1
|
Li G, Luo Y, Zhang Q, Chen W, Lai K, Liu Y, Zheng Y. The RBPMS CreERT2-tdTomato mouse line for studying retinal and vascular relevant diseases. iScience 2023; 26:108111. [PMID: 37867934 PMCID: PMC10589894 DOI: 10.1016/j.isci.2023.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
RNA-binding protein with multiple splicing (RBPMS) plays a crucial role in cardiac mesoderm specification and cardiovascular development, as well as being a typical marker for whole retinal ganglion cells (RGCs). However, there is a lack of animal models to spatiotemporally trace the location and function of RBPMS-expressing cells in vivo. In this study, we develop a tamoxifen-inducible RBPMS-tdTomato reporter mouse line to track RBPMS-expressing cells during embryogenesis and adulthood. This mouse line allows us to identify and locate RBPMS-tdTomato-positive cells among various tissues, especially in RGCs and smooth muscle cells, which assist to simulate related retinal degenerative diseases, model and examine choroidal neovascularization non-invasively in vivo. Our results show that the RBPMSCreERT2-tdTomato mouse line is a valuable tool for lineage tracing, disease modeling, drug screening, as well as isolating specific target cells.
Collapse
Affiliation(s)
- Guilan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuanting Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenfei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
2
|
Akerberg AA, Trembley M, Butty V, Schwertner A, Zhao L, Beerens M, Liu X, Mahamdeh M, Yuan S, Boyer L, MacRae C, Nguyen C, Pu WT, Burns CE, Burns CG. RBPMS2 Is a Myocardial-Enriched Splicing Regulator Required for Cardiac Function. Circ Res 2022; 131:980-1000. [PMID: 36367103 PMCID: PMC9770155 DOI: 10.1161/circresaha.122.321728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.
Collapse
Affiliation(s)
- Alexander A. Akerberg
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Michael Trembley
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Vincent Butty
- BioMicroCenter, Department of Biology (V.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Asya Schwertner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Long Zhao
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Manu Beerens
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Xujie Liu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Laurie Boyer
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biological Engineering (L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Calum MacRae
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Christopher Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic‚ Cleveland‚ OH (C.N.)
| | - William T. Pu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - Caroline E. Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - C. Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| |
Collapse
|
3
|
Holman AR, Chi NC. Fishing Out the Role of RBPMS2 in Cardiac Splicing. Circ Res 2022; 131:1001-1003. [PMID: 36454855 DOI: 10.1161/circresaha.122.321922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Alyssa R Holman
- Department of Medicine (A.R.H., N.C.C.).,Biomedical Sciences Graduate Program (A.R.H.), University of California, San Diego, La Jolla, CA
| | - Neil C Chi
- Department of Medicine (A.R.H., N.C.C.).,Institute of Genomic Medicine, School of Medicine (N.C.C.), University of California, San Diego, La Jolla, CA
| |
Collapse
|
4
|
Rabelo-Fernández RJ, Santiago-Sánchez GS, Sharma RK, Roche-Lima A, Carrion KC, Rivera RAN, Quiñones-Díaz BI, Rajasekaran S, Siddiqui J, Miles W, Rivera YS, Valiyeva F, Vivas-Mejia PE. Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:535. [PMID: 35008958 PMCID: PMC8745614 DOI: 10.3390/ijms23010535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert J. Rabelo-Fernández
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00925, USA
| | - Ginette S. Santiago-Sánchez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Rohit K. Sharma
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Abiel Roche-Lima
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Kelvin Carrasquillo Carrion
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Ricardo A. Noriega Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Blanca I. Quiñones-Díaz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Wayne Miles
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Yasmarie Santana Rivera
- School of Dentistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA;
| | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
5
|
Chun SH, Kim EY, Yoon JS, Won HS, Yim K, Hwang HW, Hong SA, Lee M, Lee SL, Kim SS, Sun DS, Ko YH. Prognostic value of noggin protein expression in patients with resected gastric cancer. BMC Cancer 2021; 21:558. [PMID: 34001012 PMCID: PMC8130398 DOI: 10.1186/s12885-021-08273-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/29/2021] [Indexed: 01/02/2023] Open
Abstract
