokine family, interleukin-11 (IL-11) and leukemia inhibitory factor, the transforming growth factor beta superfamily, the colony-stimulating factors, and the IL-1 and IL-15 systems are crucial molecules for a successful implantation. Chemokines are also important, both in recruiting specific cohorts of leukocytes to the implantation site and in trophoblast trafficking and differentiation. This review provides discussion of the embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine, and/or juxtacrine manners at the hormonal, cellular, and molecular levels.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA
| | | | | |
Collapse
|
40
|
Abstract
Successful embryo implantation requires complex interactions between the uterus and embryo, including the establishment of maternal immunologic tolerance of fetal material. The maternal-fetal interface is dynamically populated by a wide variety of innate immune cells; however, the relevance of uterine DCs (uDCs) within the decidua to the success of implantation has remained unclear. In this issue of the JCI, Plaks et al. show, in a transgenic mouse model, that uDCs are essential for pregnancy, as their ablation results in a failure of decidualization, impaired implantation, and embryonic resorption (see the related article beginning on page 3954). Depletion of uDCs altered decidual angiogenesis, suggesting that uDCs contribute to successful implantation via their effects on decidual tissue remodeling, including angiogenesis, and independent of their anticipated role in the establishment of maternal-fetal tolerance.
Collapse
Affiliation(s)
- Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Department of Obstetrics and Gynecology, Albert Einstein College of Medicine, New York, New York 10461, USA.
| |
Collapse
|
41
|
Guo B, Han BC, Tian Z, Zhao TY, Zeng L, Yang ZM, Yue ZP. Expression and hormonal regulation of IL-11Ralpha in canine uterus during early pregnancy. Reprod Domest Anim 2008; 44:779-82. [PMID: 18992081 DOI: 10.1111/j.1439-0531.2008.01072.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Embryo implantation is critical for the successful establishment of pregnancy. Interleukin-11 (IL-11) is essential for adequate decidualization in the mouse and human via binding to the specific IL-11 receptor alpha (IL-11Ralpha). But the expression and regulation of IL-11 and IL-11Ralpha in the canine endometrium remain unknown. The aim of this study was to investigate the differential expression of IL-11Ralpha in canine uterus during early pregnancy and its regulation under different conditions by in situ hybridization. Interleukin-11Ralpha mRNA was mainly localized in glandular epithelium in canine uterus. There was a low level of IL-11Ralpha expression in the glandular epithelium on days 6, 12 and 17 of pregnancy. On day 20 of pregnancy when embryo implanted, IL-11Ralpha mRNA was highly expressed in the glandular epithelium surrounding the embryo, but not in the luminal epithelium and stroma. On day 23 of pregnancy, the expression of IL-11Ralpha mRNA maintained a constant level compared with the expression of day 20 and increased on day 28 of pregnancy. During the oestrous cycle, a high level of IL-11Ralpha mRNA expression was seen in the oestrous uterus. Progesterone slightly induced the expression of IL-11Ralpha mRNA in the ovariectomized canine uterus. These results suggest that IL-11Ralpha expression is closely related to canine implantation and up-regulated by progesterone.
Collapse
Affiliation(s)
- B Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, P.R. China
| | | | | | | | | | | | | |
Collapse
|
42
|
Nelson SM, Greer IA. The potential role of heparin in assisted conception. Hum Reprod Update 2008; 14:623-45. [DOI: 10.1093/humupd/dmn031] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
43
|
Simmons DG, Rawn S, Davies A, Hughes M, Cross JC. Spatial and temporal expression of the 23 murine Prolactin/Placental Lactogen-related genes is not associated with their position in the locus. BMC Genomics 2008; 9:352. [PMID: 18662396 PMCID: PMC2527339 DOI: 10.1186/1471-2164-9-352] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/28/2008] [Indexed: 02/06/2023] Open
Abstract
Background The Prolactin (PRL) hormone gene family shows considerable variation among placental mammals. Whereas there is a single PRL gene in humans that is expressed by the pituitary, there are an additional 22 genes in mice including the placental lactogens (PL) and Prolactin-related proteins (PLPs) whose expression is limited to the placenta. To understand the regulation and potential functions of these genes, we conducted a detailed temporal and spatial expression study in the placenta between embryonic days 7.5 and E18.5 in three genetic strains. Results Of the 22 PRL/PL genes examined, only minor differences were observed among strains of mice. We found that not one family member has the same expression pattern as another when both temporal and spatial data were examined. There was also no correlation in expression between genes that were most closely related or between adjacent genes in the PRL/PL locus. Bioinformatic analysis of upstream regulatory regions identified conserved combinations (modules) of putative transcription factor binding sites shared by genes expressed in the same trophoblast subtype, supporting the notion that local regulatory elements, rather than locus control regions, specify subtype-specific expression. Further diversification in expression was also detected as splice variants for several genes. Conclusion In the present study, a detailed temporal and spatial placental expression map was generated for all murine PRL/PL family members from E7.5 to E18.5 of gestation in three genetic strains. This detailed analysis uncovered several new markers for some trophoblast cell types that will be useful for future analysis of placental structure in mutant mice with placental phenotypes. More importantly, several main conclusions about regulation of the locus are apparent. First, no two family members have the same expression pattern when both temporal and spatial data are examined. Second, most genes are expressed in multiple trophoblast cell subtypes though none were detected in the chorion, where trophoblast stem cells reside, or in syncytiotrophoblast of the labyrinth layer. Third, bioinformatic comparisons of upstream regulatory regions identified predicted transcription factor binding site modules that are shared by genes expressed in the same trophoblast subtype. Fourth, further diversification of gene products from the PRL/PL locus occurs through alternative splice isoforms for several genes.