Background Noggin and RNA-binding protein for multiple splicing 2 (RBPMS2) are known to regulate the expression of smooth muscle cells, endothelial cells, and osteoblasts. However, the prognostic role of combined Noggin and RBPMS2 expression in resected gastric cancer (GC) is unclear. Methods A total of 163 patients with GC who underwent gastrectomy were included in this study. The expression of Noggin and RBPMS2 proteins in tumor cells at the tumor center and invasive front of resected GC was evaluated by immunohistochemistry, and in conjunction with clinicopathological parameters the patient survival was analyzed. Results RBPMS2 protein expression was high at the tumor center (n = 86, 52.8%) and low at the invasive front (n = 69, 42.3%), while Noggin protein expression was high in both tumor center (n = 91, 55.8%) and the invasive front (n = 90, 55.2%). Noggin expression at the invasive front and tumor center was significantly decreased in advanced T stage, non-intestinal-type (invasive front, P = 0.008 and P < 0.001; tumor center lesion, P = 0.013 and P = 0.001). RBPMS2 expression at the invasive front was significantly decreased in non-intestinal-type and positive lymphatic invasion (P < 0.001 and P = 0.013). Multivariate analysis revealed that high Noggin protein expression of the invasive front was an independent prognostic factor for overall survival (hazard ratio [HR], 0.58; 95% confidence interval [CI]; 0.35–0.97, P < 0.036), but not at the tumor center (HR, 1.35; 95% CI; 0.81–2.26, P = 0.251). Conclusions Our study indicates that high Noggin expression is a crucial prognostic factor for favorable outcomes in patients with resected GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08273-x.
Collapse
Affiliation(s)
- Sang Hoon Chun
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Sook Yoon
- Uijeongbu St. Mary's Hospital Clinical Research Laboratory, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Sung Won
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwangil Yim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Won Hwang
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Su Lim Lee
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Soo Kim
- Department of Internal Medicine, Division of Gastroenterology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Der Sheng Sun
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Akerberg AA, Burns CE, Burns CG. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol 2019; 40:1410-1418. [PMID: 31399780 PMCID: PMC6786954 DOI: 10.1007/s00246-019-02180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.
Collapse
Affiliation(s)
- Alexander A Akerberg
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115
| | - Caroline E. Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Harvard Stem Cell Institute, Cambridge, MA 02138,Authors for Correspondence: ()
| | - C. Geoffrey Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Authors for Correspondence: ()
| |
Collapse
|
7
|
Ye L, Gu L, Caprioli J, Piri N. RNA-binding protein Rbpms is represented in human retinas by isoforms A and C and its transcriptional regulation involves Sp1-binding site. Mol Genet Genomics 2018; 293:819-830. [PMID: 29423656 PMCID: PMC6033630 DOI: 10.1007/s00438-018-1423-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/03/2018] [Indexed: 11/26/2022]
Abstract
Rbpms (RNA-binding protein with multiple splicing) is a member of the RRM (RNA Recognition Motif) family of RNA-binding proteins, which is expressed as multiple alternatively spliced transcripts encoding different protein isoforms. We have shown earlier that Rbpms expression in the retina is restricted to retinal ganglion cells (RGCs), and have characterized this gene as a marker for RGCs. The aim of this study was to identify isoforms representing Rbpms in human retinas and to analyze its transcriptional regulation. We found that Rbpms is expressed as transcription variants 1 and 3 encoding isoforms A and C, respectively. These isoforms are encoded by the same first 6 exons but have different C-terminal ends encoded by exon 8 in variant 1 and exon 7 in variant 3. Computational analysis of the Rbpms 5' untranslated and flanking regions reveals the presence of three CpG islands and four predicted promoter regions (PPRs). The effect of PPR 1 (- 1672/- 1420) and PPR2 (- 330/- 79) on transcriptional activation was minimal, whereas PPR 3 (- 73/+ 177) and PPR4 (+ 274/+ 524) induced the expression by ~ 7 and ninefold compared to control, respectively. The maximum activity, a 30-fold increase above the control level, was obtained from the construct containing both PPRs 3 and 4. Site-directed mutagenesis of several cis-elements within PPR3 and PPR4 including five for Sp1, one for AP1, and two for NF-kB showed that mutation of the first three and especially the first GC box resulted in a threefold downregulation of gene expression. AP1, NF-kB, and two downstream Sp1 sites had no significant effect on expression level. The possible involvement of the GC box 1 at position - 54 in transcriptional regulation of Rbpms was corroborated by EMSA, which showed formation of a DNA-protein complex in the presence of the oligonucleotide corresponding to this Sp1-binding site.
Collapse
Affiliation(s)
- Linda Ye
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Lei Gu
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Joseph Caprioli
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, CA, 90095, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Natik Piri
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Kaufman OH, Lee K, Martin M, Rothhämel S, Marlow FL. rbpms2 functions in Balbiani body architecture and ovary fate. PLoS Genet 2018; 14:e1007489. [PMID: 29975683 PMCID: PMC6049948 DOI: 10.1371/journal.pgen.1007489] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/17/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
The most prominent developmental regulators in oocytes are RNA-binding proteins (RNAbps) that assemble their targets into ribonucleoprotein granules where they are stored, transported and translationally regulated. RNA-binding protein of multiple splice forms 2, or Rbpms2, interacts with molecules that are essential to reproduction and egg patterning, including bucky ball, a key factor for Bb formation. Rbpms2 is localized to germ granules in primordial germ cells (PGCs) and to the Balbiani body (Bb) of oocytes, although the mechanisms regulating Rbpms2 localization to these structures are unknown. Using mutant Rbpms2 proteins, we show that Rbpms2 requires distinct protein domains to localize within germ cells and somatic cells. Accumulation and localization to subcellular compartments in the germline requires an intact RNA binding domain. Whereas in zebrafish somatic blastula cells, the conserved C-terminal domain promotes localization to the bipolar centrosomes/spindle. To investigate Rbpms2 functions, we mutated the duplicated and functionally redundant zebrafish rbpms2 genes. The gonads of rbpms2a;2b (rbpms2) mutants initially contain early oocytes, however definitive oogenesis ultimately fails during sexual differentiation and, rbpms2 mutants develop as fertile males. Unlike other genes that promote oogenesis, failure to maintain oocytes in rbpms2 mutants was not suppressed by mutation of Tp53. These findings reveal a novel and essential role for rbpms2 in oogenesis. Ultrastructural and immunohistochemical analyses revealed that rbpms2 is not required for the asymmetric accumulation of mitochondria and Buc protein in oocytes, however its absence resulted in formation of abnormal Buc aggregates and atypical electron-dense cytoplasmic inclusions. Our findings reveal novel and essential roles for rbpms2 in Buc organization and oocyte differentiation. Oocyte development relies on posttranscriptional regulation by RNA binding proteins (RNAbps). RNAbps form large multi-molecular structures called RNPs (ribonucleoproteins) that further aggregate into regulatory granules within germ cells. In zebrafish primary oocytes, a large transient RNP aggregate called the Balbiani body (Bb) is essential for localizing patterning molecules and germline determinants within oocytes. RNA-binding protein of multiple splice forms 2, or Rbpms2, localizes to germ granules and the Bb, and interacts with bucky ball, a key factor for Bb formation. We show that Rbpms2 requires RNA binding for localization within germ cells, and that the C-term and RRM contribute to Rbpms2 subcellular localization in distinct somatic cell types. To investigate Rbpms2 functions we mutated the duplicated zebrafish rbpms2 genes. Consistent with redundant functions, rbpms2a and rbpms2b gene expression overlaps, and single mutants have no discernible phenotypes. Although rbpms2a;2b double mutants have cardiac phenotypes, those that reach adulthood are exclusively fertile males. Genetic analysis shows that rbpms2 mutant oocytes are not maintained even when Tp53, a regulator of cell death is absent. Initial oocyte polarity is established in rbpms2 mutants based on asymmetric distribution of Buc protein and mitochondria; however, abnormal Buc structures and atypical cytoplasmic inclusions form. This work reveals independent Rbpms2 functions in promoting Bb integrity, and as a novel regulator of ovary fate.