Collapse
Affiliation(s)
- David G Simmons
- Department of Comparative Biology & Experimental Medicine, The University of Calgary, Calgary, Canada.
| | | | | | | | | |
Collapse
|
44
|
Santoni A, Carlino C, Stabile H, Gismondi A. Mechanisms underlying recruitment and accumulation of decidual NK cells in uterus during pregnancy. Am J Reprod Immunol 2008; 59:417-24. [PMID: 18405312 DOI: 10.1111/j.1600-0897.2008.00598.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells represent the most prominent immune cell type found in the uterus in the first trimester of human pregnancy and in the secretory phase of menstrual cycle. The role of NK cells in pregnancy has been largely discussed over the past years and it is now becoming increasingly clear that they may influence pregnancy outcome at several levels. In normal pregnancy, it appears that the major function of NK cells is to provide benefit by secreting a number of cytokines, chemokines and angiogenic factors rather than to exert a cytotoxic activity. However, the origin of decidual NK cells is still debated and it remains unclear whether they can derive from NK cell populations recruited from peripheral blood and/or other tissues or from self renewal of NK cell progenitors present in the uterus prior to pregnancy or recruited from other tissues. Here, we review the molecular mechanisms underlying peripheral blood NK cell recruitment and its role in the accumulation of NK cells in the decidua during early pregnancy.
Collapse
Affiliation(s)
- Angela Santoni
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
45
|
Santoni A, Carlino C, Gismondi A. Uterine NK cell development, migration and function. Reprod Biomed Online 2008; 16:202-10. [PMID: 18284874 DOI: 10.1016/s1472-6483(10)60575-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uterine natural killer (uNK) cells represent the predominant lymphocytes in the uterus during early pregnancy and in the secretory phase of the menstrual cycle. They are CD56(high)CD16(-) and have low cytotoxicity, but constitutively secrete a number of cytokines, chemokines and angiogenic molecules. uNK cells differ from CD56(high) blood NK cells in several ways, including the killer cell immunoglobulin-like receptor repertoire and expression of some genes induced by hormone environment. uNK cells may arise by in-utero proliferation and differentiation of NK cell progenitors under the control of the sex steroid hormones and/or cytokines, such as interleukin-15, and/or be recruited from CD56(+) blood NK cells that would undergo tissue-specific differentiation in the uterine microenvironment. There is evidence showing that uNK cells display a different pattern of chemokine receptors and adhesion molecules, thus leading to a different migratory response. It has not yet been fully defined which uNK cell function(s) are critical for successful pregnancy. The close encirclement of spiral arteries by NK cells, together with their ability to produce angiogenic factors, suggests that they might influence mucosal vascularization. Their proximity to the extravillous trophoblast supports the idea that uNK cells could recognize these cells as fetal, and regulate their invasion during placentation.
Collapse
Affiliation(s)
- Angela Santoni
- Department of Experimental Medicine, University of Rome La Sapienza, Viale Regina Elena, 324, 00161 Rome, Italy.