Collapse
Affiliation(s)
- Odelya H. Kaufman
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - KathyAnn Lee
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Manon Martin
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sophie Rothhämel
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Florence L. Marlow
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Soufari H, Mackereth CD. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family. RNA (NEW YORK, N.Y.) 2017; 23:308-316. [PMID: 28003515 PMCID: PMC5311487 DOI: 10.1261/rna.059733.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 05/16/2023]
Abstract
Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets.
Collapse
Affiliation(s)
- Heddy Soufari
- University of Bordeaux, Institut Européen de Chimie et Biologie, F-33607 Pessac, France
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, F-33076 Bordeaux, France
| | - Cameron D Mackereth
- University of Bordeaux, Institut Européen de Chimie et Biologie, F-33607 Pessac, France
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, F-33076 Bordeaux, France
| |
Collapse
|
10
|
Shanmugaapriya S, van Caam A, de Kroon L, Vitters EL, Walgreen B, van Beuningen H, Davidson EB, van der Kraan PM. Expression of TGF-β Signaling Regulator RBPMS (RNA-Binding Protein With Multiple Splicing) Is Regulated by IL-1β and TGF-β Superfamily Members, and Decreased in Aged and Osteoarthritic Cartilage. Cartilage 2016; 7:333-45. [PMID: 27688842 PMCID: PMC5029562 DOI: 10.1177/1947603515623991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE RNA-binding protein with multiple splicing (RBPMS) has been shown to physically interact with Smads and enhance transforming growth factor-β (TGF-β)-mediated Smad2/3 transcriptional activity in mammalian cells. Objective of this study was to examine whether expression of RBPMS is regulated by interleukin-1β (IL)-1β and TGF-β superfamily growth factors and whether expression of RBPMS is altered during aging and experimental osteoarthritis. METHODS Expression of RBPMS protein was investigated in chondrocyte cell lines of murine (H4) and human (G6) origin using Western blot analysis. Regulation of RBPMS expression in H4 chondrocytes at mRNA level was done by reverse transcriptase-quantitative polymerase chain reaction. Furthermore, characterization of Smad signaling pathways regulating RBPMS expression was performed by blocking studies using small molecule inhibitors or by transfection studies with adenoviral vector constructs (constitutive-active ALK1 and constitutive-active ALK5). Expression of RBPMS in cartilage of different age groups of C57BL/6N mice (6 months and 20 months) and in a surgically induced osteoarthritis (OA) mouse model was analyzed using immunohistochemistry. RESULTS RBPMS was shown to be expressed in chondrocytes and cartilage of murine, human, and bovine origin. TGF-β inhibited RBPMS expression while BMP2 and IL-1β increased its expression. TGF-β-induced inhibition was blocked by ALK5 inhibitor. Overexpression of ca-ALK1 stimulated RBPMS expression. Moreover, RBPMS expression was found to be reduced with ageing and in OA pathogenesis. CONCLUSIONS Expression of RBPMS in chondrocytes is regulated by TGF-β superfamily members and IL-1β, indicating a counter-regulatory mechanism. Expression of RBPMS, in cartilage and its reduction during ageing and OA might suggest its potential role in the maintenance of normal articular cartilage.
Collapse
Affiliation(s)
- S. Shanmugaapriya
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - A. van Caam
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L. de Kroon
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elly L. Vitters
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - B Walgreen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - H. van Beuningen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E. Blaney Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M. van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands,Peter M. van der Kraan, Radboud University Medical Center, 272, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Ladd AN. New Insights Into the Role of RNA-Binding Proteins in the Regulation of Heart Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:125-85. [PMID: 27017008 DOI: 10.1016/bs.ircmb.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of gene expression during development takes place both at the transcriptional and posttranscriptional levels. RNA-binding proteins (RBPs) regulate pre-mRNA processing, mRNA localization, stability, and translation. Many RBPs are expressed in the heart and have been implicated in heart development, function, or disease. This chapter will review the current knowledge about RBPs in the developing heart, focusing on those that regulate posttranscriptional gene expression. The involvement of RBPs at each stage of heart development will be considered in turn, including the establishment of specific cardiac cell types and formation of the primitive heart tube, cardiac morphogenesis, and postnatal maturation and aging. The contributions of RBPs to cardiac birth defects and heart disease will also be considered in these contexts. Finally, the interplay between RBPs and other regulatory factors in the developing heart, such as transcription factors and miRNAs, will be discussed.
Collapse
Affiliation(s)
- A N Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
12
|
Rodriguez AR, de Sevilla Müller LP, Brecha NC. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 2014; 522:1411-43. [PMID: 24318667 DOI: 10.1002/cne.23521] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity-purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On western blots these antibodies recognize a single band at 〜24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit, and monkey retina. RBPMS-immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semiquantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1)-immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at 3 weeks, and all Brn3a-, SMI-32-, and melanopsin-immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to cyan fluorescent protein (CFP)-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs.
Collapse
Affiliation(s)
- Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | | | | |
Collapse
|
13
|
Blech-Hermoni Y, Ladd AN. RNA binding proteins in the regulation of heart development. Int J Biochem Cell Biol 2013; 45:2467-78. [PMID: 23973289 DOI: 10.1016/j.biocel.2013.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
In vivo, RNA molecules are constantly accompanied by RNA binding proteins (RBPs), which are intimately involved in every step of RNA biology, including transcription, editing, splicing, transport and localization, stability, and translation. RBPs therefore have opportunities to shape gene expression at multiple levels. This capacity is particularly important during development, when dynamic chemical and physical changes give rise to complex organs and tissues. This review discusses RBPs in the context of heart development. Since the targets and functions of most RBPs--in the heart and at large--are not fully understood, this review focuses on the expression and roles of RBPs that have been implicated in specific stages of heart development or developmental pathology. RBPs are involved in nearly every stage of cardiogenesis, including the formation, morphogenesis, and maturation of the heart. A fuller understanding of the roles and substrates of these proteins could ultimately provide attractive targets for the design of therapies for congenital heart defects, cardiovascular disease, or cardiac tissue repair.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
14
|
Notarnicola C, Rouleau C, Le Guen L, Virsolvy A, Richard S, Faure S, De Santa Barbara P. The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle. Gastroenterology 2012; 143:687-697.e9. [PMID: 22683258 DOI: 10.1053/j.gastro.2012.05.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Gastrointestinal development requires regulated differentiation of visceral smooth muscle cells (SMCs) and their contractile activities; alterations in these processes might lead to gastrointestinal neuromuscular disorders. Gastrointestinal SMC development and remodeling involves post-transcriptional modification of messenger RNA. We investigated the function of the RNA-binding protein for multiple splicing 2 (RBPMS2) during normal development of visceral smooth muscle in chicken and expression of its transcript in human pathophysiological conditions. METHODS We used avian replication-competent retroviral misexpression approaches to analyze the function of RBPMS2 in vivo and in primary cultures of chicken SMCs. We analyzed levels of RBPMS2 transcripts in colon samples from pediatric patients with Hirschsprung's disease and patients with chronic pseudo obstruction syndrome (CIPO) with megacystis. RESULTS RBPMS2 was expressed strongly during the early stage of visceral SMC development and quickly down-regulated in differentiated and mature SMCs. Misexpression of RBPMS2 in differentiated visceral SMCs induced their dedifferentiation and reduced their contractility by up-regulating expression of Noggin, which reduced activity of bone morphogenetic protein. Visceral smooth muscles from pediatric patients with CIPO expressed high levels of RBPMS2 transcripts, compared with smooth muscle from patients without this disorder. CONCLUSIONS Expression of RBPMS2 is present in visceral SMC precursors. Sustained expression of RBPMS2 inhibits the expression of markers of SMC differentiation by inhibiting bone morphogenetic protein activity, and stimulates SMC proliferation. RBPMS2 transcripts are up-regulated in patients with CIPO; alterations in RBPMS2 function might be involved in digestive motility disorders, particularly those characterized by the presence of muscular lesions (visceral myopathies).