| | | | | |
Collapse
|
46
|
Abstract
Implantation, a critical step for establishing pregnancy, requires molecular and cellular events resulting in healthy uterine growth and differentiation, blastocyst adhesion, invasion and placental formation. Successful implantation requires a receptive endometrium, a normal and functional embryo at the blastocyst stage and a synchronized dialogue between maternal and embryonic tissues. In addition to the main role of sex steroids, the complexity of embryo implantation and placentation is exemplified by the number of cytokines and growth factors with demonstrated roles in these processes. Disturbances of the normal expression and action of these cytokines result in absolute or partial failure of implantation and abnormal placental formation in mice and humans. Members of the gp130 cytokine family, interleukin (IL)-11 and leukaemia inhibitory factor, the transforming growth factor-beta superfamily, colony-stimulating factors, and the IL-1 and IL-15 systems are all crucial for successful implantation. In addition, chemokines are important both in recruiting specific cohorts of leukocytes to the implantation site, and in trophoblast trafficking and differentiation. This review provides discussion on embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine and/or juxtacrine manners at hormonal, cellular, and molecular levels.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
47
|
Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 2008; 111:3108-15. [PMID: 18187664 DOI: 10.1182/blood-2007-08-105965] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During early pregnancy, uterine mucosa decidualization is accompanied by a drastic enrichment of CD56(high)CD16(-) natural killer (NK) cells. Decidual NK (dNK) cells differ from peripheral blood NK (pbNK) cells in several ways, but their origin is still unclear. Our results demonstrate that chemokines present in the uterus can support pbNK cell migration through human endothelial and stromal decidual cells. Notably, we observed that pregnant women's pbNK cells are endowed with higher migratory ability compared with nonpregnant women's or male donors' pbNK cells. Moreover, NK cell migration through decidual stromal cells was increased when progesterone-cultured stromal cells were used as substrate, and this correlated with the ability of progesterone to up-regulate stromal cell chemokine expression. Furthermore, we demonstrate that dNK cells migrate through stromal cells using a distinct pattern of chemokines. Finally, we found that pbNK cells acquire a chemokine receptor pattern similar to that of dNK cells when they contact decidual stromal cells. Collectively these results strongly suggest that pbNK cell recruitment to the uterus contributes to the accumulation of NK cells during early pregnancy; that progesterone plays a crucial role in this event; and that pbNK cells undergo reprogramming of their chemokine receptor profile once exposed to uterine microenvironment.
Collapse
|
48
|
Chaouat G, Dubanchet S, Ledée N. Cytokines: Important for implantation? J Assist Reprod Genet 2007; 24:491-505. [PMID: 18044017 PMCID: PMC3455031 DOI: 10.1007/s10815-007-9142-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Cytokines are obviously very important in an established pregnancy, but what about human embryo implantation? METHODS Literature review. RESULTS We first discuss the necessity and limits of animal models, and then review the few cytokines which have been demonstrated by knock-out methods to be absolutely necessary for embryo implantation using in animal models. We then review what is known or discussed about the role of other cytokines as deduced from quantitative and/or qualitative dysregulation in animals and in humans. CONCLUSIONS Cytokines are indeed involved in implantation as they are in ongoing pregnancy and delivery. Relevance to infertility and recurrent pregnancy loss is discussed.
Collapse
Affiliation(s)
- Gérard Chaouat
- U 782 INSERM, Equipe cytokines et dialogue cytokinique mère conceptus, Université Paris Sud et Hôpîtal Antoine Béclère, 32 rue des Carnets, Clamart Cedex, France.
| | | | | |
Collapse
|
49
|
Yoshinaga K. Review of factors essential for blastocyst implantation for their modulating effects on the maternal immune system. Semin Cell Dev Biol 2007; 19:161-9. [PMID: 18054836 DOI: 10.1016/j.semcdb.2007.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 01/23/2023]
Abstract
Pituitary and ovarian hormones prepare the endometrium for successful blastocyst implantation and support its process directly or indirectly through the action of growth factors, cytokines and other molecules. Many of the blastocyst implantation essential factors (BIEFs) are modulators of the maternal immune system. Since little is known as to the action of these molecules on the uterine lymphocytes, its clarification is imperative to the understanding of the process of blastocyst implantation.
Collapse
Affiliation(s)
- Koji Yoshinaga
- Reproductive Sciences Branch, Center for Population Research, National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892-7510, USA.
| |
Collapse
|
50
|
Abstract
The enunciation of the T helper 1/T helper 2 (Th1/Th2) paradigm in pregnancy has represented a major step forward in our understanding of physiological and pathologic materno-foetal relationship. However, recent developments in studies of the implantation process and in the emergence of the uterine vascular bed and its control by natural killer cells and cytokines suggest that one must go beyond this hitherto useful scheme. In this review, we replace the emergence of the paradigm in its historical context and then emphasises what it does explain and what it no longer account for. A final reappraisal of the paradigm is suggested.
Collapse
Affiliation(s)
- Gérard Chaouat
- Unité 782 Inserm, 32 rue des Carnets 92141 Clamart, France.
| |
Collapse
|