Collapse
Affiliation(s)
- Cécile Notarnicola
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Caroline Rouleau
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France; CHRU Montpellier, Service d'Anatomie Pathologique, Montpellier, France
| | - Ludovic Le Guen
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Anne Virsolvy
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Sylvain Richard
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Sandrine Faure
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | | |
Collapse
|
15
|
Kwong JMK, Caprioli J, Piri N. RNA binding protein with multiple splicing: a new marker for retinal ganglion cells. Invest Ophthalmol Vis Sci 2010; 51:1052-8. [PMID: 19737887 PMCID: PMC3979483 DOI: 10.1167/iovs.09-4098] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize expression of the RNA binding protein (RBPMS) in the retina as a specific marker for retinal ganglion cells (RGCs). METHODS Optic nerve transection (ONT) was performed on adult male Wistar rats. Retrograde RGC labeling was performed with FluoroGold (FG) applied to the cut surface of the optic nerve. RBPMS mRNA and protein expression in the retina was analyzed by in situ hybridization and immunohistochemistry, respectively. The expression of RBPMS in various rat tissues was analyzed with semiquantitative RT-PCR. RESULTS RBPMS mRNA and protein expression was localized primarily to irregularly shaped cells in the ganglion cell layer of the retina. Quantitative analysis showed that almost 100% of RGCs labeled by FG were also RBPMS-positive, irrespective of their location relative to the optic nerve head. Approximately 94% to 97% of RBPMS-positive cells were also positive for Thy-1, neurofilament H, and III beta-tubulin. In 2-week ONT retinas, the remaining few RGCs were weakly stained with RBPMS compared with intact RGCs in control retinas. Outside the retina, expression of RBPMS was observed in the heart, kidney, liver, and lungs. No expression was detected in any neuronal tissues except the retina. CONCLUSIONS The data indicate that in the retina RBPMS is selectively expressed in RGCs and therefore could serve as a marker for RGC quantification in normal retinas and for estimation of RGC loss in ocular neuropathies.
Collapse
Affiliation(s)
| | - Joseph Caprioli
- From the
Jules Stein Eye Institute and
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Natik Piri
- From the
Jules Stein Eye Institute and
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
16
|
Song HW, Cauffman K, Chan AP, Zhou Y, King ML, Etkin LD, Kloc M. Hermes RNA-binding protein targets RNAs-encoding proteins involved in meiotic maturation, early cleavage, and germline development. Differentiation 2007; 75:519-28. [PMID: 17309605 DOI: 10.1111/j.1432-0436.2006.00155.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The early development of metazoans is mainly regulated by differential translation and localization of maternal mRNAs in the embryo. In general, these processes are orchestrated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated region (UTR) of their target RNAs. Hermes is an RNA-binding protein, which contains a single RNA recognition motif (RRM) and is found in various vertebrate species from fish to human. In Xenopus laevis, Hermes mRNA and protein are localized in the vegetal region of oocytes. A subpopulation of Hermes protein is concentrated in a specific structure in the vegetal cortex, called the germ plasm (believed to contain determinants of the germ cell fate) where Hermes protein co-localizes with Xcat2 and RINGO/Spy mRNAs. The level of total Hermes protein decreases during maturation. The precocious depletion of Hermes protein by injection of Hermes antisense morpholino oligonucleotide (HE-MO) accelerates the process of maturation and results in cleavage defects in vegetal blastomeres of the embryo. It is known that several maternal mRNAs including RINGO/Spy and Mos are regulated at the translational level during meiotic maturation and early cleavage in Xenopus. The ectopic expression of RINGO/Spy or Mos causes resumption of meiotic maturation and cleavage arrests, which resemble the loss of Hermes phenotypes. We found that the injection of HE-MO enhances the acceleration of maturation caused by the injection of RINGO/Spy mRNA, and that Hermes protein is present as mRNP complex containing RINGO/Spy, Mos, and Xcat2 mRNAs in vivo. We propose that as an RNA-binding protein, Hermes may be involved in maturation, cleavage events at the vegetal pole and germ cell development by negatively regulating the expression of RINGO/Spy, Mos, and Xcat2 mRNAs.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sun Y, Ding L, Zhang H, Han J, Yang X, Yan J, Zhu Y, Li J, Song H, Ye Q. Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res 2006; 34:6314-26. [PMID: 17099224 PMCID: PMC1669761 DOI: 10.1093/nar/gkl914] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/15/2006] [Accepted: 10/16/2006] [Indexed: 11/25/2022] Open
Abstract
Smad2, Smad3 and Smad4 proteins are considered to be key mediators of transforming growth factor-beta (TGF-beta) signaling. However, the identities of the Smad partners mediating TGF-beta signaling are not fully understood. Here, we show that RNA-binding protein with multiple splicing (RBPMS), a member of the RNA-binding protein family, physically interacts with Smad2, Smad3 and Smad4 both in vitro and in vivo. The presence of TGF-beta increases the binding of RBPMS with these Smad proteins. Consistent with the binding results, overexpression of RBPMS enhances Smad-dependent transcriptional activity in a TGF-beta-dependent manner, whereas knockdown of RBPMS decreases this activity. RBPMS interacts with TGF-beta receptor type I (TbetaR-I), increases phosphorylation of C-terminal SSXS regions in Smad2 and Smad3, and promotes the nuclear accumulation of the Smad proteins. Moreover, RBPMS fails to enhance the transcriptional activity of Smad2 and Smad3 that lack the C-terminal phosphorylation sites. Our data provide the first evidence for an RNA-binding protein playing a role in regulation of Smad-mediated transcriptional activity and suggest that RBPMS stimulates Smad-mediated transactivation possibly through enhanced phosphorylation of Smad2 and Smad3 at the C-terminus and promotion of the nuclear accumulation of the Smad proteins.
Collapse
Affiliation(s)
- Yan Sun
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Lihua Ding
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Hao Zhang
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Juqiang Han
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Xiao Yang
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Jinghua Yan
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Yunfeng Zhu
- The 307 Hospital, Beijing 100071People's Republic of China
| | - Jiezhi Li
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Haifeng Song
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Qinong Ye
- To whom correspondence should be addressed. Tel: +8610 6818 0809; Fax: +8610 6824 8045;
| |
Collapse
|
18
|
Expression of hermes gene is restricted to the ganglion cells in the retina. Neurosci Lett 2006; 405:40-5. [PMID: 16870336 DOI: 10.1016/j.neulet.2006.06.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 11/19/2022]
Abstract
The RNA binding protein with multiple splicing 2, or hermes, is a member of the RRM (RNA recognition motif) family of RNA-binding proteins. In this study, we show that the hermes gene is expressed in the rat retina, and its expression is restricted to the ganglion cell layer. Double in situ hybridization with riboprobes corresponding to the hermes gene and Thy-1, the RGC marker in the retina, showed that the majority of the Thy-1 positive cells in the ganglion cell layer were also hermes positive. This was also shown by co-localization of the hermes in situ hybridization signals with the retrogradely labeled RGCs. Our observations suggest that hermes is expressed in the majority, if not all, of RGCs and is not restricted to only certain RGC types. Hermes in situ hybridization signals were not detected in the retinal sections of optic nerve transected animals, which are characterized by rapid and specific RGC degeneration. The dramatic reduction of the hermes mRNA level in axotomized retinas was also observed by semi-quantitative RT-PCR. The specific expression of hermes in retinal ganglion cells qualifies this gene as a potential RGC marker in the retina. Outside the retina, hermes is expressed in the heart, liver, and kidney, and to a lesser degree in the cerebellum, cortex, lung, and small intestine.
Collapse
|